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Abstract. Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex
by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemo-
dynamic response but also consist of a number of physiological noises. Because of these noises, accurately
detecting the regions that have an activated hemodynamic response while performing a task is a challenge when
analyzing functional activity by fNIRS. In order to better detect the activation, we designed a multiscale analysis
based on wavelet coherence. In this method, the experimental paradigm was expressed as a binary signal
obtained while either performing or not performing a task. We convolved the signal with the canonical hemo-
dynamic response function to predict a possible response. The wavelet coherence was used to investigate the
relationship between the response and the data obtained by fNIRS at each channel. Subsequently, the coher-
ence within a region of interest in the time-frequency domain was summed to evaluate the activation level at each
channel. Experiments on both simulated and experimental data demonstrated that the method was effective for
detecting activated channels hidden in fNIRS data.® 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1

.JB0.20.1.016004]
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1 Introduction

Since it was proposed by Jobsis,! functional near-infrared spec-
troscopy (fNIRS) has emerged as a low-cost and noninvasive
technique for quantifying brain functional activities.? This neu-
roimaging technique emits near-infrared light on a subject’s
head using a source optode and then detects the scattered and
diffused light through the head using a detector optode near the
source optode. The attenuation of the detected light is linearly
related to the concentration of chromophores, i.e., oxy- and
deoxyhemoglobin in the subject’s brain. This relationship can
be expressed by a modified Beer-Lambert law.>*

fNIRS data reflect neuronal activity indirectly because this
activity is accompanied by the metabolic demand for the oxygen
carried by hemoglobin whose concentrations are calculated
from fNIRS data.’® Because it allows for the noninvasive inves-
tigation of neuronal activities, fNIRS studies have now been per-
formed in clinical situations, psychiatric evaluations, studies of
cognition, and investigations of brain development.”'* These
applications require that the fNIRS data be processed effectively
and provide adequate information about the hemodynamics of a
subject’s brain. However, obtaining the desired hemodynamic
information from fNIRS data is challenging because fNIRS
mixes a lot of physiological noise, including cardiac pulsation,
respiration, and mean arterial blood pressure variations,>18
with the desired data. Moreover, these physiological noises are
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not organized in an orderly fashion but are mixed in a compli-
cated way. They are periodic and easily correlated with each
other or with the desired hemodynamic response.'*° In order to
investigate activated areas in a subject’s brain during a task,
it is necessary to separate the hemodynamic response from the
physiological noises. Due to the difficulty of accurate separa-
tion, activation detection is one of the challenges in fNIRS,
although it is a necessary step before analyzing brain function.

Two kinds of methods have been attempted for activation
detection in fNIRS. The first, which was a model-driven method
in which a variety of regressors were utilized to represent dis-
tinct physiological signals, adopted a general linear model
(GLM) or adaptive GLM.?! For example, a polynomial basis
function was used to describe instrumental and physiological
drifts, and Fourier basis functions have been used to represent
periodic signals, such as the respiration signal.”>* Short-dis-
tance channels have also been utilized as one of the regressors
to reduce physiological noises in fNIRS data, but this required
extra measurements by pairs of source and detector in a short
distance.”>” The second type of method estimated the hemo-
dynamic response function (HRF) at each channel by first using
a deconvolution algorithm. Then the peak amplitude was used to
identify the activated channels.'®?® The GLM method was com-
paratively easy to implement, but in practice, the estimation used
a linear single scale model and the remaining error was difficult
to simulate as Gaussian noise. The HRF-based method was
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more difficult to use because it was necessary to solve an ill-
posed deconvolution problem to estimate HRF in each channel.
The ill-posed estimation of HRF required an iterative way to
obtain a solution, which made it difficult to get an accurate
solution.

