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Abstract. Census transform (CT), a stereo matching algorithm, has a strong advantage in radial distortion and
brightness changes. However, CT is noise-sensitive because it compares the brightness of a single central pixel
based on the brightness values of neighborhood pixels within a matching window. Star-census transform, which
compares the brightness of pixels separated by a certain distance along a symmetrical pattern within the match-
ing window, is presented. The proposed method can select the distance between the pixels for comparison and
comparison patterns. The experiment results show that the proposed method yields a better performance than
the previous CT methods. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.55.6.063107]
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1 Introduction
Stereo vision establishes the correspondence between both
views as stereo matching and calculates the dense disparity
and three-dimensional (3-D) depth information. The stereo
matching method is largely divided into two parts: local and
global. Also, the stereo matching algorithm consists of
several steps, including initial matching cost calculation,
cost aggregation, cost calculation, and refinement.1

The local method applies a matching window to find the
correspondence between the reference image and the target
image. It is more efficient than the global method because it
searches only the designated area, whereas the global method
explores the entire image area including the neighborhood
area. The global method defines an energy model by using
various conditions, such as uniqueness and continuity, and
determines the matching information by minimizing the
energy function of an entire image. The global method can
obtain more exact difference values than the local method
because it processes a search of the entire image repeatedly.
However, the implementation of the global method is com-
plex and is not suitable for real-time processing due to
the amount of computational complexity. Representative
examples of the global method include belief propagation,2,3

graph-cut,4 and dynamic programming.5

For noise robustness in stereo matching, we improve the
original census transform (CT), which is one of the most
widely used local methods to calculate the initial matching
cost. Hirshmüller and Scharstein6 compared the performance
of various stereo matching algorithms including CT, based
on the image change due to different camera exposures
and light conditions. CT compares the relative brightness
between two pixels and converts the comparison result
into a bit-string. The local methods, such as sum of absolute
or squared difference and normalized cross correlation,

compare the values of all pixels in the matching window.
CT obtains a robust result toward brightness change and
radiometric distortion because it determines only the relative
high and low level of brightness between two pixels.7

However, CT is noise-sensitive because it compares the rel-
ative difference of brightness of a pixel with neighborhood
pixels based on one single central pixel. In other words, the
probability of false matching greatly increases when the cen-
tral pixel is affected by noise or other conditions.8,9

Several suggestions have been proposed, such as the
mini-census transform (MCT)8 and generalized-census trans-
form (GCT),9 to improve the performance of the existing CT.
CT compares all the pixels in the neighborhood based on
the central pixels within the matching window; thus, if
the size of the matching window increases, the computa-
tional complexity also increases. MCT compares only six
pixels of the neighborhood, which are selected empirically,
with a central pixel.8 This method has shown good perfor-
mance with less computational complexity than the existing
CT. Furthermore, GCT was proposed for robust matching
performance toward Gaussian noise.9 This method applies
pixels separated by a certain distance within the matching
window, not the central pixel. MCT has a drawback whereby
it is affected by noise due to the characteristic of comparing
the brightness values of neighborhood pixels based on a sin-
gle central pixel. On the other hand, GCT is robust to noise
because it compares the neighborhood pixels to each other
and the pixels are symmetrically set within a matching mask.

This paper introduces star-census transform (SCT), which
compares the pixels separated by a certain distance symmet-
rically. The purpose of the proposed method is to initiate the
sampling of neighborhood pixels in a symmetrical pattern
excluding the central pixels of the matching window. It
then compares the previous and current sampling points con-
secutively along a scan pattern. Compared with GCT, which
compares the brightness of sampling points separated by
a certain distance, the proposed method is more robust to*Address all correspondence to: Hyunki Hong, E-mail: honghk@cau.ac.kr
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noise due to its comparison of brightness values between the
sampling points. The sampling points and the distance (edge
length) between these points can be diversely selected,
depending on the correlation with the central pixel of the
matching window, the degree of noise within the image, and
the computational complexity requirement. The proposed
SCT can be utilized in areas such as real-time stereo match-
ing, as well as feature points matching and tracking.

