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Abstract. The design and evaluation of the expected performance of optical systems requires sophisticated and
reliable information about the surface topography of planned optical elements before they are fabricated. The
problem is especially severe in the case of x-ray optics for modern diffraction-limited-electron-ring and free-elec-
tron-laser x-ray facilities, as well as x-ray astrophysics missions, such as the X-ray Surveyor under development.
Modern x-ray source facilities are reliant upon the availability of optics of unprecedented quality, with surface
slope accuracy <0.1 μrad. The unprecedented high angular resolution and throughput of future x-ray space
observatories require high-quality optics of 100 m2 in total area. The uniqueness of the optics and limited number
of proficient vendors make the fabrication extremely time-consuming and expensive, mostly due to the limitations
in accuracy and measurement rate of metrology used in fabrication. We continue investigating the possibility of
improving metrology efficiency via comprehensive statistical treatment of a compact volume of metrology of
surface topography, which is considered the result of a stochastic polishing process. We suggest, verify,
and discuss an analytical algorithm for identification of an optimal symmetric time-invariant linear filter
model with a minimum number of parameters and smallest residual error. If successful, the modeling could
provide feedback to deterministic polishing processes, avoiding time-consuming, whole-scale metrology mea-
surements over the entire optical surface with the resolution required to cover the entire desired spatial frequency
range. The modeling also allows forecasting of metrology data for optics made by the same vendor and tech-
nology. The forecast data are vital for reliable specification for optical fabrication, evaluated from numerical sim-
ulation to be exactly adequate for the required system performance, avoiding both over- and underspecification.
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1 Introduction
The design and evaluation of the expected performance of
optical systems requires sophisticated and reliable infor-
mation about the surface topography of planned optical
elements before they are fabricated. The problem is espe-
cially severe in the case of x-ray optics for modern diffrac-
tion-limited-electron-ring and free-electron-laser x-ray source
facilities. Modern x-ray source facilities are reliant upon the
availability of x-ray optics of unprecedented quality, with
surface slope accuracy better than 0.1 μrad and surface
height error of <1 nm.1–5 The uniqueness of the optics and
limited number of proficient vendors make the fabrication
extremely time-consuming and expensive, mostly due to
the limitations in accuracy and measurement rate of the avail-
able metrology. Similar problems arise in fabrication of
optics for x-ray astrophysics missions under development.
In this case, the unprecedented high angular resolution and
throughput of future x-ray space observatories, such as the
X-Ray Surveyor mission,6 require high-quality optics (with
tolerances on the level of 1 μrad) of 100 m2 in total area.

Recently, a possibility of improving metrology efficiency
via comprehensive statistical treatment of a compact volume

of metrology data has been suggested (see Refs. 7–9 and
references therein). It has been demonstrated8,9 that one-
dimensional (1-D) slope metrology with super-polished x-
ray mirrors can be treated as a result of a stochastic polishing
process. In this case, the measured surface slope variation is
first detrended to remove the overall shape (trend) and peri-
odic variation (oscillation) that are not stochastic. Second,
the residual slope variation is treated as a result of a stochas-
tic polishing by fitting with an autoregressive moving aver-
age (ARMA) and an extension of ARMA to time-invariant
linear filter (TILF) modeling.10,11 The modeling allows a
high degree of confidence in description of the surface
topography data (and the polishing process) with a limited
number of parameters.

With the parameters of the determined model, the surface
slope profiles of the prospective (before fabrication) optics
made by the same vendor and technology can be forecast.
The forecast data are vital for reliable specification for
optical fabrication, evaluated from numerical simulation to
be necessary and sufficient for the required system perfor-
mance, avoiding both over and underspecification.12,13

Considering surface slope topography the result of a sta-
tionary stochastic polishing process and using a compact vol-
ume of metrology data on the topography, modeling can be
utilized to provide feedback for deterministic optical polish-
ing. This can avoid time-consuming whole-scale metrology
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measurements over the entire optical surface with the reso-
lution required to cover the entire spatial frequency range,
important for the optical system performance.