Because wavelet transform (WT) could decompose signals
into a time-frequency domain, the transform has been utilized
in fNIRS to process data, such as to detrend data®® and remove
motion artifacts.®® The wavelet coherence was proposed to
detect the correlation between two signals in the dual domain.>!
Typical applications by the coherence analysis in fNIRS were to
analyze interpersonal coherence in NIRS-based hyperscan-
ning,*> to quantify the impact of physiological processes on
fNIRS signals® and to evaluate prefrontal functional connectiv-
ity between two hemispheres of patients’ brains. These applica-
tions took advantage of the coherence, which was investigated in
the time-frequency domain. In this paper, we describe an acti-
vation detection method based on wavelet coherence. This
method calculated the coherence between the predicted response
and the concentrations of oxy- or deoxyhemoglobin, as obtained
by fNIRS, during a task. The coherence was distributed in the
time-frequency domain and decomposed across multiple scales
after WT. This differed from the GLM method, which analyzes
signals in a single domain and single scale. The predicted
response was estimated by convolving the stimuli with the
canonical HRF. Because coherence is a local measure of the cor-
relation between two signals, the time-frequency coherence
reflects the local correlation between the predicted response
and the concentrations of hemoglobin at different times and
frequencies. Therefore, our method was able to be used to detect
activation by an elaborate analysis of the correlation. Its perfor-
mance was also demonstrated by simulated and experimental
data, as reported in the third section of the paper.

2 Methods

2.1 Wavelet Transform

Optimally localizing the signal in the time-frequency domain
plays a key role in signal analysis. The level of the localization
can be used to evaluate the performance of a function in ana-
lyzing a signal in detail. If an appropriate balance between
the duration in the frequency domain Aw and the duration in
the time domain Ar does not exist, a function will fail to achieve
the minimum of the uncertainty product, Aw - At, and the func-
tion will not be able to analyze the details of the signal in either
domain.

A wavelet is a function with a mean of zero. It is character-
ized by limited duration (localization) in both the frequency and
time domains. Unlike the wavelet, the Fourier basis is only
localized in the frequency domain, while it expands to infinity
in the time domain.>* According to the Heisenberg uncertainty
principle, a tradeoff always exists between localizations in the
two domains. Wavelets have been studied to optimize the uncer-
tainty product. Therefore, it can analyze signals optimally in
both the time and frequency domains.** Here, we employed
Morlet WT to analyze signals measured by fNIRS. This wavelet
includes a plane wave modulated by a Gaussian function as
described by

wo(u) = a1/ elioom) o(~3) (1)
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where @, is the dimensionless frequency (@, > 5) and u is the
dimensionless time.

The WT can decompose a signal in the time-frequency
domain and indicate the power spectrum of a signal in terms
of time and frequency. Because of its dual localizations, a wave-
let can divide a given function into different frequency and time
components and then investigate them individually. In the trans-
form, a wavelet is stretched in time by adjusting its scale(s),
4 = st, and is normalized to have unit energy. Hence, this trans-
form has the advantage of low time resolution at low frequencies
and high-time resolution at high frequencies. The WT of a time
series (x,, n = 1,..., N) with uniform time steps is defined as
the convolution of x, with a scaled and normalized wavelet,*

51 B
Wx,,(nv S) = \/szn/l//f; |:(I’l/—l’l) St:| (2
n'=0

Accordingly, the wavelet power is defined as |W, (n,s)|*.

2.2 Wavelet Coherence

The WT decomposes a signal into the time-frequency domain
and its power spectrum describes the energy distribution of a
signal in the dual time-frequency domain. But in some cases,
we need to deal with both signals simultaneously and are inter-
ested in the correlation between them in the time-frequency
domain. Hence, wavelet coherence was proposed. It reveals
areas in the time-frequency domain and these areas are quanti-
fied with the coherence between them.’ The time period and
frequency band covered by these areas indicate that the two sig-
nals are coherent or correlated in both the time period and the
frequency band.

Given two time series, x,, and y,, with WTs, Wx”(s) and
W, (s), the wavelet coherence is defined as W, , =W, W ,
where * denotes complex conjugation. In the same manner, the
cross wavelet power will be W,  |. Torrence and Grinsted
defined the wavelet coherence of two time series as’'*®

[S[s™' W, (n.9)]I?

