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ABSTRACT. Significance: Deep learning enables label-free all-optical biopsies and automated
tissue classification. Endoscopic systems provide intraoperative diagnostics to deep
tissue and speed up treatment without harmful tissue removal. However, conven-
tional multi-core fiber (MCF) endoscopes suffer from low resolution and artifacts,
which hinder tumor diagnostics.

Aim: We introduce a method to enable unpixelated, high-resolution tumor imaging
through a given MCF with a diameter of around 0.65 mm and arbitrary core arrange-
ment and inhomogeneous transmissivity.

Approach: Image reconstruction is based on deep learning and the digital twin
concept of the single-reference-based simulation with inhomogeneous optical prop-
erties of MCF and transfer learning on a small experimental dataset of biological
tissue. The reference provided physical information about the MCF during the train-
ing processes.

Results: For the simulated data, hallucination caused by the MCF inhomogeneity
was eliminated, and the averaged peak signal-to-noise ratio and structural similarity
were increased from 11.2 dB and 0.20 to 23.4 dB and 0.74, respectively. By transfer
learning, the metrics of independent test images experimentally acquired on
glioblastoma tissue ex vivo can reach up to 31.6 dB and 0.97 with 14 fps computing
speed.

Conclusions: With the proposed approach, a single reference image was required
in the pre-training stage and laborious acquisition of training data was bypassed.
Validation on glioblastoma cryosections with transfer learning on only 50 image pairs
showed the capability for high-resolution deep tissue retrieval and high clinical
feasibility.
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1 Introduction
Minimally invasive imaging is important to optogenetics1–3 and cancer diagnostics4–6 since it
minimizes the damage to living tissues. Conventional brain cancer diagnosis requires surgical
biopsy and resection, histological staining, and observation. The procedure is time-consuming,
leading to treatment delay, and has no visual feedback during the surgery, which brings additional
risk and complications.7–9 Label-free imaging techniques like autofluorescence4–6,10–12 and
Raman spectroscopy12–16 enable locating target tissue in situ for in vivo tumor diagnosis,17–19

where high spatial resolution plays a critical role. Multi-core fibers (MCFs) are often used in
endoscopy since they are flexible and ultra-thin (diameter < 1 mm) and provide an efficient way
to illuminate and detect in real-time,20–24 which allows minimal invasive access directly to deep
tissue for intraoperative imaging. However, the fiber structure leads to honeycomb artifacts,
which limit spatial resolution to the core-to-core spacing. Many approaches were proposed
to enhance the resolution of fiber endoscopy, including physical methods,25–28 computational
methods,29–33 and deep neural networks (DNNs).34–40 DNNs are advantageous because of their
real-time capability, and no sophisticated optical systems are required.41

Convolutional neural networks (CNNs) greatly promote the development of image-based
medical diagnosis in the last decade, e.g., surgical navigation42 and cancer recognition.43

Based on amounts of training data, CNNs can learn to extract, summarize, and reconstruct his-
tomorphological features of tissue images using convolutional operations. In previous work, we
proposed a near-video rate resolution enhancement method for MCF imaging, which enables all
optical biopsies with minimal invasiveness.34 The learning-based approach inverts the image
transmission properties for a given MCF-based endoscope. However, in reality, MCFs differ
in core arrangement and transmissivity since glass fibers are not perfectly manufactured, leading
to random and inhomogeneous optical properties. As a result, the DNN-based reconstruction
requires experimental acquisition of an MCF-specific dataset, which is laborious and not easily
transferable to clinics. Kim et al.38 proposed a reconstruction method for MCFs with random core
arrangement, but the distortion resulting from inhomogeneous transmissivity and limited clinical
data for training remains unsolved.

Here, we present a streamlined process via a digital twin for MCF image retrieval with very
few measurements of biological samples, as demonstrated in Fig. 1. In the pre-training, a single
reference image of MCF was captured under incoherent widefield illumination, which offers
physics priors of core arrangement and transmission for the data simulation. The reconstruction
network was then pre-trained to remove honeycomb artifacts and enhance the image resolution.
Subsequently, transfer learning was performed on 50 measured image pairs of brain tumor
cryosections. Based on that, we demonstrate high-resolution MCF image retrieval on limited
medical data, which is transferable in clinical practice and can significantly improve image-based
tumor classification,34 for instance.

2 Methods

2.1 Reconstruction Network
A cascaded network consisting of a U-Net44 for depixelation and an enhanced deep super-
resolution network (EDSR)45 for super-resolution was used. In previous work, this architecture
was shown to enhance image resolution and benefit tumor classification. To make use of the
physics priors of MCF, an extra input channel was added to the network transmissivity correction
of MCF.

2.2 Simulated Dataset
The MCF dataset was simulated with the detected core arrangement and transmission of a ran-
domly selected MCF (Fujikura FIGH-30-650S) based on a simulator.46 In total, 5,000 images
from ImageNet47 were used for training, 100 for validation, and 400 for testing.

2.3 MCF Measurements
The reference image of the MCF used for the simulation was captured under incoherent widefield
illumination, which provides core arrangement and transmission information for inhomogeneity
correction and high-resolution retrieval. For validation, the autofluorescence images of
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cryosections of glioblastoma tissue prepared with a standard protocol5 were imaged through
the same MCF as the reference. The samples were illuminated and imaged through the MCF
using a 473 nm laser and camera CAM1 to emulate an endoscopic system, see Fig. 3(a).
Autofluorescence was detected between 500 and 550 nm. High-resolution ground truth (GT)
data was captured simultaneously with camera CAM2.

