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Abstract. Soil emissivity signatures were constructed using the digital imaging and remote sensing image gen-
eration (DIRSIG) model and Blender three-dimensional (3-D) graphic design software. Using these tools, the
geometry, radiometry, and chemistry of quartz were exploited to model the presence of particle size effects in the
thermal spectra of disturbed soil. Using the physics engines within the Blender 3-D graphic design software, a
physical representation of a granular soil scene was created. Chemical and optical properties of pure quartz
were assigned to particles in the scene based on particle size. The spectral signature of disturbed soil was
modeled by the physical mixture of small fine particles (50 μm diameter) and larger grains (500 μm diameter).
The study demonstrated that by combining realistic target geometry and spectral measurements of pure quartz,
emissivity of complex soil mixtures could be modeled without functional data fitting or rigorous analysis of
material dynamics. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction
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1 Introduction
It is often desired to pinpoint the scattering signatures of
radiation that vary from target to target. Many samples of
interest are made of material mixtures. This means that the
spectral or thermal signature of a specimen of interest will
likely contain intimate combinations of various geometries
and material properties. This complication makes modeling
difficult.

The complex target considered in this work is quartz-based
soil. Thermal infrared spectra of powdered and granular
quartz have been studied in order to define the hyperspectral
remote sensing characteristics of buried landmines1–3 and
planetary bodies.4 The disturbed soil that accompanies the
placement of landmines possesses a thermal signature that
is transient.1 Although the optical properties of a surface
may not change over time, a burial site is exposed to weather,
which alters the geometric configuration of soil particulates.5

Very fine particles that electrostatically cling to larger grains
contribute largely to soil signatures. As sand is washed by
dew or packed by winds, the forces that bond the fines
and grains together are overpowered. Fines get rinsed or
blown away and the particle size distribution of the sensed
sample is changed. We propose that in order to effectively
model disturbed soil, the geometric particle distributions
that define spectral characteristics must be physically
represented.

1.1 Phenomenology

Soil particles consist mostly of rock-forming minerals. In the
presence of external forces and charges, the ionic bonds that
make up these minerals will stretch and vibrate. Fundamental
molecular vibrations are known as reststrahlen, and the
acoustical features that are present in the spectral emissivity
signatures of quartz-based soil are called reststrahlen bands.

These bands correspond to a sudden decrease in emissivity.
Two notable reststrahlen band emissivity troughs can be
sensed between 7.5 and 10 μm.

It is the magnitude of the reststrahlen emissivity troughs
that can be used as target identifiers. Even when quartz is a
minority component within a mixture, quartz reststrahlen
bands tend to dominate the shape of the corresponding spec-
tral curves.6 The addition of other minerals has a broadening
effect upon the emissivity troughs. It should also be noted
that both the magnitude and shape of the reststrahlen
bands are impacted by the variety and color of quartz that
is measured.

Spectral contrast is another identifiable feature observed
in the hyperspectral description of soils. With respect to
quartz-based sand, this contrast refers to the height of the
emissivity peak that separates the two notable emissivity
troughs in the 7.5–10 μm region of the long-wave infrared
(LWIR) spectrum. In 1964, Lyon observed that the spectral
contrast in this wavelength regime was dependent upon par-
ticle size.7 Further, contrast tends to decrease with decreasing
particle size. Salisbury and Wald proposed that the dominat-
ing volume scatter of optically thin grains is the primary
impetus for reduced spectral contrast within the reststrahlen
region.8 He also explained the indirect link between contrast
and the porosity of granular soil targets. Soils with high lev-
els of porosity allow for the incoherent scattering of individ-
ual quartz particles, and exhibit higher emissivity and less
contrast than do closely packed sand samples. Additional
observations by Johnson et al.1 affirmed the relationship
between soil emissivity and porosity. Bachmann et al. high-
lighted the difficulties surrounding the inclusion of porosity
and particle size effects within physical reflectance models.9