B0 ) = ST (o9 - STy, (s o)

3)

where S is a smoothing operator. The coherence entails smooth-
ing the wavelet decompositions to ensure statistical consistency
of the estimate of the coherence. The smoothing operator is
implemented by a convolution in time and scale. The time con-
volution is performed with a Gaussian window and the scale
convolution is performed with a rectangular window. The coher-
ence is an extension of the Pearson’s correlation coefficient. The
difference between it and the Pearson’s correlation is that the
coherence is time-locked and evaluates the correlation between
two signals as a function of frequency.’’ The complex argument
of W, , describes the phase angle between x, and y, in the
time-frequency domain. It is defined as

— tan~! | o). (Wx”’y”)} 4

’ [wwx”,y» | @
where 3(W, ,, ) is the imaginary part of W, , and R(W, , )
is the real part. A wavelet coherence tool box that will yield the
WT and the coherence analysis has been developed by Grinsted
et al. on the MATLAB (R2012a, MathWorks Inc., Natick,
Massachusetts, USA).
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2.3 Confidence Level

Wavelet coherence analysis provides the coherence between two
signals, but the quantity is normalized between O and 1. This
requires an additional metric that can assess the coherence con-
fidence compared to that which occurs between two random
signals, i.e., white Gaussian noise in our case.

In order to determine the confidence level of the wavelet
spectrum, the first step is to select an appropriate background
spectrum and then to compare the wavelet spectrum of a signal
against the background one.** Matteau-Pelletier studied noise in
fNIRS and proved that it was a pink noise (a.k.a., 1/f noise),
i.e., the power increased proportionally with a decrease in fre-
quency.'® Kaulakys suggested that the noise can be analyzed by
an autoregressive model.*® Referring to the theory in the Fourier
analysis, the normalized Fourier power spectrum is given by

E _ NIXJ?
k=g

®)

where X, represents the Fourier transform results, N is the num-
ber of points, and ¢ is the variance of the signal. Without a loss
of generality, suppose the background noise is a white noise,
then |X,|? is in a chi-square distribution with two degrees of
freedom (DOF). Because the WT can be obtained from the
inverse Fourier transform of the product, (¥, is the Fourier
transform of a wavelet function), |W, (n,s)|* is also in a
chi-square distribution with two DOF. Therefore, the distribu-
tion for the local wavelet power spectrum of a signal is

W, (n,s)> 1
% > 5 Ps. ©)
at each time n and scale s. Here o2 is the variance of the signal,
x5 denotes a chi-square distribution with two DOF and P, is the
mean spectrum at the wavelet scale s. Once a background spec-
trum is chosen, the 95% confidence level for y* can be calcu-
lated by Eq. (6) and then the 95% confidence contour lines can
be drawn by comparing the local wavelet power spectrum
against Pk)(% /2. The contour can be used to identify the region
where a significant power of the {NIRS channel data is located.

2.4 Activation Detection by Wavelet Coherence

fNIRS provides the oxy and deoxyhemoglobin concentrations,
which provide functional information about certain underlying
brain sensorimotor or cognitive tasks. Hence, their concentra-
tions should reflect correlations between brain neurophysiology
and behavioral paradigms. The correlations between these have
been confirmed by both functional magnetic resonance imaging
and fNIRS.* In our case, the coherence, i.e., the time-locked
correlation in the frequency domain, is used to evaluate the
level of each channel correlated with the task paradigm.

Suppose that an experimental paradigm is expressed as p(n),
then a local hemodynamic response can be thought of as the
output of a linear time-invariant system.*’ In such a system,
a hemodynamic response has a limited duration because of the
brevity of the sensory or cognitive stimulus. Moreover, the
response is independent of time, that is to say, the same response
is replayed as long as the same stimulus is exerted, regardless of
when it is implemented in the system. In addition, the responses
to many successive inputs can be assumed to approach linearity.
Hence, we can predict the hemodynamic response by the con-
volution of p(n) with an impulse response, h(n),"!
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y(n) = p(n) ® h(n) + &(n). (@)

This impulse response function in Eq. (7) consists of a linear
combination of two Gamma functions.*”’ Here, £(n) stands for
Gaussian noise.

