Paper
19 July 1999 Volume holographic memory with a speckle-encoded reference beam
Author Affiliations +
Proceedings Volume 3749, 18th Congress of the International Commission for Optics; (1999) https://doi.org/10.1117/12.355008
Event: ICO XVIII 18th Congress of the International Commission for Optics, 1999, San Francisco, CA, United States
Abstract
Important advances of holographic memory. such as parallel input-output, high data transfer rate and ultimate density for optics storage have attracted a lot of interest. The principal feature of volume holography (known as very high selectivity of the diffracted beam intensity to reference beam deviation) is typically used for data multiplexing. Thus, most common techniques for data sampling are based on angular' and spectral2 selectivity resulting from the momentum conservation law (Bra law) for volume holograms3. Angular selectivity has been used more often as it is simpler to implement in practice. It was demonstrated4.5 that data multiplexing with up to 10.000 pages of information can be stored in one crystal as write-read/erase or read-fix. Refextnce bean arbitrary phase encoding also was demonstrated as a useful technique for this purpose, although the detailed analysis of the method was limited only by the conditions where the profile modulation across the reference beam was altered by arbitrary encoding. The first demonstration of shift selectivity of thick holograms with a speckle encoded reference beam was reported7, and later a theoretical explanation of the observed peculiarities8 was given suesting this type of selectivity for high density data storage9. A similar approach was suested for volume holograms with a spherical reference wave;10 however the existing methods do not explore the possibility of the effective use of an entire volume of the hologram as suested in the development for optical disc memory systems11. In this report we present the results of volume hologram recording with high density data obtained through a real volumetric encoding method that allows an increase in the data storage density.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vladimir B. Markov, James E. Millerd, and James D. Trolinger "Volume holographic memory with a speckle-encoded reference beam", Proc. SPIE 3749, 18th Congress of the International Commission for Optics, (19 July 1999); https://doi.org/10.1117/12.355008
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Holograms

Volume holography

Holography

Speckle

Multiplexing

Data storage

Data modeling

Back to Top