It has been shown here that geometry certainly impacts the
ability to discern between soil targets. Prior to this work, the
geometric aspects of particle shape, size, and spacing have
not been adequately integrated into a model to predict com-
plex soil signatures.*Address all correspondence to: Tyler Carson, E-mail: tdc9005@rit.edu
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Soil emission phenomenology cannot be thoroughly dis-
cussed without acknowledging the influence of material
chemistry. In the 7.5–10 μm regime, optical properties of
quartz vary. Moersch and Christensen explain that due to
the high imaginary component of the complex index of
refraction, specular Fresnel reflections dominate the spectral
region defined by the reststrahlen emissivity troughs.10

Because of these reflections, thermal energy cannot easily
propagate through soil grains in a medium. Stifled radiation
transport in this spectral region leads to the formation of
emission troughs. This effect poses an interesting modeling
problem. The optical properties of large quartz particles and
tiny quartz particles are the same. Yet, small quartz particles
display much higher emissivity than larger grains of the very
same material. Moersch and Christensen explain that the
likelihood of emission from particles depends on the coupled
relationship between particulate geometry and chemistry.
Radiation within a small particle will interact with the
grain boundary more frequently before reabsorption than
will radiation in a larger particle (Fig. 1).

Therefore, radiation within smaller particles has a greater
chance of being emitted and propagated to a sensor at certain
wavelengths. In this specific trade-space of geometry and
chemistry, geometry seems to impact the detectability of
the signature most. We do not presume to say that the optical
properties of quartz in this region do not contribute to the
presence of emission troughs. We only contend that the spec-
tral identifiers of emissivity magnitude and spectral contrast
are spawned from a dependent relationship.

1.2 Modeling Phenomenology

This discussion has named several of the subprocesses that
are associated with radiation scatter and emission. A true
description of scatter should include each and every physical
trait that contributes to reflection and emission. Omission of
phenomenology leads to false attribution of physical effects
within a model. The result is a tool that may be force fitted to
describe a target with accuracy. Such an algorithm may not
be invertible. It would produce an unphysical result for other
samples that scatter light differently. Surely, the failure to
include necessary scattering parameters makes simulation
difficult. Presuming all physical scatter contributions could
be included, modeling them all in parallel is a daunting task.
This would likely require many different properties to be

specified and not every parameter can be independently
modeled. This is why appending physical considerations to
existing models should be done with care.11,12 Important
relationships between geometric, radiometric, and chemical
parameters must be acknowledged. If certain parameters are
underestimated or incompletely described in an algorithm,
there exists a need for unphysical scaling factors.11

1.3 Modeling with Digital Imaging and Remote
Sensing Image Generation and Blender
Three-Dimension

It is important to state what this model is not. The method
described in this paper is not an attempt to explicitly solve for
all physical and chemical phenomenology associated with
the reflection and emission of complex soils. It is not a
parameter-based model containing arbitrary functions that
are fit to data curves. This procedure will not approximate
surface geometry as a probabilistic distribution of facets.12

It does not presume that a surface of thousands of irregular
particles will scatter as a linear combination of individual
phase functions solved independently of one another.11

This is a method focused on scene geometry that simu-
lates the reflectance and emissivity of complex mixtures of
solids. This is an avenue to explore the phenomenology of
particle size distribution, density, and intimate mixing. Most
importantly, the model bundles together the chemical, radio-
metric, and geometric components of material signatures.

Chemical parameters to be considered in a soil scattering
model include indices of refraction, absorption, anomalous
dispersion, anisotropy, and lattice vibrations. Solving for
each of these constraints is very difficult. Instead, measured
emissivity spectra of pure materials are used in this simula-
tion procedure. For instance, soil particles in this model that
possess a 50 μm radius are attributed with the emissivity
spectra of 50 μm soil.

The radiometric aspects of this simulation are solved
using the DIRSIG model. DIRSIG is a first principle-
based ray-tracing model that produces at-sensor radi-
ance.13,14 Light sources, scene geometries, and sensor con-
figurations are all defined by the user (Fig. 2). This
model has been predominantly used for the analysis and
modeling of sensors. DIRSIG allows for direct system com-
parisons. A single scene can be observed under varying

Fig. 1 Prereabsorption interactions between thermal radiation and
grain boundaries depend on particle size. When compared to small
particles, radiation emitted from large grains travels a longer optical
path to experience the same number of radiation-boundary
interactions.