In the present work, we continue the investigations started
in Refs. 8–13 First, we briefly review the mathematical
fundamentals of 1-D ARMA modeling of topography of
random rough surfaces (Sec. 2). In Sec. 3, we analyze a
generalization of ARMA modeling with the TILF approach.
We analytically show that the suggested symmetric TILF
approximation has all the advantages of one-sided autore-
gressive (AR) and ARMA modeling, but it additionally
has improved fitting accuracy. It is free of the causality
problem, which can be thought of as a limitation of
ARMA modeling of surface metrology data. An algorithm
for identification of an optimal symmetric TILF model
with a minimum number of parameters and smallest residual
error is derived in Sec. 4. Finally, in Sec. 5, we verify the
efficiency of the developed algorithm in application for mod-
eling of a series of stochastic processes, which are generated
with the known ARMA model, determined for surface slope
data for a state-of-the-art x-ray mirror. The paper concludes
(Sec. 6) by summarizing the main concepts discussed
throughout the paper and stating a plan for extending the
suggested approach to parameterize the results of two-
dimensional (2-D) surface metrology data.

2 One-Dimensional Statistical Modeling and
Forecasting of Random Rough Surfaces

2.1 Autoregressive Moving Average Modeling

Let us consider the surface slope metrology of high-quality
x-ray optics. For the 1-D case, the result of the metrology is a
distribution (trace) of residual (after subtraction of the best-
fit figure and trends) slopes X½n� measured over discrete
points xn ¼ n · Δx [n ¼ 1; : : : ; N, where N is the total num-
ber of observations and ðN − 1ÞΔx is the total length of the
trace, uniformly, with an increment Δx distributed along
the trace.

ARMA modeling8,9 describes the discrete surface slope
distribution α½n� as the result of a uniform stochastic
process14,15

EQ-TARGET;temp:intralink-;e001;63;301X½n� ¼
Xp
l¼1

alX½n − l� þ
Xq
l¼0

blν½n − l�; (1)

where ν½n� is zero-mean variance white Gaussian noise
(referred to as “white Gaussian noise”), i.e., the driving
noise of the model. The parameters p and q are the orders
of the AR and moving average (MA) processes, respectively.
At q ¼ 0 and b0 ¼ 1, the ARMA process [Eq. (1)] reduces to
an AR stochastic process. In addition to the linearity, the
ARMA transformation is time-invariant since its coefficients
depend on the relative lags l rather than on n. The goal of
the modeling is to determine the ARMA orders and estimate
the corresponding AR and MA coefficients al and bl.

16–18

Due to the availability of sophisticated statistical software
capable of ARMA modeling of experimental data, ARMA
fitting becomes a rather routine task for finding the ARMA
model parameters and verifying the statistical reliability of
the model.We use a commercially available software package,
EViews 8.19 In particular, the software provides easy-to-use

ARMA modeling tools oriented to econometric analysis,
forecasting, and simulation.

ARMA fitting allows for replacement of the spectral esti-
mation problem with a problem of parameter estimation. In
principle, the parameters of a successful ARMA model for a
rough surface should relate to the polishing process. The ana-
lytical derivation of such a relation is a separate difficult
task; there are just a few works that try to solve this
problem.20,21 Instead, most of the existing work provides
an empirical ARMA description for the results from polish-
ing processes.16,22 When an ARMA model is identified, the
corresponding power spectral density (PSD) distribution can
be analytically derived14

EQ-TARGET;temp:intralink-;e002;326;609PXðfÞ ¼ σ2
B½ei2πf�B½e−i2πf�
A½ei2πf�A½e−i2πf� ; (2)

where the frequency f ∈ ½−0.5; 0.5�
EQ-TARGET;temp:intralink-;e003;326;554A½ei2πf� ¼ 1þ a1ei2πfþ · · · þapei2πpf; (3)

