Paper
1 June 1994 Simplified kinetic model for chemical oxygen-iodine lasers
Author Affiliations +
Abstract
A computational study including sensitivity, non-dimensional, and steady-state analyses of the gas phase kinetics associated with chemical oxygen-iodine lasers (COIL) was performed to develop simplified kinetic models and assess kinetic limitations to laser performance. A minimal set of eleven reactions is presented that adequately reproduces the time evolution of the major chemical constituents as described by the standard COIL kinetic model. The impact of poorly determined rate coefficients is assessed through a linear sensitivity analysis. By transforming the rate equations to a non-dimensional form, scaling laws for iodine fraction, singlet oxygen yield, and water content are developed. Finally, an approximate analytic solution to the iodine dissociation problem is established for a broad range of reagent concentrations. The current study is limited in applicability due to the exclusion of chemical heat release, fluid dynamic, and reactive mixing phenomena.
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Glen P. Perram "Simplified kinetic model for chemical oxygen-iodine lasers", Proc. SPIE 2119, Intense Beams and Applications: Lasers, Ions, and Microwaves, (1 June 1994); https://doi.org/10.1117/12.172708
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Iodine

Chemical lasers

Oxygen

Chemical oxygen iodine lasers

Chemical analysis

Information operations

Chlorine

Back to Top