

OPTICAL SATELLITE Signal Processing and Enhancement

Shen-En Qian

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Qian, Shen-En.

Optical satellite signal processing and enhancement / Shen-En Qian. pages cm
Includes bibliographical references and index.
ISBN 978-0-8194-9328-6
Image processing. 2. Imaging systems–Image quality. 3. Signal processing.
Remote-sensing images. 5. Optical images. I. Title.
TA1637.Q48 2013
629.43'7–dc23

2013006792

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing

Contents

Pi	reface				xv
Li	st of Te	erms an	d Acronyn	1S	xix
1	Space	eborne	Optical Se	ensors	1
	1.1	Introdu	uction		1
	1.2	Optica	I Satellite	Sensors and Their Types	2
	1.3	Panch	romatic Se	ensors	2
	1.4	Multisp	pectral Se	nsors	5
		1.4.1	Landsat	MSS, TM, and ETM+	5
		1.4.2	SPOT's	HRV, HRVIR, and HRG	9
		1.4.3	Other m	ultispectral sensors	10
	1.5	Hypers	spectral S	ensors	11
		1.5.1	What is	a hyperspectral sensor?	11
		1.5.2	Operatin	g principle of a hyperspectral sensor	12
		1.5.3	Types o	f hyperspectral sensors	13
			1.5.3.1	Dispersing-element-based sensors	14
			1.5.3.2	Optical-filter-based sensors	14
			1.5.3.3	Electronically tunable-filter-based sensors	15
		1.5.4	Hypersp	ectral sensor operating modes	16
			1.5.4.1	Whisk-broom mode	16
			1.5.4.2	Push-broom mode	17
		1.5.5	Spacebo	orne hyperspectral sensors	18
			1.5.5.1	Ultraviolet and Visible Imagers and Spectrographic	
				Imagers system	18
			1.5.5.2	Hyperion	18
			1.5.5.3	Compact High-Resolution Imaging Spectrometer	20
			1.5.5.4	Medium-Resolution Imaging Spectrometer	20
			1.5.5.5	Compact Reconnaissance Imaging Spectrometer	
				for Mars	21
			1.5.5.6	Moon Mineralogy Mapper	22
			1.5.5.7	Advanced Responsive Tactically Effective Military	
				Imaging Spectrometer	23
			1.5.5.8	Environmental Mapping and Analysis	23

vi				Contents
1.6	Imagin	g Fourier ⁻	Fransform Spectrometer Sensor	23
	1.6.1	Descriptio	on	23
	1.6.2	Types of	FTS sensors, and operational concept	24
	1.6.3	Spacebor	ne IFTS	25
		1.6.3.1	Infrared Atmospheric Sounding Interferometer	26
		1.6.3.2	Tropospheric Emission Spectrometer	27
		1.6.3.3	Cross-track Infrared Sounder	27
		1.6.3.4	Atmospheric Chemistry Experiment–Fourier	
			Transform Spectrometer	28
		1.6.3.5	Fourier Transform Hyperspectral Imager	28
		1.6.3.6	ASTRO FTS	29
		1.6.3.7	Geosynchronous Imaging Fourier Transform	
			Spectrometer	29
1.7	Lidar S	Sensor		30
	1.7.1	Definition	and description	30
	1.7.2	Lidar In-s	pace Technology Experiment	32
	1.7.3	Shuttle La	aser Altimeter	33
	1.7.4	Mars Orb	iter Laser Altimeter	34
	1.7.5	Geoscien	ce Laser Altimeter System	34
	1.7.6		rosol Lidar with Orthogonal Polarization	34
	1.7.7		eric Laser Doppler Lidar Instrument	35
	1.7.8	-	_aser Altimeter	36
	1.7.9	•	biter Laser Altimeter	37
	1.7.10	Next-gen	eration, high-resolution swath-mapping lidar	38
Refe	rences			39
2 Satell	ite Data	Generatio	n and Product Levels	43
2.1	Space	Data and	Information System	43
2.2	EOS D	ata and Ir	formation System	43
	2.2.1	Spacecra	ft command-and-control center	44
	2.2.2	Data cap	ture and Level-0 processing	44
	2.2.3	Product g	jeneration	44
	2.2.4	Data arch	nive, management, and distribution	45
	2.2.5	Locating	and accessing data products of interest	45
2.3	EOS D	ata Produ	ct Levels	45
	Planeta	ary Data S	ystem and Product	46
2.4	0.4.4	Standard	data products	46
2.4	2.4.1		-	. –
2.4	2.4.1 2.4.2		ng and other ancillary data products	47
2.4		Engineeri	ng and other ancillary data products locumentation	
2.4 2.5	2.4.2 2.4.3	Engineeri Dataset o		48
	2.4.2 2.4.3 Planeta	Engineeri Dataset c ary Data P	locumentation	48 49
2.5	2.4.2 2.4.3 Planeta	Engineeri Dataset c ary Data P le of EOS	locumentation roduct Levels	48 49 49
2.5	2.4.2 2.4.3 Planeta Examp 2.6.1	Engineeri Dataset o ary Data P le of EOS Level-0 d	locumentation roduct Levels Data Product Levels	47 48 49 49 50 50