EQ-TARGET;temp:intralink-;e004;326;522B½ei2πf� ¼ b0 þ b1ei2πfþ · · · þbqei2πqf: (4)

Equation (2) can be expressed as

EQ-TARGET;temp:intralink-;e005;326;483PXðfÞ

¼ σ2
ðb0 þ b1z−1þ · · · þbqz−qÞðb0 þ b1z1þ · · · þbqzqÞ
ð1− a1z−1− · · · −apz−pÞð1− a1z1− · · · −apzpÞ

;

(5)

where z ¼ ei2πf and σ2 are the variance of the driving noise
ν½n� and σ is also called the standard error of regression.

Therefore, a low-order ARMA fit, if successful, allows
parametrization of both the PSD and the autocovariance
function (ACF) of a random rough surface. As a result,
the PSD distributions appear as highly smoothed versions
of the corresponding estimates via a direct digital Fourier
transform.8,9 Description of a rough surface as the result
of an ARMA stochastic process provides a model-based
mechanism for extrapolating the spectra outside the mea-
sured bandwidth.8,9

Trustworthy ARMA modeling and forecasting based on a
limited number of observations assume statistical stability of
the data used. The data are statistically stable if they are the
result of a so-called wide sense stationary (WSS) random
process (see, e.g., Ref. 14). The process X½n�, where
n ¼ 1; : : : ; N and N is the number of observations, is a
WSS process if its ACF

EQ-TARGET;temp:intralink-;e006;326;207rX½l� ¼ EðX½n�X½n − l�Þ; (6)

depends only on the lag l and does not depend on the value of
n. In Eq. (1), E is the expectation operator. Note that the PSD
of the WSS random process X½n� can be found from the ACF
[compare to Eqs. (2) and (5)]

EQ-TARGET;temp:intralink-;e007;326;132PXðfÞ ¼
X∞
l¼−∞

rX½l�e−i2πlf ¼
X∞
l¼−∞

rX½l�z−l: (7)

According to Eq. (5), rX½l� is a nonlinear function of the
ARMA coefficients, al for l¼ 1; : : : ;p and bl for l¼ 1; : : : ; q.
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Recent publications8,9 describe a successful application of
ARMA modeling to the experimental surface slope data for
a 1280-m spherical reference mirror.23,24 The data were
obtained with the Advanced Light Source (ALS) developmen-
tal long trace profiler (DLTP)25 and verified in cross-compari-
son with measurements performed with the HZB/BESSY-II
nanometer optical component measuring machine,26–29 one
of the world’s best slope measuring instruments.

2.2 Two-Sided Symmetrical Autoregressive Moving
Average Modeling

With the obvious success and perspective of the application
of 1-D ARMA modeling to 1-D surface slope metrology, the
inherent causality of the modeling is thought of as a limiting
factor that also complicates extension of the method for
modeling 2-D surface metrology available, e.g., with high-
precision interferometers and microscopes.

Indeed, ARMA modeling is inherently causal, assuming
that the current value of the process depends only upon the
past, as expressed with Eq. (1). While in the case of time
series, the property of causality is natural, in the case of mod-
eling of surface metrology data, the causality can be thought
of as a limitation. Avalid model should describe the reversed
surface metrology data corresponding to the measurements
with the optic rotated (flipped) by 180 deg with respect to the
scanning direction of the profiler. The direct and reversed
residual slope traces are related through a straightforward
transformation of the coordinate system and change to the
opposite sign of the measured slope values (see, e.g., Ref. 7).

In our previous work,10,11 we have suggested a simple
way of fixing the causality problem in ARMA modeling.