2 Census Transform
CT compares the brightness values between the pixels.6,7

Equations (1) and (2) show the CT equation and comparison
process between brightness values. It describes the bit-string
CðpÞ as a value compared by operator ⊗ subjected to the
brightness value Ip of central pixel p and the brightness
value Iq of neighborhood pixel q in a matching window W.
Here, function ξðÞ returns 1 if the brightness value of the
neighborhood pixel is higher than the counterpart of the cen-
tral pixel, and 0 if the brightness value of the neighborhood
pixel is lower than the counterpart of the central pixel by
comparing the brightness values between pixels. CðpÞ is
the encoding bit-string and consists of 0 and 1. It refers to
a relative brightness distribution with neighborhood pixels
on the basis of the central pixel of the window.

The bit-string ClðpÞ on the left reference image is com-
puted, and then the bit-strings Crðpþ dÞ on the right target
image are calculated within the search range of the maximum
disparity of d. If the matching window is m ×m, the bit-
string m ×m − 1 is obtained. Also, as indicated in Eq. (3),
the hamming distance value, which is implemented with
exclusive logical OR arithmetic operation toward bit-strings
of ClðpÞ and Crðpþ dÞ, is calculated. Then, CT determines
an initial difference value of pixel p, which is equal to the
lowest cost value of the difference value dintðpÞ.
EQ-TARGET;temp:intralink-;e001;63;377CðpÞ ¼ ⊗

q∈W
ξðIp; IqÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;340ξðIp; IqÞ ¼
�
1; if Ip < Iq
0; otherwise

; (2)

EQ-TARGET;temp:intralink-;e003;63;301dintðpÞ ¼ argmin
d

X
Hamming½ClðpÞ; Crðpþ dÞ�: (3)

MCT, which was proposed to reduce the computation
complexity of the existing CT, compares only some parts
of the pixels in the window based on the central pixel.
In other words, on the 5 × 5 sized matching window in
Fig. 1(a), MCT only performs the comparison arithmetic

operation of the six dark-colored pixels.8 GCT, in Fig. 1(b),
is the CT method, which compares the neighborhood pixels
with each other in a symmetrical pattern on the basis of
the central pixel.9 GCT is more robust to noise than the
other methods because it compares the brightness values of
various neighborhood pixels in the direction of the arrow,
not the central pixel.

3 Proposed Method

3.1 Star-Census Transform

The existing CT compares the brightness values of the neigh-
borhood pixels on the basis of the central pixel within the
matching window; thus, if noise occurs, the false matching
ratio greatly increases. The proposed SCT is a method used
to compare the neighborhood pixels by symmetrical patterns
in a consecutive manner, rather than comparing them with
the central pixel. Here, it is crucial to select the sampling
pixels, which are the subjects for comparison in the window.

Fire and Archibald9 calculated the average degree of
correlation between neighborhood pixels on the basis of the
central pixel on Middlebury benchmark images: Tsukuba,
Venus, Teddy, Cones, and so on. The result demonstrated
that the highest correlation for the neighborhood pixels is
shown for the distance of ∼2 pixels from the central pixel.
Thus, checking the pixel area located 2 pixels from the cen-
tral pixel of the matching window is an effective procedure
for reducing the false matching. Based on this property, Fire
proposed GCT, which compares the brightness values of
neighborhood pixels in the symmetrical direction, without
a central pixel.

To reduce the noise that can arise from a particular loca-
tion such as a central pixel, the proposed SCT samples the
pixels separated by a certain distance within the matching
window and compares the brightness values of the corre-
sponding points. Also, the scan pattern of each sampling
point should be designed symmetrically to obtain the same
results even from a rotated image. Here, we employ the
Chebyshev distance on a spatial space (x and y coordinates),
where the distance between two pixels is the greatest of their
differences along any coordinate dimension.

