Paper
10 September 2013 Effects of molecular charge density polarization on χ(1) and χ2): a computational study of 2-methyl-4-nitroaniline (MNA) and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene (DAN)
T. Seidler, K. Stadnicka, B. Champagne
Author Affiliations +
Abstract
The linear and second-order nonlinear optical susceptibilities of the MNA and DAN organic molecular crystals have been determined using a computationally cheap method, the Rigorous Local Field Theory, which consists in estimating the bulk properties from 1°) the corresponding molecular responses, evaluated using quantum chemistry methods, as well as 2°) the local and dressing electric fields, evaluated using a classical electrostatic interaction scheme. This study has highlighted several conditions for obtaining accurate theoretical results. First, the input molecular geometry should match the main features of the crystal structure. Then, the molecular properties should be evaluated at a correlated level since electron correlation effects are huge for the polarizability (α) and even more for the first hyperpolarizability (β). The recommended approach is to use static MP2 molecular responses together with the multiplicative scheme to describe frequency dispersion. The third important aspect is the impact of the chromophore electron density polarization due to surrounding molecules in the crystal lattice. This effect accounts for an enhancement of ca. 100-200% of β and thus influences strongly the calculated bulk χ(2) tensor components.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
T. Seidler, K. Stadnicka, and B. Champagne "Effects of molecular charge density polarization on χ(1) and χ2): a computational study of 2-methyl-4-nitroaniline (MNA) and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene (DAN)", Proc. SPIE 8827, Optical Processes in Organic Materials and Nanostructures II, 88270Y (10 September 2013); https://doi.org/10.1117/12.2027343
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Crystals

Molecules

Polarizability

Nonlinear crystals

Refractive index

Polarization

Chemistry

Back to Top