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Introduction

ith the popularization of digital cameras, the demand for
bject image quality assessment algorithms has risen. As a
ay to choose a best image for final applications, object

mage quality assessment algorithms play an important role
n image engineering systems. Since ideal reference images
sually cannot be found in practice, the assessment prob-
em becomes no-reference �NR� image quality assessment,
hich assumes that the true scene of a distorted image is
nknown.

Blur is the most common type for quality degradation in
maging systems and its main cause is due to the focus
ariation or position motion of the camera. Blur is usually
odeled by a smoothing of the high frequency components

f Fourier coefficients in spectrum space. Several methods
ere proposed for blurred image metric. In Ref. 1, the au-

hors exploited the principle that high frequency coeffi-
ients of blurred images tend to zero, and proposed a qual-
ty evaluation algorithm by cumulating the coefficient
istribution of images after the discrete cosine transform
DCT�. Since the central diagonal of the DCT coefficient
atrix can efficiently characterize global blur, the quality
easure was obtained by counting numbers from a weight-

ng matrix, which gives more importance to the diagonal.
e mark this method as the DCT metric �DCTM�. In Ref.

, a perceptual blur no-reference metric based on edge
ength was launched. This work first proposed the concep-
ion of edge width realized by computing the distance from
he start to the end positions of the Sobel edge. The global
lur measure was obtained by averaging all edge widths.
e denote this method as the edge width metric �EWM�. In
ef. 3, the authors proposed an algorithm that utilized hu-
an visual system �HVS� features to improve metric per-

091-3286/2010/$25.00 © 2010 SPIE
ptical Engineering 050501-
formance. In this method, the image was first divided into
blocks of 8�8 and marked based on their edge count.
Then, the average edge length for each block was computed
and weighted based on the contrast of the block. The final
blur measure was realized by the weighted average edge
length. We mark this metric as the HVS edge width metric
�HVSEWM�. In Ref. 4, the authors proposed an algorithm
based on local phase coherence. The metric utilized the
local phase coherence characteristics, and constructed an
iterative algorithm that separates bands into coherent wave-
let coefficients and incoherent coefficients. By calculating
the mean of standard deviations of incoherent coefficients
in each band, the metric was founded. We symbol this local
phase coherence metric LPCM.

In this work, based on the blur theory and block-based
DCT statistics in Refs. 5 and 6, we propose a novel no-
reference objective metric for blurred image assessment,
and evaluate its performance against four quality evaluation
metrics on three public databases.

2 Blur Metric Based on Block-Based Discrete
Cosine Transform Statistics

According to Ref. 6, DCT coefficient data distribution of
natural images is well modeled by a Laplace distribution in
certain blocks. Using 8�8 blocks, for each frequency pair
�i , j���0, . . . ,7�� �0, . . . ,7� and �i , j�� �0,0�, the coeffi-
cient’s distribution is thus modeled by

fX�x� =
��i, j�

2
exp�− ��i, j��x�� , �1�

where ��i , j� is the feature parameter of distribution for
frequency pair �i , j�, and x is the coefficient value. The
estimate for � is generally computed by using the maxi-
mum likelihood �ML� method on original coefficient data.
To a given frequency, an ML estimate result for � is given
by

�ML = N�	
k=1

N

�xk� =
1

E��x��
, �2�

where N represents the number of DCT blocks, xk stands
for DCT coefficients at that frequency, and E� � represents
the expected value.

According to the image degradation theory, blurred im-
ages can be created by directly multiplying clear images
with certain blur point spread functions �PSFs� in spectrum
space. The classic blur PSFs were thoroughly analyzed in
Ref. 5, including motion, out of focus, and Gaussian PSF.
The curve shapes of these PSFs are similar in spectrum
space: they attain the maximum value at the center fre-
quency �0,0�, decrease dramatically near the center fre-
quency, and maintain lower expected values with small
fluctuations along with frequencies increasing. And the blur
extent is mainly determined by how violently the blur PSF
decreases near the center frequency. With blur PSF working
on an image, the Fourier coefficients of the blurred image
at center frequency will have a big descent based on blur
PSF discussed before. Since spectrum values are symmetry,
the expected coefficient value E��x�� varies like a step func-
tion jumping from large to small with increasing �i , j�. Then
May 2010/Vol. 49�5�1
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, the inverse of E��x��, also varies like a step function
hile jumping from small to large with increasing �i , j�.
he jump position and gradient of step function determines

he blur extent. This phenomenon can also be testified by
iewing the � distribution map of one image with a differ-
nt blur radius.

To model the feature of this step function well, we use a
ogistic function in 2-D polar coordinates to simulate �
istribution in the frequency domain.

��� =
p1

�1 + exp�p2� − p3��
. �3�

In Eq. �3�, �=sqrt�i2+ j2�, and p1, p2, and p3 are param-
ters that need to be estimated. And image quality can be
etermined by p1, p2, and p3.