All the sample points for comparison in the matching win-
dow are connected, and the last sampling point is compared
to the initial sampling point. In other words, the relative
brightness heights of all sample points are analyzed along
the scan pattern. The proposed method compares two neigh-
borhood pixels consecutively on the basis of a random sam-
ple point in the matching window, so the matching accuracy
is higher than that of the existing CT. Also, the initial sample
point is compared to the last sample point. Thus, the scan
pattern is connected as one line. This means that the distri-
bution of the relative level of brightness values of all pixels
can be measured. For example, a 5 × 5 sized matching win-
dow can be compared with the sample points of the distance
from 1 to 4, and the maximum distance increases depending
on the size of the matching window. The proposed method
can produce a variety of patterns depending on the size of the
matching window, the compared distance between pixels,
and the position of sampling points. Figures 2(a) and 2(b)
show the SCT pattern with an edge length (comparison dis-
tance) of 2 in a 3 × 3 matching window and an edge length
(comparison distance) of 3 in a 5 × 5 matching window:Fig. 1 (a) MCT8 and (b) GCT.9
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EQ-TARGET;temp:intralink-;e004;63;582ξðIq; Iq 0 Þ ¼
�
1; if Iq − Iq 0 > 0

0; otherwise
; (4)

EQ-TARGET;temp:intralink-;e005;63;547CðpÞ ¼ ⊗
q∈W

ξðIq; Iq 0 Þ: (5)

The proposed SCT can be defined by Eqs. (4) and (5). In
Eq. (4), if the difference between brightness value Iq of
neighborhood pixel q (excluding the central pixel p of the
matching window and the brightness value of Iq 0 of the
neighborhood pixel q 0, which is separated by a certain dis-
tance) is greater than 0, then it returns 1. Otherwise, the
remaining pixels return 0. By using operator ⊗ in Eq. (5),
the comparison result of brightness values of pixels in the
matching window of size W is converted into a bit-string.

The brightness values of the sampling points in a consecu-
tive manner depending on the scan patterns in matching win-
dow are compared. The number of sampling points in which
brightness has been compared is doubled in the same sized
matching window, so it has a more robust performance for
stereo matching. Figure 3 describes the average matching
cost distribution obtained by CT and SCT, from two random
areas (indicated in the red circle) of the Teddy image, which
is the Middlebury standard image. These two areas are front-
parallel planes, which face the camera and toward each other.
The ground truth difference values of these two random areas
are 18 and 15. Figures 3(a) and 3(b) show the distribution of

Fig. 2 Basic pattern of SCT: matching windows of (a) 3 × 3 (edge
distance 2) and (b) 5 × 5 (edge distance 3).

Fig. 3 Comparison of matching costs of [(a) and (b)] CT, and [(c) and (d)] SCT.

Fig. 4 Comparison of matching costs with edge length of (a) 2, (b) 3, and (c) 4.
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matching cost from CT, and Figs. 3(c) and 3(d) show those
from SCT. Figure 3(b) shows two minimum errors of the
minimum cost values; it is therefore difficult to obtain
exact disparity information. However, in Figs. 3(c) and 3(d),
the minimum matching cost values are clearly obtained at
18 and 15 disparity levels, respectively.

Figure 4 shows the matching cost distribution according
to the edge length (the distance between the sample points)

of SCT. In the case of the 24 sampling points in the 5 × 5
matching window, there is no comparison pattern at the
edge length of 4: pixels are sampled redundantly. We there-
fore sampled 16 points in the 5 × 5 matching window in
Fig. 4. The average matching cost in the marked areas of
Fig. 3 (Teddy image) is then computed. In other words,
Figs. 4(a)–4(c) indicate the cost error distribution with 16
sampling points in the matching window when the edge
lengths are set to 2, 3, and 4, respectively. Compared to
Fig. 4(c), the case of Fig. 4(a) is relatively easier to distin-
guish the location of the minimum matching cost. In this
case, the edge length between sample points in the matching
window is set as 2; we can thus obtain more reliable distri-
bution of matching cost than in other cases. This result is
consistent with the analysis result of the previous study.9

