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Introduction

uccessive interference cancellation �SIC� is a multiuser
etection �MUD� technique,1 where MUD is typically em-
loyed in optical code-division multiple access �CDMA�
ommunication systems. The problem of demodulating a
pecific user signal is complicated, as the other user signals
xist in the same bandwidth.2 In conventional receivers, the
resence of other signals is treated as noise. In MUD algo-
ithms, this noise is usually referred to as multiple access
nterference �MAI�, and it is shown that this type of noise
imits direct sequence CDMA �DS-CDMA� system capac-
ty. Any technique that can suppress �cancel� MAI will in-
rease the system’s capacity.

In recent years, MUD has become an attractive alterna-
ive to conventional spread spectrum detectors. It is well
nown that optimum MUD has a much better theoretical
erformance than conventional detection.3,4 However, the
ajority of multiuser detectors have a very high complexity

nd, consequently, suboptimum structures have been
resented.3 In this work, we propose and analyze a SIC
cheme using an optical orthogonal code �OOC� with a
091-3286/2008/$25.00 © 2008 SPIE
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different power for each user, that takes into account the
impact of imperfect interference cancellation.

2 Principle of the SIC Scheme
The basic idea of this scheme is simple, it detects and de-
modulates the strongest user signal currently present in the
overall received signal. The strongest user is not known
beforehand, but it is detected from the strength of the cor-
relations of each of the user’s chip sequences with the re-
ceived signal. The correlation values can be found from the
bank of the correlator. Figure 1 shows the block diagram of
Fig. 1 The SIC receiver block diagram.
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he SIC receiver. After this user has been detected and de-
odulated, its contribution to the original signal is regen-

rated and subtracted from the overall received signal to get
new received signal.
Then we can conclude that the algorithm repeats, ex-

luding the strongest user from the new received signal,
hich, composed of one user signal less, is detected, de-
odulated, regenerated, and subtracted.5,6 At the end, we

an say that the strongest received signals are subtracted
rom the original signal one by one until all users have been
etected and demodulated.

Figure 2 shows the flowchart of this process. In a gen-
ral algorithm, the successive cancellations are carried out
s follows:

1. Recognize the strongest signal �the one with maxi-
mum correlation value�.

2. Decode the strongest signal.
3. Regenerate the strongest signal using its chip se-

quence.
4. Cancel the strongest user.
5. Repeat until all users are decoded or a permissible

number of cancellations are achieved.

SIC System Equations
n our system, we consider an incoherent, DS optical
DMA �DS-OCDMA� system. The system consists of N
sers, labeled by n, where n=1,2 . . .N. On-off keying
OOK� modulation is used to transmit binary data via an
ptical channel for each user with a specific sequence code
or each. In particular, OOC will be used as the signature
odes7 in this paper. It is a family of �0,1� sequences of
ength F and weight W that satisfy the requirement that �a,
c are equal to 1. With good auto- and cross-correlation, it
nables the effective detection of the desired signal. The
’th user spreading code can be represented as

n�t� = �
k=−�

�

ck,nPTe
�t − kTc� . �1�

ere, ck,n� �0,1�, Tc refers to the chip duration, and P��t�
s the optical rectangular pulse in �0,�� with unit amplitude.

Fig. 2 Flow chart of interference cancellation schemes.
e consider an ideal synchronous case, that is �k=0. It has

ptical Engineering 035006-
been shown in Refs. 7 and 8 that the synchronous case is
the worst case. Let the binary data of the n’th user bn�t� be
given by

bn�t� = �
i=−�

�

bi,nPT�t − iT� , �2�

where bi,n� �0,1� and T is the bit duration. Then we can
say that the intensity signal of the n’th user is Sn�t�
= Pnbn�t�cn�t�, where Pn is the signal strength of the n’th
user. Therefore, on the receiver side, we can get the signal
r�t� to be the sum of the user’s signals as follows:

r�t� = �
n=1

N

Pnbn�t − �n��
i=1

F

cn
i �t − �n� + n�t� . �3�

Here, �n is the relative delay, and we have considered an
ideal synchronous case, �n=0.