	2.7	Examp	le of Plan	etary Data Product Levels	51
		2.7.1	Level 1:	Raw data	52
		2.7.2	Level 2:	Raman datasets	52
		2.7.3		Calibrated unidentified Raman spectra	52
		2.7.4	Level 5:	Carbon/mineralogy results	53
		2.7.5	Level 6:	Ancillary data	53
		2.7.6	Level 7:	Correlative data	54
		2.7.7	Level 8:	User description	54
	Refe	rences			54
3	Satell	ite Data	and Imag	ge Quality Metrics	55
	3.1	Needs	for Qualit	y Metrics	55
	3.2	Full-Re	eference N	1etrics	57
		3.2.1	Conventi	onal full-reference metrics	57
			3.2.1.1	Mean-square error (MSE)	57
			3.2.1.2	Relative-mean-square error (ReMSE)	58
			3.2.1.3	Signal-to-noise ratio (SNR)	58
			3.2.1.4	Peak signal-to-noise ratio (PSNR)	58
			3.2.1.5	Maximum absolute difference (MAD)	58
			3.2.1.6	Percentage maximum absolute difference (PMAD)	58
			3.2.1.7	Mean absolute error (MAE)	59
			3.2.1.8	Correlation coefficient (CC)	59
			3.2.1.9	Mean-square spectral error (MSSE)	59
			3.2.1.10	Spectral correlation (SC)	60
			3.2.1.11	Spectral angle (SA)	60
			3.2.1.12	Maximum spectral information divergence (MSID)	61
			3.2.1.13	ERGAS for multispectral image after pan-sharpening	61
		3.2.2	Perceive	d-visual-quality-based full-reference metrics	61
			3.2.2.1	Universal image quality index	61
			3.2.2.2	Multispectral image quality index	62
			3.2.2.3	Quality index for multi- or hyperspectral images	64
			3.2.2.4	Structural similarity index	65
			3.2.2.5	Visual information fidelity	67
	3.3	Reduc	ed-Referei	nce Metrics	68
		3.3.1	Four RR	metrics for spatial-resolution-enhanced images	70
		3.3.2	RR metri	c using wavelet-domain natural-image statistic model	72
	3.4	No-Re	ference M	etrics	74
		3.4.1	NR metr	ic for compressed images using JPEG	75
		3.4.2	NR metr	ic for pan-sharpened multispectral image	76
			3.4.2.1	Spectral distortion index	77
			3.4.2.2	Spatial distortion index	77
			3.4.2.3	Jointly spectral and spatial quality index	78
	Refe	rences			78

vii

4	Satelli	te Data	Compression	81
	4.1	Lossle	ss and Near-Lossless Data Compression	81
		4.1.1	Lossless compression	82
		4.1.2	Near-lossless compression	83
	4.2	Vector	Quantization Data Compression of Hyperspectral Imagery	85
		4.2.1	Review of fast VQ compression algorithms	85
		4.2.2	Near-lossless VQ compression techniques	89
			4.2.2.1 Successive approximation multi-stage vector	
			quantization	89
			4.2.2.2 Hierarchical self-organizing cluster vector quantization	90 I
	4.3	Onboa	rd Data Compression of Multispectral Images	91
		4.3.1	1D differential pulse code modulation	91
		4.3.2	Discrete-cosine-transform-based compression	91
		4.3.3	Wavelet-based compression	93
		4.3.4	Selective compression	94
	4.4	Lossle	ss Compression of Ultraspectral Sounder Data	95
		4.4.1	Comparison of wavelet-transform-based and predictor-based	
			methods	96
			4.4.1.1 Wavelet-transform-based methods	96
			4.4.1.2 Predictor-based methods	97
			4.4.1.3 Comparison results	98
		4.4.2	Lossless compression using precomputed vector quantization	
			4.4.2.1 Linear prediction	99
			4.4.2.2 Grouping based on bitlength	100
			4.4.2.3 Vector quantization with precomputed codebooks	100
			4.4.2.4 Optimal bit allocation	100
		4 4 0	4.4.2.5 Entropy coding	101
		4.4.3	Lossless compression using the prediction-based lower	101
			triangle transform	
			4.4.3.1 Prediction-based lower triangle transform	102 103
			4.4.3.2 PLT lossless compression algorithm4.4.3.3 Results of PLT lossless compression	103
	4.5	CCSD	S Data Compression Standards for Spacecraft Data	104
	4.5	4.5.1	Three space-data compression standards	100
		4.5.2	Lossless data compression standard	100
		4.5.3	Image-data compression standard	110
		4.5.4	Lossless multispectral/hyperspectral compression standard	114
	Refer	rences		118
5			Formatting and Decketization	125
5			Formatting and Packetization	
	5.1		tting Satellite Data Using CCSDS Space Data Link Protocol	125
	5.2	1 eleme 5.2.1	etry System Concept Rocketization lower	127
			Packetization layer	128 128
		5.2.2 5.2.3	Transfer frame layer	120
		J.Z.J	Channel coding layer	129