In the three cases shown in Fig. 4, peak-ratio naive
(PKRN) is employed to measure the method of obtaining
the reliable disparity value of the minimum matching cost
obtained from the Winner Takes All method.10,11 PKRN
determines the reliability of the final disparity value as
Eq. (6), by calculating the proportion of the disparity value
of the minimummatching cost (C1) and the disparity value of
the second minimum matching cost (C2). Generally, if the
difference between C1 and C2 increases (if PKRN value
becomes larger), it is determined that the reliable disparity
value is obtained:

EQ-TARGET;temp:intralink-;e006;326;466PKRN ¼ C2 þ ε

C1 þ ε
; (6)

Table 1 PKRN values of obtained disparity maps.

Tsukuba Venus Teddy Cones Avg.

CT 1.160 1.152 1.127 1.144 1.146

SCT (24-2-1) 1.164 1.172 1.143 1.170 1.162

SCT (24-3-1) 1.158 1.163 1.136 1.161 1.154

Table 2 PKRN values of inlier disparity maps.

Tsukuba Venus Teddy Cones Avg.

CT 1.199 1.197 1.165 1.191 1.188

SCT (24-2-1) 1.204 1.213 1.182 1.217 1.204

SCT (24-3-1) 1.195 1.203 1.173 1.205 1.194

Fig. 5 SCT scan pattern according to sampling points and edge lengths.
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where ε is a value for the case when the minimum matching
cost (C1) is 0 (ε ¼ 10). In Fig. 4, PKRN is used just to deter-
mine the reliability of the final disparity value according to
three edge length parameters. ε in Eq. (6) has no influence on
the matching performance.

Table 1 describes the PKRN reliability results on the
disparity value of Middlebury standard images (Tsukuba,
Venus, Teddy, and Cones). When 24 points are sampled
in a 5 × 5 matching window, PKRN results by the SCT
method are greater than those by the CT method. Here,
“24-2-1” refers to the first of scan patterns with 24 sample
points and the edge length of 2. Table 2 shows the PKRN
results from inlier areas by a left–right consistency check.
From Tables 1 and 2, the proposed SCT method with the
edge length of 2 can obtain better reliable disparity informa-
tion than the previous CT method.

3.2 Selection of Sample Points

The proposed SCT can perform a comparison operation up to
24 times in the 5 × 5 matching window. When the matching
window size increases, the number of bit-strings produced
from the comparison operation increases. If the number
of sampling points is reduced based on the scan pattern,
the number of comparison operations also decreases. The
edge length (comparison distance) in the 5 × 5 matching
window is 1 to 4. To ensure the accuracy and robustness
against noise, the proposed method considers the patterns
with edge lengths of 2 to 4, excluding the distance of 1.
Figure 5 shows the possible patterns on the 5 × 5 matching
window according to the edge lengths and the number of
sample points (shown as dark color). For example, if
eight points are sampled, three patterns can be generated:
(1) two scan patterns with the edge length of 2, (2) three
scan patterns with the edge length of 3, and (3) one scan pat-
tern with the edge length of 4. In Fig. 5, “8–2–1” refers to
the first scan pattern with eight sample points and an edge
length of 2. The initial sample point and the last sample
point are connected, and the sample points are consecutively
compared along their symmetrical pattern.

Even if the edge lengths are same (if two pixels are sep-
arated by the same distance) in the matching window, we can
choose several patterns, as shown in Fig. 5. When pixels in
the matching mask are sampled, each point in the neighbor-
ing pixels has been correlated differently with a central pixel.
Therefore, it is crucial to determine which pixel should be
placed in a scan pattern in the area-based stereo matching
window. Previous studies9 suggested the average correlation

Fig. 6 Comparison of summation of on average correlation values of
seven different patterns with (a) no noise and (b) Gaussian noise.