First, let us note that the ARMA modeling of the direct
and reversed residual slope traces effectively establishes for
each other a relation between the current slope element X½n�
and the “future” ones, X½nþ l� and ν½nþ l� [compare with
Eq. (1)], with positive rather than negative lag value

EQ-TARGET;temp:intralink-;e008;63;351X½n� ¼
Xp
l¼1

a�l X½nþ l� þ
Xq
l¼0

b�l ν½nþ l�; (8)

where for the direct slope trace X½n�, a�l and b�l denote the
ARMA parameters determined by modeling of the reversed
trace. The causality limitation is solved by a straightforward
merging of the causal stochastic processes [Eqs. (1) and (8)]
to a “two-sided symmetrical ARMA”model of the 1-D slope
trace

EQ-TARGET;temp:intralink-;e009;63;236X½n� ¼ 1

2

�Xp
l¼1

ða�l X½nþ l� þ alX½n − l�Þ

þ
Xq
l¼0

ðb�l ν½nþ l� þ blν½n − l�Þ
�
: (9)

Unlike causal, one-sided ARMA modeling, the two-sided
symmetrical ARMA model, depicted in Eq. (9), is free of
the limitation of the fixed direction (time flow) and causa-
tion. This implies that the current value of the surface slope
depends upon the past and the future, i.e., in our case, the
neighboring points with the positive and negative lag values.
Such an extension of AR modeling closely relates to the
TILF approach.29

3 Time-Invariant Linear Filters in Application to
Modeling of Surface Metrology

3.1 Mathematical Foundations of Time-Invariant
Linear Filter Modeling

For the 1-D case, the TILFCwith weights fci; i¼ 0;�1; : : :g
is a linear operator that transforms one stochastic process
fX½t�; t ¼ 0;�1; : : : g into another (filtered) process
fY½t�; t ¼ 0;�1; : : : g10,11,29

EQ-TARGET;temp:intralink-;e010;326;651Y½t� ¼
X∞
l¼−∞

clX½t − l� ≡ C � X½t�: (10)

Similar to the ARMA transformation, the TILF C is linear
and time-invariant. The filter C possesses the property of
causality if

EQ-TARGET;temp:intralink-;e011;326;570ci ¼ 0; for i < 0: (11)

The requirement of stability of the transformation implies
that the filter is absolutely summable

EQ-TARGET;temp:intralink-;e012;326;517

X∞
l¼−∞

jclj < ∞: (12)

Also similar to ARMA modeling, when an optimal TILF is
identified, the corresponding PSD distribution can be ana-
lytically derived [compare with Eq. (5)]

EQ-TARGET;temp:intralink-;e013;326;441PYðfÞ ¼
����
X∞
l¼−∞

clei2πlf
����
2

PXðfÞ: (13)

Almost any ARMA process X½t� with the parameters p and
q can be obtained from white Gaussian noise ν½t� by appli-
cation of the corresponding causal TILF29

EQ-TARGET;temp:intralink-;e014;326;359X½t� ¼
X∞
l¼0

clν½t − l�: (14)

The weights cl in Eq. (14) are determined by the relation

EQ-TARGET;temp:intralink-;e015;326;300

X∞
l¼0

clzl ¼ bðzÞ∕aðzÞ; jzj ≤ 1; (15)

where the AR and MA polynomials on the right-hand side
are, respectively
EQ-TARGET;temp:intralink-;e016;326;229

aðzÞ ¼ 1 − a1z1− · · · −apzp and

bðzÞ ¼ 1þ b1z1þ · · · þbqzq: (16)

Consequently, the two-sided ARMA process given in
Eq. (9) can be expressed via a TILF in the form of Eq. (9),
which is free of the causality limitation

EQ-TARGET;temp:intralink-;e017;326;151X½t� ¼ 1

2

�X∞
l¼0

clν½t − l� þ
X∞
l¼0

c−lν½tþ l�
�

¼
X∞
l¼−∞

c�l ν½t − l�: (17)
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Therefore, in the case of 1-D metrology data, if ARMA
modeling is successful, there is a corresponding TILF oper-
ator that describes the metrology result as filtered white
Gaussian noise. The identified TILF can be used for fore-
casting of a new slope distribution possessing the same
statistical properties as the measured one, but with different
parameters, such as the distribution length and the rms
variation. A straightforward generalization of the 1-D
expressions [Eqs. (10)–(17)] to the 2-D case opens a way
for parametrization and forecasting of 2-D metrology data
by applying 2-D TILF modeling.