6

5.3	Space	Packet Concept	129
5.4	Space	Packet Structures	130
	5.4.1	Packet primary header	131
		5.4.1.1 Packet version number	131
		5.4.1.2 Packet identification field	132
		5.4.1.3 Packet sequence control field	132
		5.4.1.4 Packet data length	133
	5.4.2	Packet datafield	133
		5.4.2.1 Packet secondary header	133
		5.4.2.2 User datafield	134
5.5	Teleme	etry Transfer Frame	134
	5.5.1	Transfer frame primary header	135
		5.5.1.1 Master channel identifier	136
		5.5.1.2 Virtual channel identifier	136
		5.5.1.3 Operational control field flag	136
		5.5.1.4 Master channel frame count	136
		5.5.1.5 Virtual channel frame count	137
		5.5.1.6 Transfer frame datafield status	137
	5.5.2	Transfer frame secondary header	138
	5.5.3	Transfer frame datafield	139
	5.5.4	Operational control field	140
	5.5.5	Frame error control field	141
Refe	rences		142
Chan	nel Codi	ing	145
6.1	Teleme	etry System Layers and Channel Coding	145
6.2	Chann	el Coding Improving Space Data Link Performance	147
	6.2.1	Channel coding performance measures	147
	6.2.2	Shannon limit on channel coding performance	148
6.3	Reed-	Solomon Codes	150
	6.3.1	Definition	150
	6.3.2	RS encoder	152
	6.3.3	Interleaving of the RS symbols	154
	6.3.4	Decoding of RS codes	155
	6.3.5	Performance of RS codes	156
6.4	Convo	lutional Codes	157
	6.4.1	Encoder for CCSDS (7, 1/2) convolutional code	157
	6.4.2	Encoder for CCSDS punctured convolutional code	159
	6.4.3	Soft maximum-likelihood decoding of convolutional codes	160
	6.4.4	Performance of (7, 1/2) code and punctured convolutional	
		codes	161
6.5	Conca	tenation of Reed-Solomon and Convolutional Codes	163
6.6	Turbo	Codes	166
	6.6.1	Definition	166
	6.6.2	Turbo encoder and decoder	167
	6.6.3	Comparing turbo codes to traditional concatenation codes	169

х			C	ontents	
	6.7	Low-D	ensity Parity-Check Codes	171	
		6.7.1	Introduction	171	
		6.7.2	CCSDS-recommended LDPC codes	172	
			6.7.2.1 Base (8176, 7156) LDPC code	173	
			6.7.2.2 Shortened (8160, 7136) LDPC code	174	
		6.7.3	Performance of LDPC code	175	
	Refe	erences		176	
7	Calib	ration o	f Optical Sensors	179	
	7.1	Import	ance of Calibration	179	
	7.2	Absolu	ute and Relative Radiometric Calibration	181	
	7.3	Satelli	te Optical Sensor Modeling	184	
	7.4	On-Gr	ound Calibration prior to Launch	186	
		7.4.1	Review	186	
		7.4.2	Landsat instrument laboratory calibration	188	
		7.4.3	AVIRIS laboratory calibration	188	
	7.5		ard Calibration Postlaunch	190	
	7.6		ous Calibration	193	
	7.7	7.7 Conversion to At-Sensor Radiance and Top-of-Atmosphere			
		Reflec		195	
		7.7.1	Conversion to at-sensor radiance	195	
		7.7.2		196	
	D . (.	7.7.3	Conversion to at-sensor brightness temperature	197	
	Rete	erences		198	
8	Keyst	tone an	d Smile Measurement and Correction	205	
	8.1	Keysto	one and Smile in Imaging Spectrometers	205	
		8.1.1	Spectral distortion: smile	205	
		8.1.2		208	
		8.1.3	How keystone and smile affect pixel shape and location	210	
	8.2		d of Measuring Smile Using Atmospheric-Absorption Feature		
		Match		212	
	8.3		Measurements of Five Hyperspectral Imagers	216	
		8.3.1	Testing AVIRIS sensor smile	216	
		8.3.2	Smile measurement of the SFSI sensor	219	
		8.3.3	Smile measurement of the CASI sensor	222	
		8.3.4	Smile measurement of the CHRIS sensor	225	
	0.4	8.3.5	Smile measurement of Hyperion	225	
	8.4		uring Keystone Using Interband Correlation of Spatial	004	
	0 5	Featur		231	
	8.5		uring Keystone of Hyperspectral Imagers	233	
		8.5.1	Test of keystone of AVIRIS sensor	233	
		8.5.2	Measuring keystone of the Aurora sensor	235	
		8.5.3	Measuring keystone of the CASI sensor	236	

