1 June 2003 Queueing models of optical delay lines in synchronous and asynchronous optical packet-switching networks
Xiaoming Zhu, Joseph M. Kahn
Author Affiliations +
Buffering with optical delay lines (ODLs) in optical packet-switching networks is a way to mitigate network contention. We study queueing models of ODLs in synchronous and asynchronous optical packet-switching networks under uniform Bernoulli traffic. We first introduce a Markov chain model for a finite-length ODL forward-buffering system in synchronized networks and calculate the stationary distribution of its queueing length as well as two important queueing parameters: packet loss rate (PLR) and average queueing delay (AQD). We then introduce an asymptotic analysis based on the generating function of an infinite buffering system and present approximate expressions for PLR and AQD. Numerical calculations demonstrate that these asymptotic estimates of PLR and AQD are quite accurate. We then extend the queueing analysis to feedback-buffering ODLs in synchronized networks. We present numerical calculations of PLRs and AQDs for feedback-buffering ODLs. Finally, we introduce queueing models in asynchronous networks for forward buffering or for feedback buffering without multiple recirculations. We carry out the asymptotic analysis to characterize the performance degradation of ODL buffering in asynchronous switching when the traffic load is high.
©(2003) Society of Photo-Optical Instrumentation Engineers (SPIE)
Xiaoming Zhu and Joseph M. Kahn "Queueing models of optical delay lines in synchronous and asynchronous optical packet-switching networks," Optical Engineering 42(6), (1 June 2003). https://doi.org/10.1117/1.1572500
Published: 1 June 2003
Lens.org Logo
CITATIONS
Cited by 27 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical networks

Networks

Switching

Solids

Systems modeling

Switches

Packet switching

RELATED CONTENT


Back to Top