Note that there is a simple relation between the coeffi-
cients of the AR terms of Eq. (9) and the weights of a
TILF that transform the two-sided AR process into the
noise process ν½t�. In some sense, such a TILF is the inverse
operator to the one in Eq. (14). In this case, the AR part of
Eq. (9) can be written as

EQ-TARGET;temp:intralink-;e018;63;565X½t� ¼ 1

2

Xp
l¼−p

alX½t − l� − 1

2
a0X½t� þ ν�½t�; (18)

with the coefficients al, l ¼ �1; : : : ;�p determined by AR
modeling the direct and reversed traces of the same slope
measurement. Assigning a0 ¼ 0, Eq. (18) is rewritten in
a form of a TILF transformation

EQ-TARGET;temp:intralink-;e019;63;471ν½t� ¼
Xp
l¼−p

clX½t − l� − X½t� ≡ ðC − IÞ � X½t�; (19)

where white Gaussian noise ν½t� ¼ −ν�½t�, I is the identity
operator, and C is a finite TILF of order p with the weights

EQ-TARGET;temp:intralink-;e020;63;399cl ¼ al∕2; for l ¼ �1; : : : ;�p and c0 ¼ 0; for l ¼ 0:

(20)

Filter C in Eq. (19), when applied to the process X½t�, gives a
new stationary random process Y½t� that differs from the
process X½t� by the noise process ν½t�. If the difference is
small (e.g., the variance of the noise is much smaller than
that of the processes X½t� and Y½t�), the TILF C can be
thought of as a good model of the stochastic process X½t�,
representing its structure with the weight coefficients given
by Eq. (20).

Practically, to determine a TILF filter C that best models
the observed stochastic process X½t�, one has to find a set of
the weight coefficients cl that minimizes the deviation

EQ-TARGET;temp:intralink-;e021;63;234Eð½X½t� − Y½t��2Þ ≡ Eðν2½t�Þ; (21)

of the modeled process from the observed one.

3.2 Symmetry of Time-Invariant Linear Filters for
Modeling of Surface Slope Metrology

Generally, the values of the TILF weights with the same pos-
itive and negative lags are not necessarily equal, i.e.,

EQ-TARGET;temp:intralink-;e022;63;131cl ≠ c−l: (22)

However, as we mathematically prove in this section, among
all TILFs (including AR and ARMA models) of the same
order, the symmetrical filter with

EQ-TARGET;temp:intralink-;e023;326;752cl ¼ c−l: (23)

provides the smallest variance of the residual noise, which is
equal to the difference between the measured trace and the
best-fitted model. In the case of causal TILFs (such as AR
and ARMA models), it can be intuitively understood as a
result of averaging of the residual noises of the fits with
the corresponding causal filters of the direct and reversed
processes. Assuming that the residual noises are not mutually
correlated, one should expect a suppression of the variance of
the averaged residual noise by a factor of 2 with respect to
the corresponding causal filter.

For mathematical proof of the statement given in Eq. (23),
we will show that replacement of a given TILF with its sym-
metric form reduces the variance of the difference between
the observed and modeling stochastic processes.

