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Abstract. Phase unwrapping is the final step in phase
extraction methods, which consists of recovering the cor-
rect phase from the wrapped phase by removing 2π dis-
continuities. The difference between the correct phase
and the wrapped phase is the phase wrapping map. A
new method for phase unwrapping is presented by iden-
tifying the phase wrapping map as a sequence of binary
valued intermediate wrapping maps and iteratively remov-
ing them producing the correct phase by phase-wrapped
unfolding. A path-following algorithm is presented to exem-
plify the phase wrapped unfolding method. © The Authors.
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1 Introduction
Phase extraction methods are used in different coherent sig-
nal processing areas, such as optical and microwave interfer-
ometry,1 magnetic resonance imaging,2 synthetic aperture
radar,3 and Fourier transform optical coherent tomography,4

among others. In these areas, the signal modulates a har-
monic function and phase extraction algorithms are used
to recover the signal. The recovered signal within the prin-
cipal branch of the harmonic function exhibits a series of
discontinuities, which need to be removed to obtain the
real signal. This process, known as phase unwrapping, is
the final phase extraction step. We collect these discontinu-
ities in a wrapping map, normally overlooked based on the
principle that the proposed methods aim to recover the real
phase map knowing its expected continuity properties. Since
phase unwrapping was first showed in optical interferometry
phase extraction,5,6 there have been extensive studies to re-
cover the correct phase map. Because of the presence of
noise, signal discontinuities, and undersampling, phase
unwrapping is considered to be one of the most difficult
problems in mathematics and engineering.7 To date, there
are two main approaches to the phase unwrapping problem,
which can be classified in path following methods of mini-
mum-norm methods.8–10 Independent of the approach, a def-
inite solution for phase unwrapping remains an open
problem.

On this note, an alternative solution to the phase unwrap-
ping problem focusing on the properties of the phase

wrapping map instead of the real phase signal properties
is presented.

2 Phase Unfolding
Phase extraction methods retrieve a wrapped phase from a
harmonic function confined in the main branch of the func-
tion, which is normally a 2π band in either [0;2π) or [−π; π).
Because phase is a relative quantity, we can focus only on the
[0;2π) band without loss of generality. In order to obtain an
insight on the phase unwrapping problem instead of looking
at the problem as the final step in a phase extraction methods
as is customary, let us look at the problem from the solution
point of view. In other words, starting from the correct
phase map U [Fig. 1(a)], the wrapped phase Uw is obtained
[Fig. 1(b)] by adding multiples of 2π [Fig. 1(c)] to contain
Uw in the [0;2π) band. The form of the integer-valued cor-
recting field [Fig. 1(c)], or phase wrapping mapM, is depen-
dent on the properties of U.

EQ-TARGET;temp:intralink-;e001;326;553Uw ¼ U − 2πM: (1)

The aim of the phase unwrapping methods aforemen-
tioned is to add a correct multiple of 2π to the wrapped
phase such that a continuous unwrapped phase map is recon-
structed. These methods focus on the properties of the
expected phase map U and the challenge is to restore a func-
tion free of the 2π jumps.

As mentioned, instead of focusing in the properties of U,
here we investigate the properties of the phase wrapping map
M. To be more precise, focus on an alternative construction
ofM. To do such and bearing in mind that if the phase mapU
is sampled with scaled harmonic functions with a multiple of
2π periodicity, in principle, we can obtain the correct solu-
tion after an adequate phase unwrapping procedure.
Considering using powers of two multiples of 2π (2nπ) is
of particular interest. By using this approach, an insight
on the phase wrapping map is obtained and it is found
that it can be properly decomposed by simpler phase wrap-
ping maps.

The first task is to obtain the minimum power of two mul-
tiples of 2π, which contains U. This is, look for N, which is
the minimum integer such that

EQ-TARGET;temp:intralink-;e002;326;291jUj ≤ 2Nπ: (2)

After determining this number, consider wrapping planes
in subpowers of two multiples of 2π∶2N−1π, 2N−2π; : : : ; 4π,
2π (Fig. 2) in such a way that iterative wrapping maps
M1;M2; : : : ;MN−1, MN [Figs. 3(b), 3(d), 3(f), and
3(h)] are obtained by wrapping the immediate previous
wrapped function (U þM1 · 2N−1π þM2 · 2N−2π þ : : : þ
Mn · 2N−nπ) by the next subpower of two multiples of 2π.
By doing so the n’th wrapping map has binary values:
zero or 2N−nþ1π. Notice that by construction, the position,
but not necessarily the sign, of the phase jumps for each
wrapping map is contained in the next one. Thus, the
following intermediate wrapped functions are constructed
[Figs. 3(a), 3(c), 3(e), and 3(g)]:

*Address all correspondence to: Carlos Gerardo Treviño-Palacios, E-mail:
carlost@inaoep.mx

Optical Engineering 110503-1 November 2015 • Vol. 54(11)

OE Letters

http://dx.doi.org/10.1117/1.OE.54.11.110503
http://dx.doi.org/10.1117/1.OE.54.11.110503
http://dx.doi.org/10.1117/1.OE.54.11.110503
http://dx.doi.org/10.1117/1.OE.54.11.110503
http://dx.doi.org/10.1117/1.OE.54.11.110503
http://dx.doi.org/10.1117/1.OE.54.11.110503
http://dx.doi.org/10.1117/1.OE.54.11.110503
mailto:carlost@inaoep.mx
mailto:carlost@inaoep.mx


EQ-TARGET;temp:intralink-;e003;63;192

8>>>>>>>>><
>>>>>>>>>:

Uw;0 ¼ U; jUw;0j ≤ 2Nπ
Uw;1 ¼ Uw;0 −M1 · 2N−1π; jUw;1j ¼ 2N−1π

..