Fig. 7 Tsukuba, Venus, Teddy, and Cones images, ground truth, and disparity map obtained from
proposed SCT: sample points of 8 (8-2-2), 16 (16-2-2), and 24 (24-2-1) (from left to right).
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Fig. 8 Baby 3, Bowling 2, Cloth 2, and Dolls images, ground truth, and disparity map obtained from
proposed SCT: 8 sample points (8-2-2), 16 (16-2-2), and 24 (24-2-1) (from left to right).

Table 3 Comparison of false matching ratio results (nonocclusion regions).

Methods Tsukuba Venus Teddy Cones Avg. Baby3 Bowling2 Cloth2 Dolls Avg.

CT (full 5 × 5) 8.20 1.78 8.15 4.96 5.77 3.56 6.64 3.78 6.76 5.18

MCT 7.56 1.47 8.26 5.38 5.66 4.06 7.29 5.32 9.59 6.56

GCT (12 edges) 6.20 1.65 7.72 6.04 5.40 4.76 9.09 5.66 10.42 7.48

GCT (16 edges) 5.49 1.72 7.84 5.95 5.25 4.61 8.39 5.04 9.47 6.87

SCT 8 points 8-2-2 7.92 1.28 8.35 4.77 5.58 4.43 7.71 3.93 7.50 5.89

8-3-1 8.78 2.06 9.59 6.44 6.71 5.74 9.73 5.53 10.71 7.92

8-4-1 7.05 2.24 11.02 7.22 6.88 6.81 11.15 6.40 12.17 9.13

SCT 16 points 16-2-1 6.49 0.93 8.13 4.49 5.01 4.36 7.48 4.01 7.47 5.83

16-2-2 6.29 0.92 7.93 4.31 4.86 4.18 7.37 3.81 7.15 5.62

16-2-3 8.16 1.55 8.16 5.01 5.72 4.66 8.00 4.48 8.28 6.35

16-2-4 8.32 1.34 8.46 5.16 5.82 4.70 7.87 4.48 8.33 6.34

16-2-5 7.78 1.18 8.59 5.21 5.69 4.97 7.83 4.65 8.89 6.58

16-2-6 6.13 1.11 7.99 4.40 4.90 4.18 7.15 3.93 7.26 5.63

16-2-7 7.84 1.23 8.24 4.68 5.49 4.53 7.44 3.92 7.36 5.81

16-3-1 7.10 1.29 7.56 4.97 5.23 3.90 6.97 4.44 8.48 5.94

16-4-1 6.39 1.82 9.02 6.09 5.83 4.85 9.29 6.04 11.18 7.84

SCT 24 points 24-2-1 6.52 0.96 7.79 4.52 4.94 3.93 6.27 3.63 6.60 5.10

24-3-1 7.95 1.73 9.00 5.84 6.13 5.32 9.06 5.15 9.68 7.30
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relationship between the central pixel and the neighborhood
pixels on Middlebury standard images (Tsukuba, Venus,
Teddy, and Cones). Based on this, it is possible to select
the sample points with a high correlation relationship within
the matching window. Figure 6 shows the average correlation
calculated from each sample point along the seven different
patterns (with 16 sample points and edge length of 2). The
experiment results indicate that four patterns (16-2-1, 16-2-2,
16-2-6, and 16-2-7) show a high correlation, even if the
Gaussian noise (σ ¼ 5.12) is added. By employing appropri-
ate scan patterns from the correlation distribution of an input
image, we can improve the overall performance of stereo
matching.