		8.5.4	Measuring keystone of the SFSI sensor	237
		8.5.5 8.5.6	Measuring keystone of the Hyperion sensor	237 238
	8.6		Summary of keystone measurement results of Keystone on Spectral Similarity Measures	230
		rences	or Reystone on Spectral Similarity measures	239
9	Multis	ensor Ir	nage Fusion	243
	9.1	Image	Fusion Definition	243
	9.2	Three (Categories of Image Fusion Algorithms	246
	9.3	Conver	ntional Image Fusion Methods	247
		9.3.1	IHS fusion	247
		9.3.2	PCA fusion	251
		9.3.3	Arithmetic combination fusion	252
		9.3.4	Wavelet transform fusion	254
	9.4	Compa	rison of Typical Image Fusion Techniques	257
		9.4.1	Brief description of nine fusion techniques	257
		9.4.2	Summary of evaluation results	259
	9.5	-	Fusion Using Complex Ridgelet Transform	261
		9.5.1	Purpose	261
		9.5.2	Radon transform	262
		9.5.3	Ridgelet transform	262
		9.5.4	Operation of iterative back-projection	264
		9.5.5	Image fusion based on the complex ridgelet transform	264
		9.5.6	Image fusion experimental results	267
	9.6		of Optical and Radar Images	274
		9.6.1	Fusion of multispectral and SAR images using intensity	
			modulation	275
		9.6.2	SAR and optical image fusion based on wavelet transform	276
		9.6.3	SAR and optical image fusion based on local variance	070
			and mean	276
		9.6.4	Fusion of RADARSAT-1 and SPOT images	277
	Refer	ences		279
10		-	e Spatial Resolution of a Satellite by Exploiting	
	the Se	ensor's l	Keystone Distortion	289
	10.1		sing Satellite Sensor Performance Using a Signal Processing	
		Approa	ch	289
	10.2	Exploiti Resolut	ng the Keystone of a Satellite Sensor to Enhance Spatial	291
	10.3		Keystone to Increase the Spatial Resolution of a Single-Band	
		Image		294
		•	Fusion of subpixel-shifted images	294
			Method 1: Separate band images extracted based on	
			KS-induced subpixel shift	296

xi

		Method 2: Synthetic images derived based on a given amount of subpixel shift	298
		Method 3: Synthetic images derived based on closeness	290
		of pixel intensity	299
		Two schemes of organizing subpixel-shifted images and IBP	
		implementation	300
10.4		nental Results of Single-Band High-Resolution Images	304
	•	Image quality metric: modified visual information fidelity	304
		Test hyperspectral datacubes	305
	10.4.3	Results of the Target datacube	307
	10.4.4	Results of the Key Lake datacube	310
10.5	Increase	e the Spatial Resolution of an Entire Datacube	313
10.6	Experim	nental Results of a Datacube after Spatial Resolution	
	Enhanc	ement	314
10.7	Conclus	sion and Discussion	319
Refer	ences		321
Color Plat	tes		
	-	Signal-to-Noise Ratio of Satellite Sensors Using	
Digital	Denoisi	ing	327
		ing the SNR of Satellite Sensors by Reducing Noise	327
11.2	•	Spectral–Spatial Noise Reduction	329
		Wavelet-shrinkage noise reduction	329
		Problem definition	332
	11.2.3	Proposed approach	336
		11.2.3.1 Hybrid spatial–spectral noise reduction	336
		11.2.3.2 Noise level elevation for effective denoising	337
		11.2.3.3 Correction of the integration error	339
	44.0.4	11.2.3.4 Proposed algorithm	341
44.0		Experimental results of noise reduction	342
11.3	Shrinka	Reduction Using Principal Component Analysis and Wavelet	349
		Combined PCA and wavelet-transform denoising method	349 351
		Test results of the combined PCA and wavelet denoising method	301
	11.3.2	method	355
11.4	Combin	ing Principal Component Analysis with Block-Matching	
	3D Filte		358
		Combined PCA and BM3D denoising method	360
		Test results	361
11.5	Evaluati	ion of the Hybrid Spectral–Spatial Noise Reduction Technique	363
		Remote sensing products used for the evaluation	364
		11.5.1.1 Vegetation indices	365
		11.5.1.2 Red-edge position	366
	11.5.2	Evaluation criteria	367