As stated before, fNIRS measures oxy- and deoxyhemoglo-
bin concentrations. The two chromophores reflect local con-
sumption of oxygen in a region of the cortex since oxygen is
necessary to sustain neuronal firing in response to sensory or
cognitive stimuli. Oxygen consumption, in turn, is physiologi-
cally coupled to local hemodynamics. Accordingly, the fNIRS
data are related to the hemodynamic response. However, the
physiological noise that is mixed into the fNIRS data is likely
to be periodic but not always synchronized with the predicted
response. Moreover, the hemoglobin concentrations obtained by
fNIRS and the predicted response are correlated in both the time
and frequency domains. Therefore, wavelet coherence works
well to identify the correlation in both domains.

Given J channels that are used to collect the hemodynamic
response of different regions of a subject’s brain, x;(n),
j=1,...,J,the WTs of the predicted response and the detected
signals are denoted by W, (n,s) and W, (n,s), respectively.
Equation (3) can then be used to calculate the coherence
between the fNIRS channel data and the predicted response.
Since there are J channels collecting hemodynamic data for a
subject’s brain, we can obtain J coherence distributions of chan-
nel data with the predicted response, Rjz- (n,s), j=1,...,J.

These distributions all covered the same time period and
the specified frequency band [0.01, 5] Hz. The upper band limit
was determined by the sampling rate of our fNIRS system. It
sampled fNIRS data at 10 Hz, which was able to capture signals
at a frequency lower than 5 Hz according to the sampling theo-
rem. The lower limit was set following normal usages in fNIRS
data postprocessing. Signals under 0.01 Hz in fNIRS did not
contain meaningful physiological information but instead
were composed of systematic drifts or noises. It has been agreed
with in fNIRS community. So people would like to filter out the
part by a high-pass filter with a cutoff frequency at 0.01 Hz. The
hemodynamic information recorded by fNIRS reflected changes
in concentrations of hemoglobin in the blood vessels of the
brain, plus superficial tissue, which vary in their deoxy- and
oxyhemoglobin concentrations in response to neuronal activity
and various physiological processes. The frequency of the infor-
mation we collected covered the band [0.01, 5] Hz. A mean
power was calculated for each channel in the region of interest
in the two domains. Then every distribution was represented by
a mean power value, which indicates the level of the coherence
of the corresponding channel with the predicted response.
Finally, these J values were sorted and activation in every chan-
nel was quantified by the mean power. These adjacent activated
channels were linked together to represent the regions that were
activated during the task.

3 Experiments

Two experiments were conducted to demonstrate the perfor-
mance of the activation detection method. In the first experi-
ment, we adopted simulated data to verify that the activated
channels were accurately detected. In the second experiment,
data obtained while using visual stimuli were used to analyze
the performance of the method in detecting the activation area.

The fNIRS measurements were collected using a continuous
wave system (ETG-4000, Hitachi Medical Co., Japan). The
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system generated two wavelengths of near-infrared light (690
and 830 nm) and collected the hemoglobin concentration at
a 10 Hz sampling rate. 3 X 5 optode probe sets (consisting of
seven detectors and eight light emitters with 3.0 cm of
source-detector separation) were used to produce 22 measure-
ment channels to allow for the measurement of the brain.

3.1 Experiment on Simulated Data

The experiment using simulated data with 22 channels evaluated
the accuracy of the detection method. The data were measured
during a resting state for 300 s. We recruited one person to par-
ticipate in the experiment. The subject sat quietly on a chair
while we recorded the fNIRS data at 22 channels. These data
were used as the background signals. We then added a hemo-
dynamic response into several channels and determined whether
the method was able to detect these activated channels.