4 Experimental Results

4.1 Benchmark Results Analysis

The computer used in the experiment is Intel(R) Core(TM)
i7-3770 CPU 3.40 GHz, Nvidia Geforce GTX 760. The
Middlebury benchmark datasets12 for the performance test
of stereo matching are employed. In the stereo matching
framework, we compute an initial matching cost and apply
cross-based aggregation13,14 of the initial costs in the support
region. Then, a final disparity map is obtained using a
median filter (Figs. 7 and 8). This experiment framework
focuses on comparing the performance of the previous CT,
MCT, and GCT methods with the proposed SCT method.

If advanced cost aggregation and optimization processes
are included, we can sufficiently obtain better stereo match-
ing performance.

Table 3 shows the false matching ratio of final disparity to
ground truth in the nonocclusion regions by using the pro-
posed SCT pattern (Fig. 5). A percentage of bad matching
pixels is computed with the absolute difference between
the computed disparity map and the ground truth disparity
map. Here, a threshold value that means a disparity error
tolerance is set to 1.

In Table 3, matching performance depends on both the
scan pattern and the image local properties (intensity distri-
bution) to some degrees. That means, there is no optimal
scan pattern to guarantee the best matching performance
in any input image. When SCT patterns with 8, 16, and
24 sample points and an edge length of 2 are employed,
the most accurate matching performance is obtained. By con-
sidering the experimental results (Table 3), we can determine
an appropriate scan pattern suitable for input images. Also,
when comparing eight sampling points in the proposed pat-
tern, the proposed SCT method showed better performance
than the existing CTand MCTon the four benchmark images
(Tsukuba, Venus, Teddy, and Cones). By using 16-2-2 pat-
terns with 16 sample points on four benchmark images, the
best performance with a 4.86% error percentage is obtained.
In other reference images (baby 3, bowling 2, cloth 2,
and dolls), the previous CT method achieved better stereo

Table 4 False matching ratio in Gaussian noise (nonocclusion
regions).

Methods 30 dB 25 dB 20 dB 15 dB 10 dB Avg.

CT (full 5 × 5) 9.55 13.12 30.28 43.09 73.41 33.89

MCT 11.34 15.82 35.89 47.98 74.58 37.12

GCT (12 edges) 8.46 11.62 23.12 32.00 63.46 27.73

GCT (16 edges) 7.92 10.16 20.46 28.39 60.21 25.42

SCT 8 points 8-2-2 8.00 10.47 22.25 32.36 63.56 27.32

8-3-1 9.35 11.30 22.34 30.94 61.20 27.02

8-4-1 9.62 11.76 22.66 30.68 60.08 26.96

SCT 16 points 16-2-1 7.07 9.51 20.89 29.86 60.81 25.62

16-2-2 6.83 9.06 19.74 28.63 59.67 24.78

16-2-3 8.32 10.83 23.59 34.23 65.59 28.51

16-2-4 8.22 10.99 23.78 33.50 65.58 28.41

16-2-5 8.43 11.45 24.62 34.97 66.11 29.11

16-2-6 7.04 9.23 20.52 30.15 62.41 25.87

16-2-7 7.50 9.85 20.93 30.68 62.65 26.32

16-3-1 7.39 9.13 19.40 27.58 59.60 24.62

16-4-1 8.26 10.46 20.87 28.73 59.66 25.59

SCT 24 points 24-2-1 6.48 8.67 19.34 28.79 61.99 25.05

24-3-1 8.30 10.12 20.53 28.79 59.86 25.52

Table 5 False matching ratio in impulse noise (nonocclusion
regions).

Methods 2% 5% 10% 20% Avg.

