0
Journal Articles

Optical Analog Solutions Of Partial Differential And Integral Equations

[+] Author Affiliations
Sing H. Lee

University of California (United States)

Opt. Eng. 24(1), 240141 (Feb 01, 1985). doi:10.1117/12.7973423
Text Size: A A A

Abstract

Confocal feedback systems exist in a variety of forms and can solve a wide range of partial differential equations (PDEs) and integral equations (lEs). In this paper we describe several of these feedback systems and how they can be applied to provide optical analog solutions to PDEs of constant coefficients (e.g., diffusion, Poisson's, and wave equations), PDEs of variable coefficients (e.g., modified Helmholtz equations), three-dimensional PDEs, four-dimen-sional PDEs, and IEs (e.g., Fredholm and Volterra equations). The important advantage of obtaining the solutions by optical analog methods rather than digital methods is speed. The disadvantage is solution accuracy, although the accuracy obtainable with optical feedback is better than without feedback. To further improve solution accuracy, we suggest the replacement of simple spherical mirrors by Mangin mirrors and the incorporation of coherent image amplification by photorefractive crystals (e.g., BaTiO3 or BSO) in the confocal systems.


Citation

Sing H. Lee
"Optical Analog Solutions Of Partial Differential And Integral Equations", Opt. Eng. 24(1), 240141 (Feb 01, 1985). ; http://dx.doi.org/10.1117/12.7973423


Access This Article
Sign In to Access Full Content
Please Wait... Processing your request... Please Wait.
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
 
Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content

Figures

Tables

References

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement


Buy this article ($18 for members, $25 for non-members).
Sign In