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Abstract. We develop and study two approaches for the prediction of optical refraction effects
in the lower atmosphere. Refraction can cause apparent displacement or distortion of targets
when viewed by imaging systems or produce steering when propagating laser beams. Low-cost,
time-lapse camera systems were deployed at two locations in New Mexico to measure image
displacements of mountain ridge targets due to atmospheric refraction as a function of time.
Measurements for selected days were compared with image displacement predictions provided
by (1) a ray-tracing evaluation of numerical weather prediction data and (2) a machine learning
algorithm with measured meteorological values as inputs. The model approaches are described
and the target displacement prediction results for both were found to be consistent with the field
imagery in overall amplitude and phase. However, short time variations in the experimental
results were not captured by the predictions where sampling limitations and uncaptured localized
events were factors. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.8.081803]
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1 Introduction

The Earth’s atmosphere includes several phenomena that affect the propagation of light. While
scattering and absorption by clouds, fogs, and aerosols primarily affect the intensity of the radi-
ation received, the atmosphere can also affect the spatial resolution properties and the propa-
gation trajectory of light. For example, atmospheric turbulence causes image shimmering and
blurring and is stochastic in nature with fluctuations over short timescales (e.g., milliseconds).
Another phenomenon is atmospheric refraction where refractive index gradients can steer or
bend light rays. The index gradients are associated with changes in air density, which for optical
wavelengths is primarily a function of air temperature gradients. Atmospheric refraction tends
to cause more deterministic, larger-scale effects than turbulence and the effects can persist from
minutes to hours.1–4 The interest here is refraction in the lower atmosphere, which can cause
apparent displacement or distortion of objects when viewed by imaging systems or produce
steering when propagating laser beams.

For several years, we have been developing a low-cost, mobile camera system to study
atmospheric refraction at New Mexico State University. One system was recently deployed at
White Sands Missile Range (WSMR), NewMexico (NM), and a second system was set up at the
Jornada Experimental Range (JER), near Las Cruces, NM. Both systems collect time-lapse
images of distant natural targets, such as mountain ridges. A time-lapse system was previously
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used in Las Cruces, NewMexico, with a building as a target to study diurnal image displacement
due to refraction.5 A similar system in Dayton, Ohio, was used by Basu et al.4 to investigate the
temporal variations of the refractive index gradient. Time-lapse imagery has also been used to
investigate the apparent stretch and compression of objects due to atmospheric refraction lensing
effects6 and the approach has also been applied to the estimation of turbulence strength.7

The prediction of atmospheric refraction effects can be advantageous for many terrestrial
optical applications where prior knowledge of the light’s trajectory can improve the speed and
accuracy of pointing and tracking functions. The goal of this paper is to develop and evaluate two
different methods, numerical weather prediction (NWP) and machine learning (ML), for pre-
dicting image displacement due to atmospheric refraction. NWP is an attractive approach for
our application as it is deeply rooted in physics. However, it is computationally expensive, and
the results are subject to initial conditions and terrain characteristics. An alternative, more empir-
ical tactic is to apply an ML algorithm to build a predictive model based on local meteorological
data. In this paper, we describe our application of NWP and ML methods to image displacement
due to refraction and compare the results with time-lapse camera measurements.

2 Methods

2.1 Time-Lapse Image Collection and Processing

During January and February of 2018, we collected image data with a time-lapse camera located
at WSMR that was pointed generally north at a natural desert landscape and a mountain range
(Oscura Mountains) on the horizon. Another camera was set up at JER and was pointed west to
image a mountain range (Dona AnaMountains) and a desert valley. This system began collecting
images in May 2018 and is still operating. The mountain ridgelines observed were at distances
of about 20 km for JER and over 100 km for WSMR.

The battery-powered camera systems are easily transportable and consist of a weatherproof
case on a tripod that contains a Nikon D5200 camera operated in a time-lapse mode. A zoom lens
is set at its maximum focal length of 400 mm for the WSMR measurements and at 300 mm for
the JER observations. The camera is typically programmed to collect images in 5-min intervals
with a fixed 5.6 f-number and automatic shutter speed. Example frames of the mountain targets
and valleys for the WSMR and JER experiments are shown in Fig. 1. The rectangles indicate
areas in the images that were cropped and used for the refraction analysis in this paper.