CT (full 5 × 5) 8.65 23.06 64.94 88.59 46.31

MCT 9.15 19.33 48.94 83.07 40.12

GCT (12 edges) 7.77 13.99 34.96 75.37 33.02

GCT (16 edges) 7.71 13.56 31.87 72.75 31.47

SCT 8 points 8-2-2 7.32 12.21 33.20 76.32 32.26

8-3-1 9.22 15.15 34.95 74.83 33.53

8-4-1 9.76 16.29 35.98 74.29 34.08

SCT 16 Points 16-2-1 6.28 10.23 28.90 73.87 29.82

16-2-2 5.97 9.64 27.01 72.93 28.88

16-2-3 7.78 13.49 35.88 77.68 33.70

16-2-4 7.86 13.39 36.18 77.61 33.76

16-2-5 7.82 13.81 37.17 77.95 34.18

16-2-6 6.33 11.14 30.44 75.22 30.78

16-2-7 7.14 11.78 32.20 75.73 31.71

16-3-1 7.17 12.37 30.78 72.85 30.79

16-4-1 8.43 14.91 34.68 73.97 32.99

SCT 24 points 24-2-1 5.90 10.28 29.35 74.89 30.10

24-3-1 8.19 13.48 31.66 73.12 31.61
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matching than MCT and GCT. In the proposed method, we
obtained the best performance (5.10%) by using the 24-2-1
scan pattern with 24 sample points and an edge length of 2.
In Table 3, best performance values according to the number
of sample points (8, 16 and 24) are indicated in bold font.

4.2 Stereo Matching Performance in Noise

To examine the noise robustness of the proposed method,
Gaussian noise and impulse noise are applied to the
Tsukuba, Venus, Teddy, and Cones images. Gaussian noise
with a signal-to-noise ratio (SNR) of 10, 15, 20, 25, and
30 dB and an impulse noise with the pixel-to-noise ratio
of 2, 5, 10, and 20% are applied, respectively.

Table 4 shows the average false matching ratio results
according to the amount of Gaussian noise (dB). If Gaussian
noise exists, the existing CT and MCT methods obtain unreli-
able disparity maps overall, regardless of the amount of noise.
Since Gaussian noise affects every pixel of the image evenly,
the proposed method obtains reliable disparity results to some
degree. When 16 sampling points are considered, the 16-3-1
scan pattern showed the best performance.

When Gaussian noise with a higher SNR (30, 25, and
20 dB) is added, the 24-2-1 scan pattern obtained the best

performance. In addition, if Gaussian noise with a lower
SNR (15 and 10 dB) is added, the 16-3-1 scan pattern
achieves the best performance. In other words, for the
case of relatively small noise, a more reliable disparity result
by a scan pattern with more sampling points is obtained. In
the image degraded much by Gaussian noise, we should
choose patterns, which are suitable to identify the brightness
distribution of the image.9 In the total average false matching
ratio results, the best performance is obtained by using a scan
pattern with 16 sampling points (16-3-1 and 16-2-2). In
Table 4, best performance values according to the number
of sample points (16 and 24) are indicated in bold font.

Table 5 shows the average false matching ratio in
Benchmark images (Tsukuba, Venus, Teddy, and Cones)
with impulse noise. When an impulse noise of 2%, 5%,
10% and 20% is added, the average false matching ratio
of GCT with an edge length of 16 is 31.47%, and that of
the proposed SCT with a 16-2-2 pattern is 28.88%. In the
case where impulse noise was applied in relatively small
amounts (2%, 5%, and 10%), SCT showed much better per-
formance than the other methods. When impulsive noise is
significantly increased (20%), the performance of GCT was
relatively better than that of the other methods. However,

Fig. 9 Comparison of false matching ratios in (a) Gaussian and (b) impulse noise.

Fig. 10 Average false matching ratios in Gaussian noise, impulse noise, and no noise.
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since the input stereo views are considerably degraded, it is
difficult to obtain reliable disparity results. The error ratio by
GCT is 72.75%. In Table 5, best performance values accord-
ing to both the number of sample points (16 and 24) and the
degree of impulse noise are indicated in bold font. Table 5
shows the best performance (24.78%) in average is obtained
by using a 16-2-2 scan pattern.