= f�p1,p2,p3� , �4�

here Q stands for image quality, and f is a function only
etermined by p1, p2, and p3. Since the nonlinear estima-
ion of p1, p2, and p3 cause overwhelming burdens of com-
utation and usually generate large errors, here we launch a
ast algorithm. Consider that the formula can be reformed
s

p3 − p2 · � + p1 = 1 + ��i, j� + log���i, j�� ,

here the approximation formula log�1+x�=x is used in
he reforming process. Thus, we believe p1, p2, and p3 are
inearly or polynomial-linearly correlated with ��i , j�
log���i , j��: i , j=0,1 ,2 , . . .. Then as a result, the function

f�p1, p2, p3� could be approximated by ��i , j�
log���i , j��.

Table 1 The value of g�i , j� calculated

j 0 1 2

0 −0.034 −0.658 1.000 1.

1 1.755 0.342 −0.341 −0

2 −1.556 −1.206 0.323 −1

3 2.145 0.471 −0.379 −0

4 0.443 0.859 −0.492 −1

5 −1.601 0.433 0.216 0.

6 −0.181 0.113 −0.868 0.

7 0.184 0.453 0.051 −0
ptical Engineering 050501-
Q = f�p1,p2,p3� = g�0,0� + 	
i,j

g�i, j����i, j� + log ��i, j�� ,

�5�

where g�i , j� are scale coefficients. In fact, g�i , j� can be
determined by the least mean square �LMS� method on
certain images with known quality. With all of g�i , j�
known, our blurred image quality assessment algorithm is
certain. For a given blurred image, its quality can be calcu-
lated by the following algorithm.

1. Cut image into 8�8 blocks and exert DCT on each
block.

2. Count coefficients in each �i , j� and estimate ��i , j�
by ML criteria in Eq. �2�.

3. Let ��0,0�=1, Q=0, for each pair �i , j�, Q=Q
+g�i , j����i , j�+log ��i , j��.

The final Q is its quality. We call this method the DCT
statistic prediction method �DCTSP�.

3 Experiment and Results

To ascertain the coefficients g�i , j� in DCTSP that we pro-
posed, we calculate coefficients g�i , j� of DCTSP on the
LIVE database from University of Texas.7 The values of G
calculated by least mean square �LMS� criteria are shown
in Table 1.

Since DCTSP was determined by optimizing on the
LIVE database, to assess its performance fairly, DCTSP
was also applied to other databases. We chose the CSIQ8

database at Oklahoma State University and the TID20089

database. There are 145, 150, and 100 blurred images in
LIVE, CSIQ, and TID2008 databases, respectively. Here,
we use a five parameter logistic function to predict subject
evaluation. To evaluate objectively the predictive perfor-
mance of our metric, four indicators are computed: corre-

LMS method on the LIVE database.

i

4 5 6 7

−0.092 −0.653 0.175 −0.909

0.224 −0.016 0.151 −0.327

1.592 0.167 0.037 0.635

0.270 −0.504 0.030 −0.183

−0.569 0.413 −0.174 −0.180

−0.434 0.558 −0.269 0.026

−1.179 −0.066 0.750 −0.562

1.868 −1.208 −0.078 0.740
by the

3

499

.516

.329

.229

.101

998

873

.901
May 2010/Vol. 49�5�2
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ation coefficient �CC�, root mean squared error �RMSE�,
pearman rank-order correlation coefficient �SROCC�, and
utlier ratio �OR�, while the definition of these indicators
an be found in Ref. 10. The larger CC and SROCC are, the
maller RMSE and OR are, and the better the metric’s per-
ormance is.

We compare the proposed method with metrics talked
bout in Sec. 1. Table 2 showed the performance of these

able 2 Performance comparison of different image quality assess-
ent methods on LIVE, CSIQ, and TID2008. Note that OR cannot
e calculated in TID2008, since standard deviation was not
rovided.

CC RMSE SROCC OR

LIVE

DCTM 0.8712 7.8474 0.8540 0.5931

EWM 0.7928 9.7401 0.7797 0.7517

HVSEWM 0.8558 8.2690 0.8625 0.6207

LPCM 0.8074 9.4288 0.8116 0.6828

DCTSP 0.9560 4.6872 0.9540 0.3172

CSIQ

DCTM 0.8791 0.1366 0.8548 0.3067

EWM 0.7679 0.1869 0.7553 0.3867

HVSEWM 0.8534 0.1494 0.8157 0.3067

LPCM 0.8511 0.1505 0.8396 0.3200

DCTSP 0.9471 0.0919 0.9175 0.2267

TID2008

DCTM 0.7399 0.7894 0.7401 —

EWM 0.7127 0.8232 0.6919 —

HVSEWM 0.7569 0.7669 0.7584 —

LPCM 0.6431 0.8986 0.6825 —

DCTSP 0.9444 0.3859 0.9418 —
ptical Engineering 050501-
no-reference blur measures, including DCTSP on the LIVE,
CSIQ, and TID2008 databases. From Table 2, DCTSP11

shows the best predictive performances against other blur
measures, especially on correlation coefficients �CC�. Al-
though coefficients of DCTSP were determined from the
LIVE database, it showed better generalization on other
databases.

4 Conclusion

In this work, we propose a no-reference quality assessment
metric, DCTSP, for blurred images. This metric is based on
block-based DCT statistics and blur theory. Results show
that DCTSP exhibits superior performance against other
quality assessment methods.
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