Fig. 2 The versatility of digital imaging and remote sensing image
generation (DIRSIG) lies in user control. Within a single simulation,
each link of the imaging chain can be modeled with precision. The
input of the chain is a uniquely defined scene and irradiance level.
The output is a radiance image produced by a virtual sensor. Links
of the chain include the light source, radiation propagation, target
geometry, atmosphere, and the sensor. Parameters of each link
are defined prior to simulation. Since the model is compartmentalized,
scenarios can be changed with precision and with ease.
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atmospheric conditions, with multimodal sensing tech-
niques. Though it is easy to conceptualize passive remote
sensing as light rays traveling from source to target to sensor,
DIRSIG models radiation in inverse fashion, using backward
ray tracing. Rays are initially cast from individual pixels of a
user-defined focal plane array. These rays determine what
each pixel sees and where radiation originates.

The geometry of soil is created using the Blender three-
dimensional (3-D) open source graphic design software.
This design suite gives users the ability to etch, bend,
and connect different shapes or planes to create objects
with precision. Using built-in physics engines, one can
create a scene of objects that interact based on the physical
properties (mass and shape) defined by the user. Simulating
rigid body collisions, fluid motion, and force field inter-
actions is all possible using the Blender 3-D tool. Each
mesh object is subjected to friction and damping, and
interacts with other objects through collisions based on
mass. Individual mesh facets influence collisions between
in-scene objects. This implies that a convex hull does not
define the physical bounds of a soil particle created in
Blender 3-D. For instance, a multifaceted particle is
bounded by its facets rather than a sphere or a six-sided
cube with similar volume.

2 Methods

2.1 Geometry

This model of disturbed soil begins with a geometric descrip-
tion at the microscopic scale. As alluded to the introduction,
mesh objects of different geometries are rotated, translated,
and extruded to produce objects that match the 3-D geometry
of soil grains. Scanning electron microscope (SEM) images
provided a visual template for particle design. An example
image can be seen in Fig. 3.

In previous discussion, it was explained that weathering
and human disturbance contribute to the distribution of dif-
ferent particle sizes within a target sample. It was observed
that small fine particles cling to larger soil particles when the
ground soil is sifted or dug up and overturned.1,8 The pres-
ence of the fine dusting, combined with altered porosity, dis-
tinctly changes the magnitude and shape of sample spectral
signatures. The scene built to model disturbed soil included
superfine dust grains clinging to larger sand or soil particles.

Two separate shapes with average diameters of 60 μm and
35 μm were used to represent fine dust particles. Three other
shapes represented large grains. These three particles had
average diameters of 500 μm, 640 μm, and 853 μm, respec-
tively. Each of the five shapes was created manually using
SEM imagery as a template. In Blender 3-D, a dusty sand
particle was created through a simple process. First, a
large grain particle (500 to 853 μm) was designed. Then a
multitude of superfine particles was formed. Next, the facets
of the large grains were subdivided into smaller facets that
have a diameter that is close in size to the dusty fines. By
manually aligning particle faces, each piece of dust was
easily abutted to the larger particle. A parent–child relation-
ship was set between the large grain and the fine particulates.
This ensured that the large grain and the dust grains remained
in contact during rigid body simulation. This also allowed for
grains of each size to be assigned their own unique material
spectra before the final geometry was exported to DIRSIG.
A Blender 3-D representation of a dusty particle is depicted
in Fig. 3.

Realistic scene posing and mixing were performed using
the Blender 3-D physics engine. To model a natural soil
scene, particles were not individually placed by hand. User
placement of thousands of objects would be incredibly
tedious and likely unphysical. Each particle was treated as
a rigid body and was dropped onto a surface where particle
interactions occurred. Grains eventually settled into a physi-
cal 3-D soil scene. This process is illustrated in Fig. 4.

