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ABSTRACT. Advances in imaging tools have always been a pivotal driver for new discoveries in
neuroscience. An ability to visualize neurons and subcellular structures deep within
the brain of a freely behaving animal is integral to our understanding of the relation-
ship between neural activity and higher cognitive functions. However, fast high-
resolution imaging is limited to sub-surface brain regions and generally requires
head fixation of the animal under the microscope. Developing new approaches to
address these challenges is critical. The last decades have seen rapid progress in
minimally invasive endo-microscopy techniques based on bare optical fibers. A
single multimode fiber can be used to penetrate deep into the brain without causing
significant damage to the overlying structures and provide high-resolution imaging.
Here, we discuss how the full potential of high-speed super-resolution fiber endos-
copy can be realized by a holistic approach that combines fiber optics, light shaping,
and advanced computational algorithms. The recent progress opens up new ave-
nues for minimally invasive deep brain studies in freely behaving mice.
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1 Introduction
The field of neurophotonics is built upon continuous technological advances in light microscopy.
Ever since Antoni van Leeuwenhoek observed cells under an early microscope, optical micros-
copy remains the key instrument in neuroscience.1 Technological breakthroughs in optical
imaging are constantly changing the way neural circuits can be examined and visualized.2

Modern benchtop systems provide high-resolution multifunctional imaging but require head
fixation of the animal under the microscope objective,3 which is unfortunately incompatible with
many behavioral studies. Miniaturized microscopes have been developed to enable measure-
ments in freely moving animals.4,5 However, miniscopes as well as many other state-of-the-art
optical techniques work well only at surface or sub-surface areas up to a few hundred microm-
eters in depth,6 but neurophotonics research requires high-resolution images in vivo in deeper
layers of the brain.7 Gradient-index (GRIN) lenses are used for deep imaging but due to the
relatively large size the implantation includes tissue removal.8 Optical imaging at truly unlimited
depths has been enabled by minimally invasive endo-microscopy based on bare optical fibers.9

The most straightforward approach of lensless fiber-imaging is to use fiber bundles where each
fiber transmits one pixel of an image.10–12 However, the spatial resolution is relatively low due to
large core-to-core spacing.
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To summarize, the problem of understanding the relationship between neural activity in deep
brain structures and unrestrained behavior remains unsolved. One of the most promising research
directions addressing this challenge is novel imaging approaches based on a multimode fiber
(MMF).13 The full potential of minimally invasive MMF endoscopy for neuroimaging—ultimate
performance when used for deep-tissue imaging—can only be realized by combining optimal
probes, advanced light control, and computational post-processing algorithms.

2 Multimode Fiber Endoscopes
AnMMF is a flexible waveguide that simultaneously supports tens to thousands of guided modes
propagating with different speeds.14 The interesting feature of light transmission through an
MMF is that the process is highly complex and seemingly random but yet linear and determin-
istic. Coupling coherent light to an MMF results in a complex interference pattern with diffrac-
tion-limited features known as speckles but the information is only scrambled and not lost.15

The recent emergence of computational holography and wavefront shaping allowed for precise
manipulation of the speckles by controlling the incident wavefront with a spatial light
modulator.16,17 The capability to engineer an optical field at the MMF output to any desired
pattern,18 e.g., a focal spot, as shown in Fig. 1(a), provides a new imaging modality: raster-scan
imaging of a tissue on the MMF output facet.19,20 A conventional MMF can now be utilized as an
ultra-thin (usually about 100 μm in diameter) aberration-free imaging probe.21–24 Multimode
light propagation via a single core guarantees the best spatial resolution for a given
footprint.25,26 However, it remains diffraction-limited, meaning that some subcellular structures
cannot be visualized since diffraction of light blurs them to a single feature, as shown in Fig. 1(c).

In the most popular raster scan imaging approach, the ability to image a large brain region
with high optical resolution is achieved at the cost of an acquisition speed. Sequential scanning of
every point of interest puts a technological but still very hard limit on temporal resolution, and it
is important to visualize rapid interactions between different elements of complex neuronal
networks. Another issue of the state-of-the-art MMF imaging probes is its extreme sensitivity
to external perturbations, such as fiber bending, movements, and temperature drifts. Even small
changes in the fiber configuration destroy the imaging abilities. Therefore, despite a significant
effort, use of an MMF as a high-resolution flexible probe is still far away.15,28–32 To fully exploit
the complexity of light transport through an MMF for neuroimaging, the new technological
insights are needed. Most likely it will be based on the emergence of smart and powerful
computing algorithms.