In a general case, we look for the bit error probability,
which can be written as follows:

Pb =
1

2
P��E/0� + �E/1�� . �4�

As we mentioned previously, the main function of this
system is based on maximum cross correlation between the
users, and the effect of the n’th user’s signal on the first
receiver is denoted by In

�1�. We define the cross correlation
between the i’th user and the n’th user as

In,i��n,i� =
1

T�	0

T

cn�t − �n,i� � ci�t�dt
 , �5�

where �n,i is the time delay of the n’th user relative, to the
i’th user.

Hence, the first decision variable Z1 at time T, can be
written as

Z1 =
1

T
	

0

T

r�t� � c1�t − �1� � dt �6�

=
1

T
	

0

T ��
n=1

N

Pnbn�t − �n��
i=1

F

cn
i �t − �n�
�

i=1

F

c1
i �t − �n� � dt .

�7�

Then after the decoding and integration, we can get the
following:

Z1 =
P1b�1�W

F
+ l1, �8�

where the first term refers to the desired signal term of the
first user, and the second term can be defined as

l1 =
1

F
�
n=2

N

PnbnIn,1��n,1� + n�t� . �9�

It is assumed that users are detected in the order of de-

creasing signal strength such that user 1 will always corre-

March 2008/Vol. 47�3�2
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pond to the strongest user. Once this user has been de-
ected and demodulated, the result is used to regenerate the
ser signal. Then the regenerated signal is subtracted from
he original signal. The correlation value is used for cancel-
ation

1�t� = r�t� − Z1 � c1�t − �1� �10�

=�
n=2

N

Pnbn�t − �n� � cn�t − �n� + n�t� − l1 � c1�t − �1� .

�11�

ow for the second strongest user, we have �N−2� inter-
ering signals and some noise due to imperfect cancellation.
n following decision statistic for user 2 after canceling
ser 1, after decoding and integration we got

2 =
P2b�2�W

F
+ l2, �12�

nd l2 is defined as

2 =
1

F��
n=3

N

PnbnIn,2��n,2� − l1I1,2��1,2�
 + n�t� . �13�

n general, for the j’th, cancellations, we get

j�t� = rj−1�t� − Zj � cj�t − � j� . �14�

ere, Zj refers to the correlation after the j’th cancellation,

Fig. 3 The SNR after cancellation und
hen the decision variable for the �j+1�’th user is given by

ptical Engineering 035006-
Zj+1 =
Pj+1b�j+1�W

F
+ lj+1, �15�

where lj+1 are given by

lj+1 =
1

F� �
n=j+2

N

PnbnIn,j+1��n,j+1� − �
i=1

j

liIi,i+1��i,i+1�
 + n�t� .

�16�

In the above expression, the first term is MAI of the uncan-
celled users; second term is cumulative noise from imper-
fect cancellation, and the third term is the thermal noise.

4 SIC Interference Analysis
In this section, we consider the effect of both MAI and
thermal noise; other sources of noise are neglected. Related
to MAI, we can define the variance of lj+1 conditioned on
Pn as follows:

�� j+1
2 �−MAI =

1

F� �
n=j+2

N

Pn
2bn

2 var�In,j+1��n,j+1��

+ �
i=1

j

�i
2 var�Ii,i+1��i,i+1��
 . �17�

The term In,j+1 is a random variable that depends on the
random signature sequences. Central to the analysis is the
variance of this term �for the case of n� j+1�. For the
synchronous case, where �n is zero for all n, the variance of

9,10

erent power OOC code �341, 5, 1, 1�.
er diff
cross correlation of Eq. �5� is given by

March 2008/Vol. 47�3�3
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ar�In,j+1� �
1

F
. �18�

ubstituting �18� into �17�, we get the variance of the noise
n the decision variable

� j+1
2 �−MAI =

1

F2� �
n=j+2

N

Pn
2 + �

i=1

j

�i
2
 . �19�

urthermore, we consider the effect of thermal noise

th = 4KbTn
B

RL
, �20�

here B is the noise-equivalent electrical bandwidth of the
eceiver in Hertz; Kb is Boltzmann’s constant in joules per
elvin=1.38�10−23 J /K; Tn is absolute receiver noise

emperature in Kelvin; and Rl, is the receiver load resistor
n ohms.