			11 5 0 1 Evolue	tion oritorion	367
			11.5.2.1 Evalua	measuring criteria	367 367
		1153	Evaluation result		370
	Refer	rences			373
12 0			otaction of Hym	orenestral Images ofter Noise Peduction	379
12 3		-		erspectral Images after Noise Reduction	379
		-	I-Angle-Mapper-E	erspectral Images	380
	12.2	•	Test dataset	ased method	381
				es estimation using the SAM approach	381
			÷ .	es estimation results	386
	12.3		•	racteristic Method	389
				Spectral Unmixing	391
		-	-	g and target masks	392
			Evaluation criter		394
			12.4.2.1 Percer	tage area of a derived target versus the	
			real ta	с с	395
			12.4.2.2 Percer	tage area of a misdetected target versus	
			the rea	al target	395
			12.4.2.3 Contra	st of target to background	396
		12.4.3	Target detection	and evaluation results	396
			12.4.3.1 Area o	f derived targets	397
			12.4.3.2 Misdet	ected pixels	399
			12.4.3.3 Fractio	n difference of the targets	402
		12.4.4	Summary of eva	luation results	403
	12.5	-	-	nming Pixels' Endmember Fractions	405
			Subpixel target		405
			•	and evaluation results	409
			Discussion and	conclusion	415
	Refer	rences			416
13 [Dimen	sionalit	Reduction of H	lyperspectral Imagery	419
	13.1	Review	of Three Dimen	sionality-Reduction Methods and Band	
		Selection	n		419
		13.1.1	Principal compo	nent analysis dimensionality reduction	420
		13.1.2	Wavelet dimensi	onality reduction	421
		13.1.3	MNF dimensiona	ality reduction	421
			Band selection		421
	13.2	Evalua	on of Three Dim	ensionality-Reduction Methods and	
			Selection Metho		422
			Using endmemb		422
			Using mineral de		425
			Using mineral cl		426
			Using forest clas	ssification	427
		13.2.5	Summary		428

xiii

xiv		Contents
13.3	Reducing Dimensionality Using Loc	cally Linear Embedding 429
	13.3.1 Nonlinear dimensionality re	duction using modified LLE 430
	13.3.2 Evaluation using EM extract	ction and mineral detection 433
13.4	Reducing Dimensionality Using Con	mbined LLE and Laplacian
	Eigenmaps	436
	13.4.1 Combined LEE and Laplac	ian eigenmaps dimensionality
	reduction	437
	13.4.2 Test results using EM extra	action 439
13.5	Bivariate Wavelet Shrinking and PC	CA Method 440
	13.5.1 Reducing dimensionality an	nd noise using BWS+PCA 441
	13.5.2 Evaluation of BWS+PCA	443
13.6	Reducing Dimension and Noise Sin	multaneously Using Wavelet
	Packets and PCA	447
	13.6.1 WP+NS+PCA method	448
	13.6.2 Evaluation of WP+NS+PC	A method 450
Refe	ences	451
4 Fast E	ndmember Extraction Based on th	e Geometry of the Datacube 455
14.1	Mixing Pixels and Linear Spectral	Unmixing 455
14.2	Endmember-Extraction Methods	457
	14.2.1 Overview	457
	14.2.2 N-FINDR	459
	14.2.3 Simplex growing algorithm	460
	14.2.4 Pixel purity index	461
	14.2.5 Iterative error analysis	462
	14.2.6 Automated morphological E	EM extraction 463
	14.2.7 Automatic target generation	ı process/vertex component
	analysis	463
	14.2.8 Fully constrained least-squa	ares linear unmixing 464
14.3	Fast EM-Extraction Algorithm in a	Reduced Search Space 465
	14.3.1 Fast N-FINDR	465
	14.3.2 Simulation results	468
	14.3.2.1 Evaluation proced	lure 468
	14.3.2.2 AVIRIS results	471
	14.3.2.3 HYDICE results	472
	14.3.3 Discussion	474
	14.3.3.1 Computation time	474
	14.3.3.2 Search space	476
	14.3.3.3 Volume criterion	477
Refe	ences	478

Preface

Over the last two decades, I—a senior research scientist and technical authority with the Canadian Space Agency—have led and carried out research and development of advanced space technology in collaboration with my colleagues at the agency and other government departments, my postdoctoral visiting fellows, internship students, and engineers in the Canadian space industry. We developed and patented a variety of novel signal processing methodologies and technologies for optical satellites. I was frequently invited by professors at universities (mostly in Canada) to give lectures to students; as a former professor myself, I've always enjoyed interacting with students and attempting to answer their questions. I was deeply touched by their eagerness and passion for acquiring knowledge and solving problems. In modern times, email is a powerful communication means: I often received emails from students around the world asking me to respond to their inquiries about my published works and to supply them with reference documents for their graduate work.

Although I have published over a hundred papers and currently hold nine U. S. patents, three European patents, and several pending patents in the subjects of optical satellite signal processing and enhancement, I have not previously organized these works into a book. This text is my attempt to provide an end-to-end treatment of optical satellite signal processing and enhancement based on my 30 years of firsthand experience and research. It serves as an introduction for readers who are willing to learn the basics and the evolution of signal processing for optical satellites, and a guide for those working on the satellite image processing, data distribution, and the manipulation and deployment of satellite communications systems. The writing style provides clear and precise descriptions for advanced researchers and expert practitioners as well as for beginners. The structure of the chapters adopts a layout similar to journal papers, opening with a brief introduction on the subject matter, then reviewing previous approaches and their shortcomings, next presenting the recent techniques with improved performance, and finally reporting experimental results for assessing their effectiveness and providing conclusions.