Local weather has a significant effect on the vertical temperature gradients that are primarily
responsible for the atmospheric refraction effects. The weather variables of interest in our study
include temperature, humidity, pressure, and solar radiation. For the WSMR experiment, online
metrological data were downloaded from a weather station near the target mountain. A Davis
Vantage Vue brand weather station next to the camera was utilized for the JER experiment. These
measurements are interpolated in time to align with the time-lapse image frames.

Fig. 1 Example time-lapse image frames for (a) WSMR experiment and (b) JER experiment.
Rectangles indicate the mountain ridge areas of interest that are used for the analysis in this
paper.
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The Kanade–Lucas–Tomasi point-tracking algorithm8,9 is implemented to measure the ap-
parent motion of the mountain ridges in the images.10 The general steps of the data-processing
approach are depicted in Fig. 2. An area containing the far-field target in each frame is cropped
and the N “best” features in the subframe are determined by a threshold setting. The results are
stored in a feature list in descending order of “goodness.” Then, the algorithm tracks these fea-
tures in consecutive frames. A near-field object reference close to the camera is also selected and
point-tracking of this feature is applied in the analysis to remove shifts in the far-field images that
are due to camera platform motion. Figure 3(a) shows some selected points associated with the
cropped image of the mountain peak in the JER experiment, and Fig. 3(b) shows the positions of
these points in the next consecutive frame. The point-tracking algorithm on average selects the
same points in each frame. The vertical positions of the multiple points are averaged to give
a measurement of the ridge position.

After point-tracking, the near-field average pixel coordinates are subtracted from the far-field
coordinates frame by frame to obtain the apparent position of the far-field target. Displacement
of the target’s apparent position from frame to frame is attributed to changes in atmospheric
refraction. The most significant shifts are found to occur in the vertical direction.

2.2 Numerical Weather Prediction and Ray Tracing

NWP is a discipline where governing equations and parameterizations that describe fluid flow
and other physical processes are applied to current (or previous) weather conditions to provide
a future forecast. For our purposes, the model results can be used to predict the vertical structure
of the refractive index in the atmosphere. However, an extension of the established models is
required to provide higher spatial resolution along our paths of interest.11,12 In this section, we
describe our approach for using refractive index gradient data generated by NWP and the appli-
cation of ray tracing to determine corresponding image shifts. The results of the approach are
compared with time-lapse measurements in Sec. 3. The numerical weather model (called the
Weather Research and Forecasting – WRF model) uses initial and boundary conditions from
a global-scale reanalysis data set (called ERA-5) and topographical effects to generate the refrac-
tive gradient data for a particular location and time range corresponding to our field measure-
ments.12 Figure 4 illustrates the refractive index gradient ½dnðhÞ∕dh� model results for the
WSMR experiment time-lapse imaging path on the morning of February 5, 2018, where
nðhÞ is the vertical profile of refraction index as a function of height h. The gradient values are
presented as a function of altitude relative to mean sea level and a function of distance along the
propagation path. In Fig. 4, the camera site is on the left and the mountain ridge is on the right.

Fig. 2 Image processing block diagram.

Fig. 3 Selected tracking points for the JER mountain peak target: (a) initial frame and (b) the
following frame.
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Figure 5 shows the NWP model result for the JER experiment on the morning of July 18,
2018. The camera site is on the left and the mountain ridge is to the right. The target correspond-
ing to this result is the rectangular area indicated at the lower right side of the mountain ridge in
Fig. 1(b). In fact, the actual mountain peak in Fig. 1(b) is a narrow ridge that is not adequately
resolved by the current NWP model spatial resolution (∼1 km). Thus, NWP results are not avail-
able for the mountain peak. However, the model result shown in Fig. 5 allows us to examine the
shift of a lower portion of the mountain ridge at about 1400 m in elevation where the viewing
path is nearly horizontal across the basin.

Ray tracing through the gradient profiles is used to determine the image displacements
predicted by the model. Ray-tracing techniques are often applied for refraction analysis over
near-ground horizontal paths assuming diffraction effects are not significant.3,13 The NWP data
essentially consist of “blocks” of constant refractive index gradient, as indicated in Figs. 4 and 5.
Rather than using a conventional linear ray-tracing algorithm that requires subsampling the
blocks to provide accurate trajectories, we apply a second-order ray tracer14 where the linear
ray transfer equation is expanded with a quadratic correction term to model the curved ray tra-
jectory within each block. This approach requires only one tracing step for each data block and is
significantly faster than a linear ray trace approach with subsampling. A summary of this method
is now presented.