.

Uw;N−2 ¼ U− · · · −MN−2 · 4π
¼ Uw;N−3 −MN−2 · 4π

; jUw;N−2j ¼ 4π

Uw ¼ U− · · · −MN−1 · 2π
¼ Uw;N−2 −MN−1 · 2π

; jUwj ¼ 2π

. (3)

The wrapping map down to the main branch (2π) is there-
fore the sum of the binary intermediate wrapping maps.

EQ-TARGET;temp:intralink-;e004;326;324M ¼
XN−1

i¼1

Mi · 2N−nπ: (4)

Using this approach instead of finding the correct multiple
of 2π for phase unwrapping, the solution is reduced to recon-
struct each step backward. In other words, instead of
unwrapping the phase, we iteratively unfold the phase.

EQ-TARGET;temp:intralink-;e005;326;239Uw;n ¼ Uw;n−1 − φnMn; (5)

where φn ¼ 2N−nπ. Unfolding the phase consists on finding
and removing iteratively Mn. The benefit is that the partial
wrapping map Mn consists of only zeroes and ones.

In spite of the apparent advantage using this binary
approach, the unfolding problem is as complex as the
unwrapping approach. This complexity is made evident
by manipulating an intermediate wrapped function Uw;n
placed on top of itself, thus mimicking one unfolding
step. Using this construction, it is found that each point
has two possible solutions (Fig. 4):

EQ-TARGET;temp:intralink-;e006;326;97UI
w;n−1 ¼ Uw;n−1; (6)

Fig. 1 For a 15π amplitude Gaussian curve (a) genuine unwrapped
phase U, (b) corresponding wrapped phase Uw within [0;2π) values,
and (c) integer-valued 2π multiple correcting field, or phase wrapping
map 2π M .

Fig. 2 Alternative wrapping planes separated in a 2N−nπ sequence for
the function on Fig. 1. In this case, N ¼ 4 and planes for M1; M2, and
M3 are considered.

Fig. 3 Intermediate wrapped functions and intermediate wrapped
maps for the example in Fig. 1: (a) Uw;0 ¼ U, (b) 8πM1 used to
fold Uw;0, (c) Uw;1 ¼ U0 − 8πM1, (d) 4πM2 used to fold Uw;1,
(e) Uw;2 ¼ Uw;1 − 4πM2, (f) 2πM3 used to fold Uw;2,
(g) Uw;3 ¼ Uw;2 − 2πM3; this is the final wrapped phase Uw within
[0;2π) values, and (h) πM3 used as constructing wrapped function
in the phase unfolding algorithm.
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EQ-TARGET;temp:intralink-;e007;63;540UII
w;n−1 ¼ Uw;n−1 − 2 Mnφn þ φn: (7)

Equation (6) is the correct solution [Fig. 4(b) solid line],
whereas Eq. (7) is a false solution, which increases the
amount of wrapping [Fig. 4(b) dotted line]. Nevertheless,
the correct solution is found among only two possible sol-
utions and phase unwrapping has been reduced to find the
correct one among these two.

3 Path-Following Phase Unfolding Algorithm
Different approaches for unfolding the phase have been
explored. Here, a straightforward path following method
is presented. In order to implement the basic path following
phase unfolding process, notice that if the intermediate phase
wrapped function Un is shifted by φn∕2, the following fold-
ing step produces the same wrapped function Unþ1. This
property is used to simplify the unfolding process. Thus,
the path following phase unfolding process can be performed
by splitting the task down into the following steps:

1. Start with an intermediate wrapped function Uw;n ¼
Uw;n−1 þMnφn and roll the phase within its [0;φn]
domain by φn∕2. This is done by adding φn∕2 to
values lower than half the step amplitude (φn) and sub-
tracting φn∕2 to the upper half values [Figs. 5(a) and 5
(b)]. The resulting intermediate wrapped phase is
Uw;n−1 þOnφn, where On is the correspondent
phase wrapping map for the φn∕2 shifted Uw;n
function.

a. for the first iteration, use φN−1 ¼ 2π and
Uw;n ¼ Uw.