Readers need not begin at the first page of the book and perform a sequential reading, but it is advisable to read Chapters 1 to 3 first; they cover the basics of spaceborne optical sensors, satellite data generation, and image quality metrics for assessing satellite images. Chapter 4 constitutes a separate part devoted to the topic of onboard satellite data compression. [For a more-comprehensive description of satellite data compression, readers are recommended to read the companion text, Optical Satellite Data Compression and Implementation (SPIE Press, 2013).] Chapters 5-8 constitute another part devoted to the subsequent processes of the data communication and calibration after the onboard compression has occurred, namely the transmission from the satellite to the ground, and then the calibration to remove the artifacts of the instrument. Chapters 9-14 constitute the third part, devoted to image enhancement and exploitation. Data is now available on the ground, and specialists are expected to derive quantitative application products. Processes for improving the quality of the available data and techniques to employ such data are presented. Instead of designing and building novel expensive payloads, cheaper signal processing algorithms are applied to reduce noise and increase the signal-to-noise ratio, spatial resolution, and other data characteristics.

There are many people I would like to thank for their contributions to the material included in this book. I would like to thank the Canadian Space Agency, where I have been working for the last 20 years; my colleagues Allan Hollinger, Martin Bergeron, Michael Maszkiewicz, Davinder Manak, and Ian Cunningham for their participation in data compression projects; the postdoctoral visiting fellows who I supervised, including Guangyi Chen, Reza Rashidi-Far, Hisham Othman, Pirouz Zarrinkhat, Charles Serele, and Riadh Ksantini for their contributions to denoising, enhancing spatial resolution, dimensionality reduction, spectral unmixing, target detection, and data compression; and over 40 internship students who have each left their mark in contribution. I would like to thank Robert Neville (retired), Karl Staenz (now with University of Lethbridge), and Lixin Sun at the Canada Centre for Remote Sensing for allowing me to include their work on keystone and smile detection and their correction in this book, and for collaboration on the Canadian hyperspectral program; Josée Lévesque and Jean-Pierre Ardouin at the Defence Research and Development Canada for their collaboration on target detection and enhancement of spatial resolution.

I thank David Goodenough at the Pacific Forestry Centre; John Miller and Baoxin Hu at York University, for providing datasets and for actively collaborating on hyperspectral applications; and Bormin Huang of the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison for discussing satellite data compression. I also would like to thank Penshu Yeh at the NASA Goddard Space Flight Center, Aaron Kiely at the Jet Propulsion Laboratory, Carole Thiebaut and Gilles Moury at the French Space Agency (CNES), and Raffaele Vitulli at the European Space Agency for the collaboration within the CCSDS in developing international spacecraft data standards and for their contributions to the CCSDS work included in this book. I would also like to thank the three anonymous reviewers for their tireless work and strong endorsement of this book, their careful and meticulous chapter-by-chapter review on behalf of SPIE Press, and their detailed comments leading to the improvement and final results of the book in its current form. Many thanks as well to Tim Lamkins, Scott McNeill, and Dara Burrows at SPIE Press for turning my manuscript into this book.

Finally, this book would not have been possible without the help and support of my wife Nancy and daughter Cynthia, who provided great encouragement and assistance during the many hours of my spare time after work when I was preparing, typing, and editing this book. I owe great thanks to them for their patience and love.

> Shen-En Qian (錢神恩) Senior Scientist, Canadian Space Agency Montreal, Canada September 2013

List of Terms and Acronyms

%E	Percentage error
%SE	Percentage standard error
3D CB-EZW	Three-dimensional context-based embedded zerotrees of wavelet transform
3D-SPECK	Three-dimensional set-partitioned embedded block
AAC	Adaptive arithmetic coding
AC	Arithmetic coding
ACE-FTS	Atmospheric Chemistry Experiment-Fourier Transform Spectrometer
AIRS	Atmospheric infrared sounder
ALADIN	Atmospheric Laser Doppler Lidar Instrument
ALI	Advanced Land Imager
ALOS	Advanced Land-Observing Satellite
AMEE	Automated morphological end-member extraction
AOS	Advanced orbital system
AOTF	Acousto-optical tunable filter
APD	Avalanche photodiode
APRAD	Average percent relative absolute difference
APSICL	Adjacent pixel spectra in a cross-track line
A-RMSE	Absolute root mean square error
ARSIS	Amélioration de la résolution spatial par injection de
	structures
ARTEMIS	Advanced Responsive Tactically Effective Military Imaging
	Spectrometer
ASIC	Application-specific integrated circuit
ATGP	Automatic target generation process
AVIRIS	Airborne visible/infrared imaging spectrometer
AVNIR	Advanced visible and near-infrared radiometer
AWGN	Additive white Gaussian noise
BCM	Band correlation minimization
BDM	Band dependence minimization
BER	Bit-error rate
BIP	Band interleaved by pixel