Consider a two-dimensional form of the eikonal equation describing the ray trajectory in
an inhomogeneous media:15

Fig. 4 Example refractive index gradient results from NWP for theWSMR experiment on February
5, 2018, at 7:50 am MST. The white area is the ground. The time-lapse camera is located in the
basin on the left and a peak in the Oscura Mountains is on the right. Example ray-tracing paths
are shown between the target position on the peak and the area near the camera.

Fig. 5 Example refractive index gradient results from NWP for the JER experiment on July 18,
2018, at 7:10 am MDT. Example ray paths are shown between the camera (left) and the target
feature (right), which is a lower part the mountain ridge.
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EQ-TARGET;temp:intralink-;e001;116;735

d2h
dx2

¼ 1

nðhÞ
dnðhÞ
dh

; (1)

where h is the height and x is the horizontal distance. This expression assumes horizontal para-
xial propagation, and the refractive index gradient is vertical. Each block in the NWP data has a
constant vertical gradient value indicated by κ ¼ dn∕dh and, assuming nðhÞ ≈ 1, the solution to
Eq. (1) for the ray vertical position within a block can be given as

EQ-TARGET;temp:intralink-;e002;116;651hðxÞ ¼ x2κ
2

þ θ0xþ h0; (2)

where θ0 and h0 are the initial ray angle and height, respectively. Taking the derivative of Eq. (2)
with respect to x gives the ray trajectory angle as a function of distance,

EQ-TARGET;temp:intralink-;e003;116;584θðxÞ ¼ xκ þ θ0: (3)

With respect to the block boundaries in the NWP index gradient data, Eqs. (2) and (3) are
used in succession to transfer the ray height between one boundary and the next and then provide
the bending of the ray angle for the next block. Iteratively, the equations become:

EQ-TARGET;temp:intralink-;e004;116;516hj ¼
Δx2κj−1

2
þ θj−1Δxþ hj−1; (4)

and

EQ-TARGET;temp:intralink-;e005;116;461θj ¼ Δxκj−1 þ θj−1; (5)

where Δx is the distance between adjacent blocks (∼1 km for our NWP data) and j is an index
that identifies the different blocks.

Example ray trajectories generated by the tracing approach are illustrated in Figs. 4 and 5.
Rays (200 rays for WSMR and 100 rays for JER) are launched from the image target (mountain
ridge elevation of ∼2200 m for WSMR and the basin edge elevation of ∼1415 m for JER) for
a range of initial angles (−0.1 to −8 mrad for WSMR and −1 to þ1 mrad for JER). The ray
trajectories are traced through the model gradients until they reach the ground near the camera.
The specific ray that strikes the ground at the camera location is identified and a line is back-
projected at the ray arrival angle. The height of this line at the target plane indicates the apparent
target position as seen by the camera. The apparent positions are calculated for successive model
frames and the relative shifts are determined. For the results presented here, NWP results were
computed for 10-min intervals, and the ray-tracing procedure was applied. We note that it is also
possible to trace the rays from the camera position toward the target position.

2.3 Machine Learning Predictions

In this section, we describe an ML approach to predict image displacement due to atmospheric
refraction based on a set of measured metrological values. The input variables we use for pre-
diction are temperature (T), humidity (H), pressure (P), and solar radiation (S). The predicted
output is the image displacement (ŷ) due to refraction. Other available meteorological data, such
as wind speed, were also applied as test inputs to the ML model, but we found that these alter-
native parameters had little influence on the prediction results. The weather station for the JER
experiment provides measurements of these variables at 15-min intervals. In addition, we utilize
other local measurements available online at hourly intervals. Prior to input to the algorithm, the
measurement values are normalized to the range of (0,1) by dividing each value by the maximum
value observed. Our ML prediction process follows the conventional approach of splitting the
image displacement and meteorological data into three sets: training, validation, and testing. Our
prediction is a comparison of the ML results with the testing data set.
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The ML approach is based on linear regression and we assumed a model of the form:
EQ-TARGET;temp:intralink-;e006;116;723