In the graphic design software, this soil scene simulation
takes the form of a motion picture. At each frame, particle
position was calculated using the mass, shape, and external
forces of gravity and inter-particle collisions. A single frame
was used as the target description within the DIRSIG radi-
ometry solver. This geometry included the position in x; y; z
coordinates of all object vertices. It is an actual record of
particle shape and position that forms an accurate account
of particle distribution and spacing.

2.2 Chemistry

Before the soil grains were inserted into a DIRSIG radiom-
etry simulation, emissivity spectra were assigned to the
facets of each particle. Spectral reflectance and emissivity
response curves represent how each facet will respond to

Fig. 3 (a) A soil particle covered in dust grains is one example of precise geometric modeling that is
native to Blender three-dimension. (b) Scanning electron microscope images reveal small dust particles
clinging to larger grains.1
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interaction with a photon. It is known that large and small
quartz particles have distinct LWIR spectra due to the inco-
herent emission of radiation.8 The directional hemispherical
reflectance spectra of quartz have been published for many
specific size distributions (including 50 μm grains).1,16 These
data were extracted and converted into DIRSIG emissiv-
ity files.

2.3 Radiometry

Radiance that is measured by a DIRSIG imager or a labora-
tory sensor has multiple components. Radiation leaves a tar-
get to be detected through the processes of reflection (Lr)
and emission (Le). Radiance upwelling (Lu) from the
ground/target plane is a linear combination of these two
processes

EQ-TARGET;temp:intralink-;e001;63;408LuðλÞ ¼ Leðθr;ϕr; λÞ þ Lrðθr;ϕr; λÞ: (1)

To know target emissivity, the emissive and reflective
components of Eq. (1) must be separated. Empirical methods
used to separate these terms are nontrivial. To calculate emis-
sivity, downwelling radiance (Ld) must be known or mea-
sured. Downwelling radiance is the radiation from the sky
or a light source that illuminates a target. The equation
used in DIRSIG and in the laboratory to find spectral emis-
sivity is

EQ-TARGET;temp:intralink-;e002;63;289εtargetðλÞ ¼
LtargetðλÞ − LdðλÞ

LBBðλ; T targetÞ − LdðλÞ
: (2)

Ltarget describes the radiance measured from a target by a
DIRSIG sensor. Temperature-dependent blackbody radiance
(LBB) refers to radiance calculated according to Planck’s law.
Note that the temperature used to calculate blackbody radi-
ance must match that of the sample if correct emissivity is to
be derived.

Obtaining emissivity using Eq. (2) is a conditional proc-
ess.17 When the temperature of the downwelling atmosphere
is similar to that of the target, there is little contrast between
values in the numerator of Eq. (2). This results in small
emissivity values that may be dominated by noise. Also, if
the values in the denominator of Eq. (2) have similar mag-
nitudes, the emissivity equation becomes unstable. For these
reasons, performing good emissivity measurements in the
field or laboratory is hard to do. On very clear days, downw-
elling radiance (Ld) is relatively stable and the sky is usually
much colder than the sample of interest. In this scenario,
Eq. (2) provides good results. When conditions are

imperfect, the sample temperature and the atmospheric tem-
perature are knowingly altered in experimental situations in
order to increase the contrast between radiance values. The
accuracy of the emissivity results also depends on how well
the temperature of the sample is known. Temperature emis-
sivity separation and curve smoothing techniques are often
employed to find actual temperatures from a selection of
probable temperatures.18

Using DIRSIG to simulate emissivity data does require
some experimental manipulation, but the process is relatively
easy and does not call for the postprocessing described
above. Users have control of in-scene radiance sources. By
removing these sources, the downwelling radiance (Ld) term
in Eq. (2) is nullified and a simple ratio remains

EQ-TARGET;temp:intralink-;e003;326;424εtargetðλÞ ¼
LtargetðλÞ

LBBðλ; T targetÞ
: (3)

DIRSIG allows in-scene objects to be attributed with a
specific temperature. This implies that the user can define
the temperature of an object, and blackbody radiance (LBB)
is completely known. The user’s control of radiation sources
and temperature allows for emissivity to be solved painlessly.