BIPLGC BP	Binary-input power-limited Gaussian channel Belief propagation
BPE	Bit-plane encoder
BPOC	Base-bit plus overflow-bit coding
bpppb	Bits per pixel per band
BPSK	Binary phase shift keying
BRDF	Bidirectional reflectance distribution function
BSQ	Band sequential
CALIOP	Cloud-Aerosol Lidar with Orthogonal Polarization
CASI	Compact airborne spectrographic imager
CBERS	China-Brazil Earth Resources Satellite
CC	Correlation codevector
CCD	Charge-coupled device
CCSDS	Consultative Committee for Space Data Systems
CDS	Coded dataset
CE	Compression engine
CEM	Constraint energy minimization
CEOS	Committee on Earth Observation Satellites
CFDP	CCSDS File Delivery Protocol
CGT	Codebook generation time
CHRIS	Compact high-resolution imaging spectrometer
CR	Compression ratio
CrIS	Cross-track Infrared Sounder
CRISM	Compact Reconnaissance Imaging Spectrometer for Mars
CRT	Complex ridgelet transform
CSCI	Component software-configurable item
СТ	Coding time
СТ	Computation time
CV	Codevector
CVQ	Correlation vector quantizer
CZT	Cadmium-zinc-telluride
DAAC	Distributed active archive center
DC	Digital count
DCT	Discrete cosine transform
DCWG	Data Compression Working Group
DIV	Difference in variance
DLP	Diagonal linear projection
DLS	Diagonal linear shrinker
DMA	Direct memory access
DN	Digital number
DPCM	Differential pulse code modulation
DSP	Digital signal processor
DT	Decoding time

DTCWT	Dual-tree complex wavelet transform
DWT	Discrete wavelet transform
EDU	Engineering demonstration unit
EM	Endmember
EnMAP	Envrionmental Mapping Analysis
EOS	Earth Observing System
ETF	Electronically tunable filter
ETM	Enhanced thematic mapper
ETM+	Enhanced thematic mapper plus
EUMETSAT	European Organization for the Exploitation of Meterologi-
Lenieroni	cal Satellites
EV	Earth view
EZW	Embedded zerotrees of wavelet transforms
FCLSLU	Fully constrained least-squares linear unmixing
FER	Frame-error rate
FFT	Fast Fourier transform
FIFO	First-in first-out
FIPPI	Fast iterative pixel purity index
FIR	Far-infrared
FOV	Field of view
F-P filter	Fabry-Pérot filter
FPA	Focal plane array
FPGA	Field programmable gate array
FPR	False positive rate
FPVQ	Fast precomputed vector quantization
FR	Full reference
FRIT	Finite ridgelet transform
FTHSI	Fourier Transform Hyperspectral Imager
FTS	Fourier transform spectrometer
FWHM	Full width at half maximum
GIFTS	Geosynchronous Imaging Fourier Transform Spectrometer
GLA	Generalized Lloyd algorithm
GLAS	Geoscience Laser Altimeter System
GPO2	Golomb power-of-two coding
GSD	Ground sample distance
GUI	Graphical user interface
HIBR	Hyperspectral image browser
HIS	Intensity-hue-saturation
HPF	High-pass filter
HRG	High-Resolution Geometrical
HRV	High-Resolution Visible
HRVIR	High-Resolution Visible and Infrared
HS	Histogram-based segmentation

HSOCVQ	Hierarchical self-organizing cluster vector quantization
HVS	Human visual system
HYDICE	Hyperspectral Digital Image Collection Experiment
IARR	Internal average relative reflectance
IASI	Infrared atmospheric sounding interferometer
IBP	Iterative back-projection
IC	Isoclustering
IC	Integrated circuit
ICESat	Ice, Cloud, and Land Elevation Satellite
IEA	Iterative error analysis
IFOV	Instantaneous field of view
IFTS	Imaging Fourier transform spectrometer
IIR	Imaging Infrared Radiometer
IRMSS	Infrared Multispectral Scanner
ISO	International Organization for Standardization
ISRO	Indian Space Research Organization
IWT	Integer wavelet transform
JAXA	Japan Aerospace Exploration Agency
JPL	Jet Propulsion Laboratory
KLT	Karhunen-Loéve transform
LAI	Leaf area index
LAIS	Locally averaged interband scaling
LBG	Linde–Buzo–Gray
LCMV-CBS	Linearly constrained minimum variance constrained band
	selection
LCTF	Liquid crystal tunable filter
LDC	Lossless data compression
LDCM	Landsat Data Continuity Mission
LDPC	Low-density parity check
LITE	Lidar In-space Technology Experiment
LLE	Locally linear embedding
LOCO	Low-complexity lossless compression
LOLA	Lunar Orbiter Laser Altimeter
LOS	Line of sight
LRO	Lunar Reconnaissance Orbiter
LSU	Linear spectral unmixing
LUT	Lookup table
M3	Moon Mineralogy Mapper
MAD	Maximum absolute difference
MAE	Mean absolute error
MC 3D-EZBC	Motion-controlled three-dimensional embedded zeroblock
	coding
MCT	Mercury–cadmium–telluride