ŷðT;H; P; S;wÞ ¼ w1 þ w2T þ w3T2 þ w4H þ w5H2 þ w6Pþ w7P2 þ w8Sþ w9S2

þ w10TH þ w11TPþ w12TSþ w13HPþ w14HSþ w15PS; (6)

where w ¼ ½w1: : : : : : : : : : : : : : : w15�T are the coefficient weights, and linear, square, and pair-
wise products of the meteorological parameters are used as nonlinear kernel functions. The
choice of kernel functions was based on trial-and-error experimentation. The coefficient values
w are determined by fitting Eq. (6) to the training data by minimizing an error function that
measures the misfit between ŷ and the measured values y ¼ ½y1: : : : : : : : : : : : yN �T as a function
of w. Our choice of error function is the regularized squared error:16,17

EQ-TARGET;temp:intralink-;e007;116;600EðwÞ ¼ 1

2

XN
n¼1

½ŷðTn;Hn; Pn; Sn;wÞ − yn�2 þ
λ

2
kwk2: (7)

The term ðλ∕2Þkwk2 is a penalty (regularization) term to avoid overfitting where the parameter λ
is an input to the model that governs the relative importance of the regularization term compared
with the squared error term.

GivenN data points ðTn;Hn; Pn; Sn; ynÞ, the coefficients w that minimize the cost function in
Eq. (7) are obtained in closed form by differentiating EðwÞ with respect to w, setting the result to
zero, and solving for w. This produces the following well-known result:17

EQ-TARGET;temp:intralink-;e008;116;478w ¼ ðλIþΦHΦÞ−1ΦHy (8)

where I is the identity matrix and

EQ-TARGET;temp:intralink-;e009;116;434Φ¼
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1
CCCCCCCCA
:

(9)

As shown in Eq. (9), the input observations are arranged as row vectors. The algorithm steps
involve constructing the matrix Φ, obtaining the vector y; and applying Eq. (8) to compute the
weights w.

Referring to Eq. (7), in order to generate a predictive model that generalizes well for new data
input, the selection of the value of λ needs to strike a balance between overfitting and underfitting
of the training data. A larger value of λ tends toward a “simpler” fit but there is more likelihood of
underfitting the data where some of the dominant trends are not captured. On the other hand, a
low value of λ provides a more “complex” fit but there is more likelihood of overfitting the data
where specific noise events are captured as trends. We use a tuning approach to determine the
value of λwhere a search over a range of values is performed. For each λ trial, the model is first fit
to the training data set. This model realization is next applied to the validation data, and finally
the mean squared error (MSE) between the model and measured validation data displacement
result is calculated. The value of λ that provides the lowest MSE is selected and used for the next
step of prediction comparisons using the testing data.

Finally, we mention that for the JER experiment, the model form in Eq. (6) was used but we
added a fifth binary variable (D) that takes either a value of 1 if the sky is “clear” or 0 if it is
“cloudy.” The value of D is determined from a visual analysis of the sky conditions in the time-
lapse imagery. If the sky appears to be cloudy in more than 50% of the frames during the daytime
hours, then D is set to 0, otherwise it is set to 1. Although this is an unrefined measurement
and a simple binary parameter, we found the approach improved the accuracy of the model for
varying sky conditions.
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3 Results

NWP results were computed for 10-min intervals and the ray-tracing procedure was applied to
determine the target shifts. The shift results were interpolated in time to align with the time-lapse
image frames. Figure 6 shows comparative results for the WSMR experiment on February 5,
2018, as a function of time-of-day where the red curve is the apparent shift (in radians) of the
mountain ridge as derived from ray tracing the NWP data. The black curve is the predicted shift
by the ML algorithm where, prior to the date shown, we trained the algorithm on 4 days of
displacement and meteorological data (500 data points) and tuned the result on 2 days of val-
idation data. The search range for λ was (0, 40) and, for these results, λ was found to be 2. The
blue curve is the shift measured in the actual camera frames. Measurements are only available for
the daytime hours as the ridge is not clearly distinguishable by the camera at night.