Fig. 1 (a) Wavefront engineering on the MMF input using a spatial light modulator creates a focal
spot on the fiber output facet. (b) Random patterns created within an MMF represent nearly ideal
illumination for computational compressive sensing. (c), (d) Images of fluorescent beads 1.5 μm in
diameter obtained through an MMF probe (NA = 0.1, pump wavelength, λ ¼ 532 nm) by (c) raster
scan wavefront shaping-based endo-microscopy, which is unable to resolve beads that are <1.5 μm
apart and (d) computational compressive sensing with super-resolution. The scale bars are equal
to the diffraction limit λ∕ð2NAÞ ¼ 2.66 μm. Images in (c) and (d) are adapted from Ref. 27.
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3 Optical Imaging in the Age of Computation
Computation is becoming an integral part of imaging systems, giving rise to a new concept of
designing the hardware and software components together.33 A joint optimization of optical
setups and computational algorithms opens up new ways to overcome state-of-the-art limits
of optical microscopy. While nearly all conventional signal acquisition protocols are based
on the famous Nyquist–Shannon theorem (the sampling rate must be at least twice the maximum
frequency of the signal), surprisingly, we rarely use all the information acquired. Storing images
with lossy codecs, such as jpeg, in fact, discards the majority of acquired data. Implementing
the compression already at the signal acquisition step leads to faster imaging. Computational
compressive sensing facilitates signal acquisition with a large reduction in sampling for signals
that have a sparse representation, vastly reducing the number of measurements beyond the
Nyquist limit.34,35

Compressive sensing enables super-resolution imaging.36,37 The mechanism behind
sub-diffraction compressive imaging relies on computational bandwidth interpolation. In contrast
to alternative computational approaches that mainly fail because of noise, compression-based
interpolation serves as an effective way for rejecting common noise types.38 As a result, by using
an incomplete measurement set consisting of only low spatial frequency components and certain
constraints (such as sparsity and continuity), the high spatial frequencies and therefore sub-
diffraction features can be numerically reconstructed during post-processing. Super-resolution
up to five times higher than the diffraction limit has been demonstrated in proof-of-principle
experiments.37,39–41 Combined with structured illumination microscopy, compressive sensing
helped to achieve 60-nm resolution in live-cell imaging.42 The spatial resolution depends on
various factors, such as the measurement matrix size, the level of noise and stability, and the
choice of an algorithm. A critical constraint is the sparsity of a sample. While the most natural
images may not appear sparse, they still have a sparse representation, implying sparsity in a
certain basis, e.g., after a wavelet transform. Therefore, identifying a proper basis and/or suitable
algorithm is key for imaging biological tissues and samples that are not sparse in the regular
domain.43

Compressive sensing protocols require the sampling to fulfill specific conditions to gather
enough information from all parts of the object. Therefore, practical design guidelines depend on
the optical system and the sample. One of the easiest and most general implementation with good
reconstruction guarantee is based on randomized illumination since the random matrix is highly
incoherent with any analytically fixed basis.44 By using an MMF, we can create the desired
random illumination “for free,” as shown in Fig. 1(b) as one of the main properties of an MMF
is to randomly scramble light without losing power. It makes an MMF a unique hair-thin instru-
ment for computational imaging in vivo deep inside the living tissues, as shown in Fig. 2(a).

