1 October 2011 Recent advances in microdevices for transportation industry
Author Affiliations +
Abstract
Advances in emerging technologies of microelectromechanical systems (MEMS) and nanotechnology, especially relating to the applications, constitute one of the most challenging tasks in today's micromechanics and nanomechanics. In addition to design, analysis, and fabrication capabilities, this task also requires advanced test methodologies for determination of functional characteristics of devices produced to enable verification/validation of their operation, as well as refinement and optimization of specific designs. In particular, development of microdevices requires sophisticated tools, especially as these devices apply to transportation industry because of stringent safety and reliability requirements. These tools can be categorized as analytical, computational, and experimental. Solutions using the tools from any one category alone do not usually provide necessary information on MEMS, and extensive merging, or hybridization, of the tools from different categories is used. One of the approaches employed in this development of structures of contemporary interest is based on a combined use of the analytical, computational, and experimental solutions methodology. Development of this methodology was made possible by recent advances in optoelectronic methodology, which was coupled with the state-of-the-art computational methods, to offer a considerable promise for effective development of various designs. This approach facilitates characterization of dynamic and thermomechanical behavior of the individual components, their packages, and other complex material structures.In this paper, recent advances in optoelectronic methodology for microscale measurements are described and their use is illustrated with representative examples.
©(2011) Society of Photo-Optical Instrumentation Engineers (SPIE)
Ryszard J. Pryputniewicz "Recent advances in microdevices for transportation industry," Optical Engineering 50(10), 101508 (1 October 2011). https://doi.org/10.1117/1.3605680
Published: 1 October 2011
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Microelectromechanical systems

Sensors

Optoelectronics

Fringe analysis

Optical engineering

Electronics

Finite element methods

RELATED CONTENT

Research of the micromechanical three-axis accelerometer
Proceedings of SPIE (December 30 2016)
Prospective MEMS applications at NEC
Proceedings of SPIE (March 10 1999)
A Multichannel Wide FOV Infrared Radiometric System
Proceedings of SPIE (July 05 1989)

Back to Top