We introduced the hemodynamic response data based on
having a task that started at 70 s with a trial that stayed “on”
for 10 s and then was “off” for 10 s. There were three trials
in the task at 70, 110, and 190 s, respectively. The task protocol
is shown in Fig. 1(b). In order to simulate an activated channel,
we predicted a response by convolving the canonical HRF with
the set of stimuli using Eq. (7), as shown in Fig. 1(a). We con-
taminated the response with Gaussian white noise to reduce
the signal-to-noise ratio to 20 dB. In addition, cardiac noise at
0.8 Hz, Mayer wave noise at 0.1 Hz* and low frequency

oscillations at 0.01 Hz were added into the predicted response.**

Finally, the predicted response with physiological noise was
added into the data measured in the resting state at channels
6, 17, and 19. These data were used as simulated data to test
our detection method.

A scalogram is dedicated for wavelet analysis since it decom-
poses a signal in terms of time and scale. The scalogram is a
visual method to display the decomposition with respect to
the time (7, x axis) and scale (s, y axis). Its counterpart is the
spectrogram, which is frequently used in Fourier transform to
display the power spectrum along with the time. The scalogram
of the channel 17 is shown in Fig. 2(a). In this figure, the upper
left line plot presents the power spectral density of the channel;
the lower right line plot is the data in the time domain; and the
upper right color map is the scalogram of the WT. The color bar
in Fig. 2(a) represents the confidence level. From the wavelet
scalogram, we were able to determine the energy distribution of
channel 17 with a simulated predicted response in the time-
frequency domain. Three frequency bands clearly indicated the
three noises involved: cardiac noise at 0.8 to 1.5 Hz, Mayer
wave noise at 0.1 to 0.4 Hz, and low frequency oscillations at
0.01 Hz. The desired hemodynamic response was hidden in
these noises. The scalogram presents regions where the confi-
dence level was over 95%. This means that the power in these
regions was significantly greater than Gaussian white noise.
We used the region in the scalogram with a confidence level
over 95% as masks because this confidence level guaranteed
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0 —J —J—J

(a)

2 4 6 8 10 12 14 16 18
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(b)

Fig. 1 Predicted response in the simulation experiment. (a) is the HRF function and (b) is the task

protocol.

frequency (Hz)

time (s)

frequency (Hz)

50 100 150 200 250
(b) time (s)

Fig. 2 Wavelet transform of the channel 17 in (a) and the mask shown in (b). The upper left line plotin (a)
presents the power spectral density of the response; the lower right line plot is the channel 17 data in the
time domain; and the upper right color map is the scalogram of the wavelet transform of the channel.
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Fig. 3 Data at channels 6, 7, 17, and 18 shown in (a), (b), (c), and (d), respectively.

amask that was the least affected by other physiological signals.
Although the resulting mask may sometimes have been larger
than necessary because of using this method, the result showed
that it was still effective to locate critical coherence.

The expected response was added into the measured rest-
ing-state data in channels 6, 17, and 19 with amplitudes of
2x107%, 8x107°% and 3 x 107°, respectively. The data
from four channels—6, 7, 17, and 18—are shown in Fig. 3.
Here, the data from channels 7 and 18 are shown for comparison
with the data containing the desired responses in channels 6 and
17. As these plots reflect, we were not able to detect any
differences between the data with the desired response and
the data without the response.

e c‘!"\".
2 )

M

(LT Il'lu‘\[ I ']]‘TWI"H " vl’l 0 TR LAY RLAE T

1

frequency (Hz)

Figure 4 shows the wavelet coherence results for the two
channels, 17 and 18, with the predicted response, respectively.
The response is the result of the convolution of the stimuli
responses with the HRF. The wavelet coherence is employed
to investigate the correlation between channel data and the pre-
dicted response. The color bar is scaled with respect to the result
by Eq. (3). Arrows in the coherence show the phase lag between
the measured signal and the predicted response. Arrows pointing
to the right mean that there is no lag between these signals and
those pointing to the left mean that there is a z phase lag
between them.