4 Compressive Fiber Imaging: State-of-the-Art and Outlook
Computational imaging via an MMF can be realized by illuminating the sample with a set of
random patterns generated by, e.g., raster scanning of the input fiber facet with a focused
spot.45,46 Imaging procedure consists of three main steps as shown in Figs. 2(b)–2(d). During
the pre-calibration, intensity distributions of a large set of random illumination patterns are
recorded, as shown in Fig. 2(b). Every image is flattened and all are assembled to two-dimensional
matrix A. It is the most time-consuming experimental step, as it requires recording hundreds of
images and may take from seconds to a minute depending on a camera frame rate. Fortunately, the
pre-calibration is needed only once. Then, an MMF probe is inserted to the region of interest, as
shown in Fig. 2(c). The sample is illuminated by the same set of patterns and the total signal
(e.g., fluorescent response) for each pattern is recorded (vector, y). Compressive sensing facilitates
a significant reduction of acquisition time: the lengths of y is much smaller than the lengths of
flattened sample x to be reconstructed.46 Moreover, a camera is not necessary anymore, allowing
the use of much faster detectors. The measurement rate is limited by sensitivity, field of view, and
scanning speed. Utilizing a DMD (22 kHz) can provide video rate imaging at over 25 fps for up to
880 speckle patterns, well-suited for a conventional 50 μm MMF. Finally, the flattened image
of a sample (x) can be reconstructed by computational algorithms that essentially perform the
pseudo-inversion of the (under-determined) linear system: Ax ¼ y, as shown in Fig. 2(d).
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The reconstruction speed typically ranges from seconds to minutes, depending on the number of
pixels and computational power.

Computational compressive imaging, in contrast to many other super-resolution approaches,
is not only integrable with an ultrathin probe, as shown in Fig. 1(d)27,47 but also does not require
special fluorescent marks and can be used to increase resolution more than twofold beyond the
diffraction limit label-free.48 It opens up ways to create flexible probes that do not require reca-
libration or access to the distal end of the fiber during imaging. Flexible probes have been dem-
onstrated based on GRIN49,50 or step-index MMFs with low51 and high spatial resolution.52,53

Wavelength-dependent scattering is utilized to create a flexible probe based on a single-mode
fiber.54 Compressive sensing improves imaging through multicore fibers by reducing acquisition
time, preventing photo-bleaching, and increasing space-bandwidth product.55,56 Compression is
also beneficial for conventional raster-scan imaging modalities helping to improve quality by
harnessing “muddy” modes57 and to speed up pre-calibration measurements.58

MMFs are already used as minimally invasive probes for neuroscience and clinical appli-
cations. Wavefront shaping through an MMF probe have allowed for minimally invasive in vivo
imaging of neurons in deep-brain regions59–62 and gastrointestinal imaging.63 Computational
post-processing for a non-imaging MMF probe was used for tracking the activity of
neurons.64 Compressive imaging through a single MMF visualized accumulation of lipofuscin
in Alzheimer’s disease human brain with sub-Nyquist speed.65 Although many recent publica-
tions have shown the feasibility and potential of MMF imaging to become a key technology for
deep-tissue brain imaging in freely moving animals, there are many challenges and associated
opportunities for advancing the field. Currently, conventional diffraction limited imaging with
raster scanned foci still offers better resilience to noise in a low-photon regime.66 Future research
directions include the development of fast, precise, and robust to noise algorithms and machine
learning frameworks.67,68

Fast high-resolution imaging of a large field of view in 3D is highly demanded.69

However, the transition to 3D presents several major challenges.70,71 The signal falls off
rapidly with a distance and dense labeling may hinder deeper layers complicating the recon-
struction workflow. Exploring hybrid imaging approaches, e.g., using blinking molecules,
is a promising direction. Neuroscience applications require monitoring of multiple markers,

Fig. 2 (a) Illustration of an exciting application area of computational imaging through an MMF:
minimally invasive fast and super-resolution deep tissue 3D imaging in freely moving animals.
(b)–(d) Three main steps of computational imaging through an MMF: (a) pre-calibration that
includes recording of random patterns without the sample, (b) illuminating the sample and meas-
uring of the total signal for each illumination pattern, and (d) computational image reconstruction
using iterative algorithms of machine learning frameworks.
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therefore we need to visualize various contrast mechanisms simultaneously including quan-
titative label-free phase imaging.72 The next great challenge is to integrate different micros-
copy techniques into a single ultra-thin MMF probe for parallel multifunctional imaging.
Finally, real-life video-rate brain imaging in freely moving animals through an ultimately thin
fiber probe to be demonstrated.

To summarize, in many aspects, this new computational MMF imaging paradigm has
already exceeded the current state-of-the-art. Ongoing progress in experimental design, fiber
probes, and algorithms is rapidly improving both the performance and applicability. We will
soon witness the computational MMF brain imaging to reach the level of readiness for technol-
ogy to be transferred in the domain of in vivo neuroscience.
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