Let us define

EQ-TARGET;temp:intralink-;e024;326;565cl ¼ c̄l þ δcl and c−l ¼ c̄l − δcl; (24)

where c̄l ¼ ðcl þ c−lÞ∕2, δcl ¼ ðcl − c−lÞ∕2, and jlj ≤ p,
and p is the order of the TILF model C. In these notations

EQ-TARGET;temp:intralink-;e025;326;512Y½t� ¼
Xp
k¼1

c̄k½X½t − k� þ X½tþ k��

þ
Xp
l¼1

δcl½X½t − l� − X½tþ l�� ≡ u½t� þ v½t�: (25)

Therefore, the variance of the difference between X½t� and
Y½t� is
EQ-TARGET;temp:intralink-;e026;326;408

Eð½X½t� − Y½t��2Þ ¼ Eð½X½t� − u½t��2Þ þ Eðv2½t�Þ

þ 2
Xp
l¼1

δclE

��
X½t� −

Xp
k¼1

c̄l½X½t − k� þ X½tþ k��
�

× ½X½t − l� − X½tþ l��
�
: (26)

Let us show that the last sum in Eq. (26) equals zero, as each
of its terms is zero. The elements in the sum are of two types
(up to multipliers) that can be reduced to the ACF of the
process X½t�

EQ-TARGET;temp:intralink-;e027;326;269EðX½t�½X½t − k� − X½tþ k��Þ ¼ EðX½t�X½t − k�Þ
− EðX½t�X½tþ k�Þ

¼ rX½k� − rX½−k� ¼ 0 (27)

and

EQ-TARGET;temp:intralink-;e028;326;190Eð½X½t − k� þ X½tþ k��½X½t − k� − X½tþ k��Þ
¼ rX½0� þ rX½2k� − rX½2k� − rX½0� ¼ 0: (28)

Therefore, the variance of the difference between X½t� and
Y½t� equals (compare with Eq. 26)
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EQ-TARGET;temp:intralink-;e029;63;752Eð½X½t� − Y½t��2Þ ¼ E

	
X½t� −

Xp
l¼1

c̄lðX½t − l� þ X½tþ l�Þ

2

þ
Xp
l¼1

ðδclÞ2E½X½t − l� − X½tþ l��2:

(29)

For a symmetrical filter with cl ¼ c−l, the second sum is zero
and the variance of the difference between X½t� and Y½t� is
smaller than that of an asymmetrical one with cl ≠ c−l.

4 Evaluation of the Best Symmetrical
Time-Invariant Linear Filter of a Given Order

Summarizing the above considerations, we describe 1-D
slope metrology with high-quality x-ray mirrors as stochastic
stationary processes X½t� defined on a unit lattice Z1 (index 1
denotes 1-D integer lattice) and build corresponding sym-
metrical TILF models of an AR type. In AR TILF models,
a value of a process at a given point t is approximated by
a linear combination of values of the process at points
within the vicinity. If the approximation achieved is accurate
enough, one may say that the chosen model fits the original
random process and can be used for parametrization of the
metrology data and therefore the polishing process used for
fabrication of the mirrors. In particular, a PSD of the process
can be approximated with the PSD of the model. With the
weights of the model known, one can analytically evaluate
the PSD function.

The key task is the identification of an optimal TILF that
best models (with minimum number of parameters and with
the smallest possible residual noise) the observed stationary
stochastic process.

As discussed in Sec. 2.1 and in our previous publica-
tions,10,11 we model surface slope measurements with a
TILF, which is built based on symmetrization of the ARMA
process determined with EViews 8 software.19 Here, we
present an original algorithm for direct optimization of
the TILF model without involving results of the ARMA
modeling.

Let C be a symmetric TILF of the order p defined with
weight coefficients c1; : : : ; cp. To select the coefficients, one
has to minimize the variance between the observed process
X½t� and the approximating one Y½t� [compare with Eq. (29),
in Sec. 3.2]

EQ-TARGET;temp:intralink-;e030;63;257Eð½X½t�−Y½t��2Þ¼ rX½0�−4
Xp
l¼1

clrX½l�þ2
Xp
k¼1

Xp
l¼1

ckclq½k;l�;

(30)

where q½k; l� are the elements of a p × p matrix Q, built of
the coefficients for the ACF of the process X½t�
EQ-TARGET;temp:intralink-;e031;63;173

q½k; l� ≡ rX½kþ l� þ rX½k − l� ¼ rX½jkþ lj� þ rX½jk − lj�;
1 ≤ k; l ≤ p: (31)