Comparing these two coherence results, we cannot see any
significant coherence at channel 18 in the period, [70, 240] s.

o ] Kl Bl
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v el ML Lo
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50 100 150 200 250
time (s)
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(b)

Fig. 4 Wavelet coherence shown in (a) and (b) between the ideal response and the data from channels

17 and 18, respectively.
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Neither the coherence nor the phase angle shows any significant
correlation between the predicted response and this channel
data. The coherence at channel 17 presents significant red
areas surrounded by black contours. One of them is located
at the frequency band, [0.04, 0.08] Hz and has arrows pointing
to the right. By referring to the scale of the color bar, red areas
indicate where significant coherence takes place. Point-right
arrows illustrate that no phase lag exists between the two
signals. Significant red coherence areas plus point-right arrows
confirm that data in channel 17 are closely related with the
predicted response. The remaining one red area is located in
a majority at around [0.01, 0.03] Hz and with arrows pointing
down.

We used the mask in Fig. 2(b) to delineate the region at
which the desired response can be expected to appear.
Because these noises were periodic and might be related to acti-
vation signals, the results of wavelet coherence of channel data
with a predicted response might present a false coherence. We
used the mask to indicate areas with the coherence of interest.
Therefore, one of the purposes of using the mask was to unveil
the desired coherence. Meanwhile, the mask was used to filter
out coherence caused by physiological noises. These regions
were set as the regions of interest to indicate where we should
calculate the coherence. Then the coherence in every channel
was selected and summed together. The normalized integral
coherence at every channel is shown in Fig. 5(a). The normal-
ized coherence of channels 6, 17 and 19 is significantly larger
than those of the other channels. We have drawn an activation
map using these normalized coherences in Fig. 5(b). These
activated areas also emerged at channels 6, 17 and 19. The
experiment was also performed by the GLM method. The result
is shown in Fig. 5(c). In a comparison of the two results in
Figs. 5(b) and 5(c), GLM was able to detect an apparent acti-
vated channel but failed to detect channels with a weak
response. The method by wavelet coherence was able to detect
these active channels.

3.2 Experiment on Real Data

An experiment on real data was performed to validate the detec-
tion method. All experimental procedures were approved by
the Beijing Normal University Institutional Review Board.
Research was carried out according to the principles of the
Declaration of Helsinki, and the experiments were conducted
with the permission and written consent of each participant.

=T ]

(2)

(b)

Fixation

300 ms
Blank
200 ms e10203040
1"1010511106121071310B
Stimulus 9190200210220
500 ms
Blank
200 ms

@ (b)

Fig. 6 Experimental paradigm in a trial (a) and the probe positioned
on the participant’s scalp (b).

In the experiment, we recruited 21 subjects and they con-
ducted a visual stimulation task. The task was intended to detect
activations in the visual cortex under stimuli of oriented gra-
tings. It has been well explored that ocular dominance columns
and orientation preference maps coexist and overlap across
cortical tissue in the primary visual cortex (V1).** The experi-
ment was to verify whether the active regions detected by fNIRS
data were consistent with the biophysiological mechanism.
Figure 6(a) shows the experimental paradigm in a trial and
Fig. 6(b) presents the probe positioned on the participant’s
scalp to collect fNIRS data. In Fig. 6(b), red dots denote sources
and blue dots denote detectors. Numbers indicate the channels in
the configuration.

In the first 120 s, the subjects were told to stay quiet and the
data were measured in the resting state. After this initial 120 s,
the subjects were periodically exposed to a visual stimulus con-
taining oriented cardinal or oblique gratings in 0, 45, and 90 deg
in a random order as shown in Fig. 6(a). A block included visual
stimuli for 20 s and then a resting state for 20 s. There were a
total of five blocks. The predicted response to the stimuli para-
digm was estimated by convolving the experimental paradigm
with the canonical HRF and is shown in the lower subfigure in
Fig. 7(a). The WT spectrum for the response in the time-
frequency domain is shown in the upper right of Fig. 7(a). In
order to illustrate the frequency bands of significant power,
we show the spectrum in terms of the frequency in the upper
left subfigure in Fig. 7(a). From the subfigure, we are able to
recognize the main band at 0.025 Hz. The black contour