With this theory in mind, the process to create emissivity
simulations can be defined. First, import geometry into
DIRSIG using. obj files. These files contain the locations
of all the vertices and edges of objects in the target scene.
Next, multiple instances of target geometry are defined
within a. odb file. This allows for the size of a target to
be expanded. Material (.mat) files are configured to link tem-
perature and wavelength-dependent spectral properties to
facets in the scene. In this study, a temperature of 300 K
was used to define target radiance and blackbody radiance.
To impose the conditions of Eq. (3), irradiance from the in-
scene light source is set to zero. This parameter is set within
the atmosphere (.atm) file. Last, sensor geometry and
response are defined. The sensor used in simulation must
be configured within the platform file to be responsive in
the desired wavelength range. A spectral resolution of
10 nm was used in this work.

Using the scenes and modeling techniques described
above, the LWIR soil signatures in the reststrahlen bands
can be modeled. Emissivity can be found for a sample of
disturbed soil. DIRSIG provides user control of temperature
and source radiance, which allows for reflection and emis-
sion to be evaluated separately. This process provides a
method to simulate in situ soil signatures. Recreation of
such scenes is difficult in a laboratory setting.1

Fig. 4 The process of scene building is based upon physics engines in Blender 3-D. Above, particles fall
onto a surface where they settle naturally in space. A video of this process can be viewed online.15
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3 Results
The ability to use realistic scene geometry with chemical
properties assigned by particle size enabled the simulation
of an intimately mixed complex soil signature. To tune
the DIRSIG born signature to match in situ measurements,
the particle scene was systematically altered by gradually
removing fine particles from the larger sand grains. A
scene with large particles that are completely covered with
small fines should produce a spectral emissivity curve that
looks similar to the emissivity of 50 μm particles. This
was accurately simulated using DIRSIG. As the fines were
removed (Fig. 5), the material properties of the larger par-
ticles were shown to have a greater impact on the overall
spectral signature of the mixed soil target. The desired scene
geometry is the one that most closely represents the geom-
etry and signature of disturbed soil.

A chart presenting the resulting emissivity signatures of
this iterative process is shown in Fig. 6. In the figure, the
curve denoted as fully covered was simulated using large
particles that are entirely covered with bits of dust [Fig. 5(a)].
Between 944 and 1842 small grains were aligned to each
larger particle in the scene corresponding to Fig. 5(a).
Some dust was removed in the scene of particles that
were less covered [Fig. 5(b)]. Between 497 and 987 small
particles were aligned to each larger particle in Fig. 5(b).
Even more fine grains were removed in the scene of sparsely
covered particles. Between 397 and 597 small particles were
aligned to individual large grains in Fig. 5(c). The total
particle count for each of the three scenes ranged from 87
to 424 million particles. The sensor reaching radiance was
calculated using DIRSIG 4.6.0, on a single threaded
Intel® Xeon® CPU E5-2630. This machine is clocked at
2.3 GHz and has 192 GB of RAM. Run times for scenes
(a–c) were approximately 10 min. The relative spectral emis-
sivity curve of sparsely covered particles [Fig. 5(c)] is very
similar to the signature of disturbed soil presented in the
literature.1 Results from this simulation also showed an
increased spectral contrast and lower relative intensity in
the 8 to 9.5 μm spectral band compared to scenes dominated
by finely powdered quartz.8,10

Analytical evaluation of Fig. 6 reveals that simulation
results agree with the expected theoretical balance between
surface reflection and volume transmission. The Christensen

frequency of quartz emerges at approximately 7.4 μm. This
frequency is a benchmark because it defines nearly complete
volume transmission. In this frequency region, the real part
of the complex index of refraction of quartz approaches one.
Air also has an index of refraction of approximately one at
this wavelength. The result is the effective absence of grain
boundaries. This distinct spectral feature is evident at 7.5 μm
in Fig. 6.