The responsivity of the PDs is given by R=�e /hvc.
ere, � is the quantum efficiency, e is the electron’s charge,
is Plank’s constant, and vc is the central frequency of the

riginal broadband optical pulse.
Then the signal-to-noise ratio �SNR� function of Pn is

NRj+1 =

R2Pj+1
2 W2

F2

R2

F2 � �
n=j+2

N

Pn
2 + �

i=1

j

�2i
 + 4KbTn
B

RL

. �21�

he bit error rate �BER� is given by

ERj+1 = Q�SNRj+1�1/2. �22�

Performance Results and Discussion
n this section, we present the numerical results of SNR and
ER performance of the proposed SIC scheme. The typical
arameters used in the calculations are given in Table 1. In
his analysis, we assume that each user had different power.
igure 3 shows the relationships between SNR and the
umber of users being cancelled, at various stages of can-
ellation using OOC11 under different powers from −30 to
10 dBm. As we can see in the figure below, the SNR of

he users increases at each stage of the cancellation process,
nd hence the SNR decreases when the number of users
ncreased. In this analysis, we take in to account the possi-
ilities of errors in previous cancellations.

Figure 4 shows a comparison of the BER under different
OC code parameters, namely different weights and

engths. We can see from the figure that an OOC with pa-
ameters �631, 6, 1, 1� gives a lower BER than that using
341, 5, 1, 1�. However, when using �1365, 5, 1, 1� or �341,
, 1, 1�, we get almost the same results. We conclude from
he figure that the SIC system performance depends on the
ode weight rather than the code length. As we can see in
he figure, BER improves at each stage of the cancellation
rocess, and we note that MAI becomes increasingly accu-
ate as the number of users is increased. In fact, the BER

erformance improves as the code weight increases.

ptical Engineering 035006-
In Fig. 5, we have compared the results of the system
with and without cancellation for the number of active us-
ers. The BER from the obtained analysis shows that the
cancellation scheme has better performance than the con-
ventional scheme for a large number of users. However, if
there is a small number of users, the system without can-
cellation performs better. This results from the effective
power. Indeed, for the system without cancellation, the
BER is independent of the effective power. However, the
BER of our proposed system depends on the effective
power as it is clear in Eq. �21�. In our analysis, we have
used different values of effective power for all users rang-
ing from −30 to −10 dBm. It can be seen from Fig. 5 that,
at an effective power of −30 dBm, the system performance
with cancellation is not good; on the other hand, when the
effective power is increased to −10 dBm, the system per-
formance gives good results compared to the system with-
out cancellation.

6 Conclusion
In this paper, a new proposal for interference cancellation
of MUD has been reviewed. This new method is called
successive interference cancellation �SIC�, and this scheme
is a simple, attractive technique to improve system capac-
ity. In this work, we have obviously analyzed the perfor-
mance of SIC. It is found from the results that the proposal
SIC receiver effectively suppresses MAI and significantly
improves BER performance at each stage of the cancella-
tion process. However, the major problem with the SIC
scheme is the accumulated cancellation noise; therefore,
interference cancellation is not a perfect solution, and the
residual cancellation errors propagate because of the suc-
cessive nature of the decoding. In fact, these residual errors
are the principal capacity-limiting issue in SIC systems.
However, the system shows much lower BER performance
with SIC cancellation compared with one without cancella-

Table 1 Typical parameters in the system.

Parameter Value

Operating frequency 193.1 THz

PD quantum efficiency 0.6

Receiver noise temperature 300 K

Receiver load resistor 1030 Ω

Noise-equivalent electrical bandwidth 80 MHz

Effective received power −30 to −10 dBm

OOC �1365,5,1,1�

�631, 6, 1, 1�

�341, 5, 1, 1�

�63, 3, 1, 1�
tion.

March 2008/Vol. 47�3�4
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Fig. 4 Comparison of BER among different OOC codes.
Fig. 5 Comparison of BER performance.
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