After determining this number, consider wrapping planes in subpowers of two multiples of $2\pi :2N\u22121\pi $, $2N\u22122\pi ,\u2026,4\pi $, $2\pi $ (Fig. 2) in such a way that iterative wrapping maps $M1,M2,\u2026,MN\u22121$, $MN$ [Figs. 3(b), 3(d), 3(f), and 3(h)] are obtained by wrapping the immediate previous wrapped function ($U+M1\xb72N\u22121\pi +M2\xb72N\u22122\pi +\u2026+Mn\xb72N\u2212n\pi $) by the next subpower of two multiples of $2\pi $. By doing so the $n$’th wrapping map has binary values: zero or $2N\u2212n+1\pi $. Notice that by construction, the position, but not necessarily the sign, of the phase jumps for each wrapping map is contained in the next one. Thus, the following intermediate wrapped functions are constructed [Figs. 3(a), 3(c), 3(e), and 3(g)]: Display Formula
${Uw,0=U;|Uw,0|\u22642N\pi \u2009Uw,1=Uw,0\u2212M1\xb72N\u22121\pi ;|Uw,1|=2N\u22121\pi \vdots Uw,N\u22122=U\u2212\cdots \u2212MN\u22122\xb74\pi =Uw,N\u22123\u2212MN\u22122\xb74\pi ;|Uw,N\u22122|=4\pi \u2009Uw=U\u2212\cdots \u2212MN\u22121\xb72\pi =Uw,N\u22122\u2212MN\u22121\xb72\pi ;|Uw|=2\pi .$(3)