The general downward drift throughout the daytime hours, as shown in Fig. 6, is an effect we
commonly observe in clear weather and this corresponds to a slow reduction in the average
refractive index gradient of the atmosphere along our line of sight. The NWP ray trace and the
ML model results agree well in amplitude and phase with the image shift results from the camera
measurements, although there are differences in the short-time variations. By manually evalu-
ating some of the time-lapse images, we verified that the point tracking results appear to be
accurate, and so we believe the short-time variations are due to the atmosphere. These excursions
probably represent turbulent fluctuations in the refractive index that are not completely captured
by the NWP and it is not possible to predict these short time variations by the ML model due to
the differences in sampling where the time intervals for the meteorological data (1 h) are much
longer than the time-lapse intervals (5 min). The meteorological measurements were also not
collected directly in the imaging path, which could contribute to further differences in the mea-
surements and ML results.

Figure 7 presents example shift results for the lower part of the ridge in the JER experiment
on July 18, 2018. Details of the data-processing approach are the same as described for the
WSMR results (Fig. 6). For this result, the training and validation data sets consisted of 2 days
each and λ was found to be 0.01. Like the WSMR results, the NWP ray trace and ML predictions
in this case demonstrate the same overall amplitude and phase behavior as the time-lapse mea-
surements, but the short time variations are not captured.

Figure 8 shows the measurement and ML prediction results for the mountain peak in the JER
experiment [Fig. 1(b)] over a period of 6 days from January 20, 2019 to January 25, 2019. As
discussed in Sec. 2.2, NWP results are not available for this peak target. The 4-day training set in

Fig. 6 Apparent shift of the mountain peak as a function of local time for the WSMR experiment
on February 2018: time-lapse image measurement (blue), NWP + ray-tracing prediction (red), and
the ML model prediction (black).
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this case included different weather conditions (sunny, very cloudy, and mixtures of sunny and
cloudy conditions). The value of λ was found to be 5. The weather was sunny and clear for all the
days shown except for January 22 when the sky was cloudy. The results show that the ML model
prediction for different weather conditions and over different path angles is consistent with the
general trends of the measurements. We note that the cloudy-day result shows less of the daily
downward progression of the peak position. Note that the overall shifts for these JER mountain
peak results are significantly smaller than the results for WSMR (Fig. 6). This is likely because
the WSMR ridgeline is much further from the camera (>100 km) than the ridgeline for
JER (∼20 km).

We end this section with a few comments about the range of values found for the regulari-
zation parameter λ. Generally, we expect a smaller value of λ (less regularization) to be found

Fig. 7 Apparent shift of the lower mountain ridge as a function of local time for the JER experiment
on July 18, 2018: time-lapse image measurement (blue), NWP + ray-tracing prediction (red). and
the ML model prediction (black).

Fig. 8 Apparent shift of the mountain peak as a function of local time for the JER experiment
for January 20 to 25, 2019, daytime: time-lapse image measurement (blue) and the ML model
prediction (black).
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when the short time variation amplitudes are relatively smaller than the mean trend deviations
within the training and validation data. However, the value of λ selected through our tuning
approach appears to be sensitive to other factors such as the shape of the mean trend curve.
Also, because we trained and validated the model on relatively small data sets, even adding
a few days of data or including a few unusual shift results can affect the λ value. It is important
to note that although the tuning process identifies a particular λ value, we found through addi-
tional testing that there is a range that typically produces nearly the same prediction result. For
example, similar ML results to that shown in Fig. 8 can be produced with λ values ranging from
0.001 to about 10.

4 Conclusions

We found that NWP along with a ray-tracing technique can be used for prediction of image
displacement effects due to atmospheric refraction. The ray-tracing approach that we applied
to determine the effect of the gradients produced by the model was straightforward to implement
and provided credible results. The model results of target displacement were consistent with field
imagery in amplitude and overall trend. However, the model could not predict some of the short
time variations in the field measurements, which may be due to localized events that are not
completely captured by the numerical model grid or simulation process. As an alternative to
NWP, we explored the use of an ML algorithm to build a predictive model based on meteoro-
logical data collected near the camera location. We found that our ML model was successful in
making predictions over different weather conditions. Similar to the NWP result, the ML model
prediction could not follow the short time excursions of the field results. In this case, the slow
sample rate of the meteorological data compared to the time-lapse image frame rate is an aggra-
vating factor. We are now working to determine if the ML approach can be extended to encom-
pass different seasons as well as different weather conditions. We also are investigating our
ability to apply image point-tracking and ML prediction to detect geometrical distortions of
the target image rather than just the apparent target shift.
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