MDD	Minimum distance datastica
MDD	Minimum distance detection
MDP	Minimum distance partition
MDS	Minimal distance selector
MEI	Morphological eccentricity index
MERIS	Medium-Resolution Imaging Spectrometer
MGS	Mars Global Surveyor
MHS	Modified histogram-based segmentation
MIR	Middle-infrared
MISR	Multi-angle imaging spectroradiometer
MLA	Mercury Laser Altimeter
MNF	Minimum noise fraction
M-NVQ	Mean-normalized vector quantization
MODIS	Moderate-resolution imaging spectroradiometer
MOLA	Mars Orbiter Laser Altimeter
MOMS	Modular optoelectronic multispectral scanner
MOS	Modular optoelectronic scanner
MPS	Mean-distance-order partial search
MRO	Mars Reconnaissance Orbiter
MS	Multispectral
MSA	Maximum spectral angle
MSCA	Multiple-subcodebook algorithm
MSE	Mean square error
MSID	Maximum spectral information divergence
MSS	Multispectral Scanner
MSSE	Mean square spectral error
MSX	Midcourse Space Experiment
MT	Multi-thresholding
MTF	Modulation transfer function
NDVI	Normalized difference vegetation index
ΝΕΔΤ	Noise-equivalent change in temperature
NGST	Next-Generation Space Telescope
NIR	Near-infrared
NIST	National Institute of Standards and Technology
NN	Nearest neighbor
NNP	Nearest-neighbor predictor
NPS	Nearest partition set
NR	No reference
NR	Noisy radiance
NRR	Noise-removed radiance
NWP	Numerical weather prediction
OPD	Optical path difference
OSP	Orthogonal subspace projection
PALSAR	Phased Array-type L-band Synthetic Aperture Radar
	i hused minay-type D-band Synthetic Aperture Radal

PCA	Principal component analysis
PCB	Print circuit board
PD	Probability of detection
PDS	Partial distance search
PDS	Planetary Data System
PFA	Probability of false alarm
PMAD	Percentage maximum absolute difference
PPI	Pixel purity index
PRISM	Panchromatic Remote-sensing Instrument for Stereo
	Mapping
PROBA	Project for Onboard Autonomy
PSF	Point spread function
PSNR	Peak signal-to-noise ratio
РТ	Processing time
QLUT	Quantized-index lookup table
RBV	Return Beam Vidicon
RDCT	Reversible discrete cosine transform
RE	Ratio enhancement
REP	Red-edge position
ReRMSE	Relative root mean square error
RF	Radio frequency
RGB	Red-green-blue
RMSE	Root mean square error
RMSSE	Root mean square spectral error
ROC	Receiver operating characteristic
ROI	Region of interest
RR	Reduced reference
RTDLT	Reversible time-domain lapped transform
SA	Spectral angle
SAM	Spectral angle mapper
SAMVQ	Successive approximation multi-stage vector quantization
SAR	Synthetic aperture radar
SC	Spectral correlation
ScaRaB	Scanner for radiation budget
SCPS	Space Communications Protocol Specifications
SDD	Standard deviation difference
SeaWiFS	Sea-viewing wide-field-of-view sensor
SEU	Single-event upset
SFBBC	Spectral-feature-based binary code
SFF	Spectral feature fitting
SFFS	Sequential forward-floating selection
S-FMP	Spectral fuzzy-matching pursuits
SFS	Sequential forward selection
S1 0	Sequencial for suite belocition

SFSI	Short-Wave Infrared Full-Spectrum Imager
SGA	Simplex growing algorithm
SID	Sub-identity
SLA	Shuttle Laser Altimeter
SLSQ	Spectrum-oriented least squares
SNR	Signal-to-noise ratio
SOAD/SOSD	Sum of absolute/squared distance
SOFM	Self-organizing feature map
SPIHT	Set partitioning in hierarchical trees
SPIM	Spectrographic imager
SPOT	Système Pour l'Observation de la Terre
SRBC	Solar-radiation-based calibration
SRF	Spectral response function
S-RLP	Spectral relaxation-labeled prediction
SSE	Sum of squared error
SSIM	Structural similarity
SSR	Solid state recorder
SV	Spectral vector
SVM	Support vector machine
SVR	Synthetic variable ratio
SWIR	Short-wavelength infrared
TC	Telecommand
TDLT	Time-domain lapped transform
TDM	Time-division multiplex
TERM	Triangular elementary reversible matrix
TES	Tropospheric Emission Spectrometer
TIE	Triangle inequality elimination
TM	Thematic Mapper
TMC	Thematic Mapper calibrator
TOA	Top of atmosphere
TPR	True positive rate
USES	Universal source encoder for space
UVISI	Ultraviolet and Visible Imagers and Spectrographic Imagers
VA	Vector accumulator
VCA	Vertex component analysis
VD	Virtual dimensionality
VHDL	Very high-speed integrated-circuit hardware description
, IID L	language
VI	Vegetation index
VIF	Visual information fidelity
VLSI	Very large scale integration
VM	Verification model
VNIR	Visible and near-infrared
11111	visione and near initiated

VQ	Vector quantization
WER	Word-error rate
WFC	Wide-Field Camera
WGCV	Working Group on Calibration and Validation
WPT	Wavelet-package transform
WT	Wavelet transform
XML	Extensible markup language
ZC	Zero crossing