Figures 9 and 10 show the average false matching results
(Tables 4 and 5) by MCT, GCT, and proposed SCT when
Gaussian noise and impulse noise are applied. The perfor-
mance of CT and MCT is significantly affected by Gaussian
noise and impulse noise. On the contrary, the proposed SCT
shows relatively reliable stereo matching performance.
In conclusion, in the case of stereo view with no noise
(Benchmark images), the best performance is obtained by
using SCT with an edge length of 2. If Gaussian noise is
applied, we obtain the best reliable disparity map by using
SCT with an edge length of 3. These results are consistent
with the correlation distribution of the center pixel and
neighborhood in the matching window.9

In Tables 4 and 5, we have evaluated matching perfor-
mance both in Gaussian noise and in impulse noise with
several SNR conditions. From the evaluation results
(Tables 4 and 5), we determine the scan pattern with
16 sample points in a 5 × 5 matching window to cope with
practical situation, where the noise is generated in image
acquisition.

These results are consistent with the correlation distribu-
tion of the center pixel and neighborhood in the matching
window.9 In case a pixel belongs to a different surface
other than the surface on which the kernel pixel is, the encod-
ing result may be affected by local brightness distribution.
Figure 11 shows the disparity results in no noise and
Gaussian noise. In Fig. 11, the disparity value distribution
at surface discontinuities is indicated in the red rectangle.
Some foreground regions become thicker (about one pixel)
at surface discontinuities than ground truth depths. However,
Table 6 shows that SCTobtains more reliable initial disparity
results even at surface discontinuities than the existing CT.
Here, the first scan pattern with 24 sample points and an

Fig. 11 Disparity maps by [(a) and (c)] existing CT [(b) and (d)] and by SCT in no noise and Gaussian
noise (Table 6).
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edge length of 2 (24-2-1) is employed. The performances are
evaluated in the nonoccluded region “non-occ,” all (includ-
ing half-occluded) regions “all,” and regions near depth dis-
continuities “disc” region, respectively.

In conclusion, though matching results at surface discon-
tinuities may be affected by coplanarity of the central point
of the search window and the sample points, overall perfor-
mance by SCT is much more reliable than the existing CT.

5 Conclusion
This paper presents an improved CT method with a star-like
scan pattern. The brightness values of the sampling points
separated by a certain distance within the stereo matching
window are compared in a symmetrical manner. The draw-
back of the existing CT is that the computation complexity
increases: as the matching window size increases, the num-
ber of conversed bit-strings also increases. In the proposed
SCT, we can choose an appropriate scan pattern in accor-
dance with the processing speed, correlation distribution
of the subject image, and types of noise. From the experi-
ment results in Gaussian noise and impulse noise, the
proposed SCT achieved relatively more reliable matching
performance, even when using smaller sample points than
those of the existing methods. The proposed method is
also useful in other areas, such as feature matching and
tracking.
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Table 6 False matching ratio of initial disparity maps.

No noise

Gaussian
noise
(30 dB)

Impulse
noise (5%)

CT SCT CT SCT CT SCT

Tsukuba Non-occ 40.0 31.9 46.2 39.1 53.8 49.1

All 41.1 33.2 47.1 40.2 54.5 50.0

Disc 42.1 36.1 46.9 40.7 55.7 51.9

Venus Non-occ 41.3 29.8 52.9 43.1 61.8 55.2

All 42.2 31.0 53.7 44.0 62.4 56.0

Disc 45.0 37.3 52.5 44.5 62.7 58.8

Teddy Non-occ 50.3 38.8 61.2 51.1 72.9 69.9

All 55.4 45.1 65.1 56.1 75.6 72.9

Disc 56.6 50.3 64.3 57.4 75.5 73.3

Cones Non-occ 39.9 26.5 48.1 34.2 66.8 62.6

All 46.7 34.8 53.9 41.6 70.4 66.7

Disc 49.2 39.8 55.6 45.4 70.7 68.4

Avg. 45.8 36.2 54.0 44.8 65.2 61.2
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