3 Results
The U-Net + EDSR model trained on the simulated MCF images of ImageNet was tested on
two instances, paper tissue and resolution chart. Although these test image types had not been
seen by the model during the training, the test results in Figs. 2(f) and 2(o) demonstrate good
generalizability of the U-Net + EDSR. The reconstruction of a paper tissue image using the
reference-based approach is shown in Fig. 2(h). For comparison, we present the results by the
no-reference-based approach, namely the U-Net + EDSR with a single input, in Figs. 2(f) and
2(g). When an image through an inhomogeneous MCF was tested with the network trained on a
homogeneous MCF dataset, distortion and hallucination appeared [see Fig. 2(g)]. The network
did not learn how to correct the transmission inhomogeneity from the training data, consequently,
the image quality of the reconstruction degraded significantly. In contrast, the reference-based
approach learned priors containing MCF transmission information from the MCF-specific refer-
ence, where the average peak-to-noise ratio (PSNR) and structural similarity (SSIM) values of
the test images are increased from 11.2 dB and 0.20 to 23.4 dB and 0.74, respectively, as shown
in Figs. 2(l) and 2(m). The reconstruction of the resolution chart using different methods in
Figs. 2(o)–2(q) demonstrates that the Group 7 Element 6 can be resolved by the reconstruction
network. The cross sections in Fig. 2(r) show the imaging contrast.

To further verify the retrieval of biological samples, the MCF was subsequently used for
imaging cryosections of glioblastoma tissue. We captured the autofluorescence images of
glioblastoma using the setup in Fig. 3(a), which combines a MCF endoscope and a widefield
fluorescence microscope to capture both GT and measurement data, simultaneously. We used the
MCF in this manner to improve the image reconstruction quality by transfer learning and vali-
dated the use of the proposed digital twin ex vivo for the application as an in vivo endoscope

Fig. 1 Digital twin concept for high-resolution image retrieval through a randomly selected MCF.
(a) Single-reference-based endoscopy simulation and pre-training of U-Net + EDSR network. The
MCF-specific reference provided physics priors of inhomogeneous optical properties of the MCF.
(b) Endoscopy of biological samples in real-world contexts. Based on the pre-trained network,
∼50 autofluorescence image pairs of glioblastoma tissue through the same MCF as in (a) were
collected for transfer learning.
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without additional optical elements. As demonstrated in Fig. 3(b), the results of the pre-trained
network were distorted due to hallucination and artifacts remained. To eliminate the distortion,
we used 50 pairs of captured microscopic and endoscopic glioblastoma images and applied trans-
fer learning to the pre-trained network. Despite the limited data size, transfer learning was still
able to further enhance image quality of glioblastoma tissue, and PSNR and SSIM values of the
independent test images were increased up to 31.6 dB and 0.97, separately, with a near-video rate
of 14 frames per second computing on a NVIDIA RTXA6000 GPU. The validation on biological
samples shows that the reference-based approach enables retrieving high-resolution images even
for a small experimental dataset which is easily obtainable in clinics.

4 Conclusions
DNNs enable high-resolution imaging through an MCF with micron resolution. This demands
expensive data collection however, and the image reconstruction strongly depends on the optical
properties of a given MCF. That means, experimental acquisition of thousands of MCF-specific
image pairs is required for each single endoscope, which is not easily transferable to clinics.
Here, a digital twin-based workflow is proposed to bypass costly acquisition of biological data
by single-reference-based simulation of optical properties for an arbitrary MCF. Besides, the
MCF-specific reference also provides physics priors of MCF inhomogeneity during training

Fig. 2 Retrieval of simulated MCF images by the pre-trained U-Net + EDSR network. (a) GT of a
paper tissue instance. (b) Residual map of (c) and (d). (c) Simulated MCF image with homo-
geneous and (d) with inhomogeneous core intensity transmission. (e) Reference image containing
core transmissivity as an additional input into the network. (f) and (g) Reconstructions of (c) and
(d) by the no-reference-based network. (h) Reference-based reconstruction of (d). (i)–(k) Residual
maps of (f)–(h) compared with GT. Although the visual difference of (c) and (d) is slight, (c) had a
good reconstruction (f), while (d) resulted in image distortion in (g) by the same network. The dis-
tortion in (g)–(p), strongly depending on the inhomogeneous transmissivity, was eliminated by
the reference-based approach with (e). (l) and (m) Quantitative image quality evaluation on the
test sets in terms of PSNR and SSIM. The labels “c, d, f-h” in (m) correspond to the test sets
of (c), (d), (f)–(h). (n)–(q) Simulated MCF image of a resolution test chart and the reconstructions
using different approaches. (r) Cross section of the lines in (n)–(q).
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processes. The idea was validated on biological samples by transfer learning. Taking auto-
fluorescence images of glioblastoma as an example, our approach can achieve precise
retrieval on independent test images and improve PSNR and SSIM values up to 31.6 dB and
0.97, respectively, which required only 50 measured image pairs as training data (100 times
less data than before). Our reference-based approach shows a high feasibility for clinical trans-
lation and is capable of image retrieval to improve image-based tumor classification during
neurosurgeries.
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Fig. 3 MCF image retrieval of glioblastoma cryosections with transfer learning. (a) Experimental
setup for acquiring pairs of microscopic and endoscopic tumor images in autofluorescence with the
same MCF as the reference image. CAM, camera; BPF, bandpass filter; L, lens; BS, beam splitter;
MO, microscopic objective. (b) Qualitative comparison of image retrieval by the pre-trained net-
work and transfer learning. Residual maps were obtained by comparing reconstruction results
with microscopic images. The results solely using the pre-trained network were greatly distorted
with artifacts. (c) and (d) Quantitative evaluation: PSNR and SSIM distribution evaluated on
94 measured MCF images of glioblastoma.
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