Fig. 5 Normalized coherence of the channels (a) and the activation map in (b) and (c) by the method and

GLM method, respectively.
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AMAAMAMD
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time (s)
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* 0.04
0.02
0.01

(b)
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time (s)

Fig. 7 Wavelet scalogram of an ideal response in (a) and the mask with significant power in (b). The
wavelet transform spectrum in the time-frequency domain is shown in the upper right subfigure of (a).
The scalogram in terms of the frequency is shown in the upper left subfigure. The bottom graph shows the

predicted response.

delineates the significant region from the noise. The region was
set as a mask for the following analysis, as shown in Fig. 7(b).

We applied the wavelet coherence to analyze the coherence
between the predicted response and each channel data point.
The coherences for two channel data are drawn in Fig. 8 and
its subfigures (a) and (b), which correspond to channels 10 and
11, respectively. There is no any meaningful coherence at the
resting state from the beginning to 120 s in the two coherence

L

AU I~|'

frequency (Hz)

distributions. After starting to perform the task at 120 s, coher-
ence primarily appeared at 0.08 and 0.025 Hz. At the frequency
band of interest, around 0.025 Hz, the coherence in channel
10 presents a rather weak significant correlation, whereas the
coherence at channel 11 showed significant correlation. In order
to reduce the effect of noise at the other frequency bands, we
used the mask shown in Fig. 7(b) to delineate regions at which
the desired response should be expected to be detected. All the

i "!.II’W' h
5

1
0 50

100 150 200 250 300
time (s)

(a)

100 150 200 250 300
time (s)

(b)

]
0 50

Fig. 8 Wavelet coherence between the predicted response with the data at channels 9 and 10 in (a) and

(b), respectively.

0.8F
0.6
0.4+

0.2}

Tl e TrTe

0 5 10 15 20

(a)

Journal of Biomedical Optics

016004-7

0.8

0.6

0.4

0.2

(b)

Fig. 9 Normalized coherence of the channels and the activation map.
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coherences in the region were summed and the integral coher-
ence was used to evaluate the level of the activation.

Because there were 21 subjects involved in the experiment,
the normalized coherence across subjects is shown in Fig. 9.
Channels 11 and 12 present significantly larger coherence
than the other channels. We mapped the normalized coherence
of the channels into the probe as we measured the fNIRS data.
The map is shown in Fig. 9(b). The probe was positioned on the
occipital lobe as shown in Fig. 6(b). Referring to the subfigure,
channels 11 and 12 were projected to the V1 visual cortex of
subjects. Therefore, the activation area detected by our method
is consistent with the biophysiological mechanism.

4 Conclusions

The present detection method makes use of wavelet coherence
to explore an activated area which is based on the WT decom-
posing channel data into the time-frequency domain across
multiple scales. The analysis tool effectively separates physio-
logical noise from the signal of interest in channel data, given
the experimental paradigm of recording the data. Nevertheless,
in some special cases, physiological noises may be synchron-
ized completely with functional activation under certain tasks
so that activation by the method will not be detected. We will
recommend recording physiological noises with dedicated tools
and then regressing them from the measured signals.

In general cases, it is essentially reasonable to assume that
signals originating from functional activity are not synchronized
with these physiological noises, because these noises’ sources—
lung, blood flow, heart, etc.—are independent from the cortex.
These sources operate in different mechanisms from that of
the neurohemodynamics. Although their signals are mixed in
a complicated manner in fNIRS data, these signals still have
to follow their own mechanisms. In addition, the cross wavelet
correlates the data with the experimental time-locked paradigm
and works well to locally evaluate the correlation and indicate
the parts that are consistent with the paradigm. The most highly
correlated portion reveals the level of activation in a channel.
Two experiments on simulated and real data demonstrated
that the coherence effectively performed the detection.
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