2. Subtract the previous two functions [Fig. 5(c)]:
EQ-TARGET;temp:intralink-;e008;63;163ðUw;n−1 −OnφnÞ − ðUw;n−1 −MnφnÞ
¼ ðMn −OnÞφn

¼ Mnþ1φn − φn∕2 (8)

This is a binary function, which by construction
contains the position of the unknown phase jumps

of Mn. It also contains intercalated the phase
jumps of On

3. Initialize an unfolding variable Sw to zero.
4. Starting from the first sample of the left, calculate the

difference in the function resulting from Eq. (8)
between the current sample (j) and its direct adjacent
right-hand neighbor (jþ 1). Only pay attention to
nonzero differences.

a. For the first nonzero value, which can be either
positive or negative, assign 1 or −1 to an unfolding
sign variable sgnw, correspondingly.

5. For the nonzero difference points identified in step 4, if
the difference between adjacent values of Un added
to Sw is larger than φn∕2fUnðjÞ − Unðjþ 1Þ þ
Sw > φn∕2?}:

a. if Sw is zero, assign sgnwϕn to it.
b. if Sw is nonzero, assign zero to it.

This step selects between the two possible paths
Mn or On.

6. In parallel to steps 4 and 5, starting from the first sam-
ple on the left, add Sw to Uw;n (Uw;n−1 ¼ Uw;n þ Sw).

7. Continue steps 4, 5, and 6 to the right-hand samples
until all the samples have been processed. This con-
cludes an unfolding step and Uw;n−1 has been
obtained.

8. Double the value of φn (φn−1 ¼ 2φn) and repeat steps
1 through 7 using the obtained Uw;n−1.

9. Continue until the difference in Eq. (8) is constant and/
or smaller than a given threshold (φ∕4 for instance)
and exit in step 2.

Using this procedure after N − 1 iterations, in which the
final value of φ is 2Nπ, the correct phase map U is recovered.

Fig. 4 Graphical principle of the phase unfold method. (a) Original
Uw;n intermediate wrapped phase and (b) Uw;n duplicated and placed
on top of itself showing the correct solutionUw;n−1 (solid line) and false
solution in Eq. (7) (dotted line).

Fig. 5 (a) Intermediate wrapped function Uw;n ¼ Uw;n−1 −Mnφn , the
arrows show the required displacements to roll the phase by φn∕2, as
described in the text, (b) complementary intermediate wrapped func-
tion after a φn∕2 roll, Uw;n −Onφn and (c) difference between Mnφn
and Onφn signifying Mnþ1φn .
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The algorithm performs the unfolding procedure by locating
phase jumps on a binary functionMnþ1 governed by Eq. (8).
Therefore, in contrast to regular phase unwrapping tech-
niques instead of searching for discontinuities on a stepwise
continuous function Un at each point to execute the unwrap-
ping decision like ice walking the unfolding decision is made
only on abrupt changes in Mnþ1 in a cliff hopping manner.

Phase unfolding produces N − 1 times more operations
than phase unwrapping methods but has the advantage
that the number of discontinuity correcting decisions is
reduced to the phase jumps clearly identified on Mnþ1

[Eq. (8)], which decrease on each iteration. Phase unfolding
also has the same restrictions than conventional phase
unwrapping: is limited by signal noise, under sampling
beyond Shannon–Nyquist limit and discontinuities in the
wrapped signal. Furthermore, the first iteration in the
unfolding algorithm requires an additional downfolding the
wrapped phase to half of the main branch [Fig. 3(h)], thus
increasing the sampling limitations to fulfill the Shannon–
Nyquist limit. On the other hand, errors due to false wrap-
ping do not propagate as it does in the path following phase
unwrapping because of the local phase jump detection
in Eq. (7).

As an example of the phase unfolding algorithm, a unitary
circle function closely related to third order spherical aber-
ration with 15π amplitude is analyzed (Fig. 6). Figure 6(a)
shows the expected result of a phase extraction method con-
fined in the [0;2π) band. In this case, N is 4 (24π >
15π > 23π), therefore unfolding phase unwrapping is
achieved in three steps as shown. On each consecutive
step [Figs. 6(b)–6(d)], the phase unfolds as a folding cup
opening until the correct phase map U is recovered in
Fig. 6(d).

For the simple path following the method demonstrated,
phase unfolding presents some advantages with respect to
phase unwrapping, namely the correct identification of
phase jumps, a decrease number of discontinuity correcting
decisions and splitting the problem to binary maps [Eq. (5)].
It also presents disadvantages such as tighter limitation in the
sampling period and the number of computational steps.
Both approaches are similarly sensitive to signal noise or dis-
continuities in the signal. Comparable computational time
has been observed using either approach. Further research
is required to incorporate simultaneously the properties of
both the real phase map U and the phase wrapping map
M in phase unwrapping or unfolding algorithms. Additional
studies also need to be conducted to fully determine the
effect of the wrapping map decomposition [Eqs. (4) and
(5)] on either path following or minimum norm unwrapping
methods.

4 Conclusions
In conclusion, an alternative method for phase unwrapping,
named phase unfolding, has been presented by exploring the
properties of the phase wrapping map decomposed in a series
of binary intermediate wrapping maps. An effective iterative
algorithm for path following phase unfolding was also pre-
sented, identifying some advantages and disadvantages with
respect to standard phase unwrapping.
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