The impact of particle size in the reststrahlen bands has
been modeled with great difficulty in the past.10 In the 8 to
9.5 μm region characterized by primary reststrahlen effects,
quartz is defined by a large imaginary component of its com-
plex index of refraction. This means that radiation is sub-
jected to many Fresnel reflections at these wavelengths. It
also implies that energy cannot easily pass through quartz
grains. Therefore, two substantial troughs define emissivity
in this spectral region. It has been observed that smaller
grains in this region emit at higher levels than do larger
quartz particles.1,8,10 Both Salisbury and Moersch attribute
this trend to the increase in volume scatter that is sensed
at the top layer of a target.8,10 Moersch explains that there
are more prereabsorption interactions between thermal radi-
ation and grain boundaries in small particles. More

Fig. 5 (a) Particles are fully covered in clinging fines. (b) Large particles are covered less and (c) sparsely
covered. The emissivity curves that correspond to these changing particle configurations show how
signature varies with target geometry.

Fig. 6 Emissivity is modeled with varying amounts of clinging fines.
The Scene 1 curve (red) corresponds to a geometric representation of
soil particles that are completely covered with microfines. The shape
and magnitude of the reststrahlen band troughs changes as micro-
fines are gradually removed from the target scene in Scene 2 (blue)
and Scene 3 (green).
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interactions translate into more opportunities for emission in
this wavelength range. Figure 6 shows that the presence of
clinging fine particles at the sample surface impacts the mod-
eled signature as expected. Evidence of volume scatter in
scenes of completely covered grains is evident in the flat-
tened troughs of the reststrahlen bands. Decreased spectral
contrast in this region of the curve also highlights the
increased porosity and volume scatter that accompany
small quartz particles. The reststrahlen region of the curve
defined by sparsely covered quartz is a close match in mag-
nitude and spectral contrast to the disturbed soil, as observed
by Johnson et al.1

Between 10 μm and 12 μm, both volume transmission
and Fresnel reflection occur in quartz. The imaginary portion
of the index of refraction is very small and the real coefficient
is approximately equal to two. Because volume transmission
is significant in this regime, reabsorption is minimized in
larger grains. This was not true in the 8 to 9.5 μm region.
Since reabsorption is low, larger particles exhibit higher lev-
els of emissivity than do small particles. As stated above,
radiation from smaller particles must pass many grain boun-
daries before it is measured by a sensor. In the primary rest-
strahlen bands, this characteristic made small particles more
emissive than larger particles because reabsorption was
prevalent. In the 10 to 12 μm band, this very same character-
istic is the purpose for lower emission levels displayed by
smaller particles. This trend is described with accuracy in
Fig. 6. The emissivity curves of less covered and sparsely
covered soil are impacted by the presence of large soil grains.
The spectral signature of the scene of completely covered
grains is almost entirely characterized by fine grains.
Within the 10 to 12 μm band, comparatively, higher emissiv-
ity levels should be observed in simulation results corre-
sponding to the scenes of less covered and sparsely
covered grains. This is demonstrated by this simulation
approach.

4 Conclusion
The magnitude and spectral contrast signatures of quartz soil
emissivity can be accurately realized only if scene geometry,
radiometry, and chemistry are known. This work established
that using known software tools, including Blender 3-D and
DIRSIG, one can successfully model the complex mixture of
disturbed soil. By incorporating the physical relationship
between particle geometry and intimate mixing, known
spectral features of quartz soil were tuned with precision.
Spectral behavior at the Christensen frequency and the
primary and secondary reststrahlen bands was correctly
modeled with respect to particle size distribution. It is the
ability to focus on geometric modeling that separates this
technique from other models. Because DIRSIG provides
complete user control of sample geometry and the assign-
ment of spectral properties, it serves as a convenient test-
bed for target construction and target signature sensing.
This technique can be easily modified for implementation
with other material mixtures provided that pure spectral
reflectance or emissivity data is available. Ultimately, this
study demonstrated that by combining realistic target geom-
etry and spectral measurements of pure quartz, emissivity of
complex soil mixtures could be modeled without functional
data fitting or rigorous analysis of material dynamics.
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