Note that the matrix Q is symmetric, Q ¼ QT .
By introducing the vectors of the TILF weights and the

process autocovariance

EQ-TARGET;temp:intralink-;e032;63;90~c ≡ hc1; : : : ; cpi and ~rX ≡ hrX½1�; : : : ; rX½p�i; (32)

the variance equation [Eq. (30)] can be written in the matrix
form

EQ-TARGET;temp:intralink-;e033;326;730Eð½X½t� − Y½t��2Þ ¼ rX½0� − 4~c~rTX þ 2~cQ~cT: (33)

The weight coefficients of the optimal symmetric TILF cor-
respond to the minimum value of the variance in Eq. (33).
We derive an analytical expression that allows determination
of the optimal weight coefficients for the case where the
inverse of matrix Q exists.

Let us add the finite-difference derivative δ~c to vector ~c,
~cþ δ~c, δ~c ≪ ~c, and insert the result in Eq. (33)

EQ-TARGET;temp:intralink-;e034;326;622

δEð½X½t� − Y½t��2Þ ¼ −4ð~cþ δ~cÞ~rTX þ 2ð~cþ δ~cÞQð~cþ δ~cÞT
þ 4~c~rTX − 2~cQ~cT: (34)

By performing straightforward algebraic transformations and
leaving in the right term only the part linear with respect to
δ~c, Eq. (34) can be transformed to

EQ-TARGET;temp:intralink-;e035;326;539δEð½X½t� − Y½t��2Þ ¼ −4δ~c~rTX þ 2δ~cQ~cT þ 2~cQδ~cT

¼ 4δ~cð−~rTX þQ~cTÞ: (35)

To get Eq. (35), we use the facts that δ~cQ~cT and ~cQδ~cT are
just constants and that the matrix Q is symmetric; therefore

EQ-TARGET;temp:intralink-;e036;326;466δ~cQ~cT ¼ ðδ~cQ~cTÞT ¼ ðQ~cTÞTδ~cT ¼ ~cQTδ~cT ¼ ~cQδ~cT:

(36)

From Eq. (35), the variance between the observed process
X½t� and the approximating one Y½t� reaches its minimum at

EQ-TARGET;temp:intralink-;e037;326;399ð−~rTX þQ~cTÞ ¼ 0; i:e:; ~rTX ¼ Q~cT or ~rX ¼ ~cQ: (37)

If the inverse of matrix Q exists, one gets a condition for
determining the weight coefficients of the optimal symmetric
TILF

EQ-TARGET;temp:intralink-;e038;326;334~c ¼ ~rXQ−1: (38)

To determine the minimum value achieved by the variance
[Eq. (33)], we substitute Eq. (38) into Eq. (33)

EQ-TARGET;temp:intralink-;e039;326;281

Eð½X½t� − Y½t��2ÞMIN ¼ rX½0� − 4~rXQ−1~rTX

þ 2ð~rXQ−1ÞQð~rXQ−1ÞT: : :
¼ rX½0� − 4~rXQ−1~rTX þ 2~rXðQ−1ÞT~rTX:

(39)

And finally, the expression for calculating the minimum
value of the variance between the observed process X½t�
and the approximating one Y½t� is

EQ-TARGET;temp:intralink-;e040;326;164Eð½X½t� − Y½t��2ÞMIN ¼ rX½0� − 2~rXQ−1~rTX: (40)

Equations (38) and (40) provide an algorithm for evaluation
of the best TILF with given values of the filter order p.
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5 Verification of the Developed Algorithm for
Identification of Optimal Symmetrical
Time-Invariant Linear Filter

In this section, we will verify the developed algorithm for
determining weight coefficients of an optimal symmetrical
TILF (Sec. 4) applied to modeling a series of stochastic
processes generated with the ARMA model12,13 built from
surface slope data, measured with the ALS DLTP25 of the
SLAC Linac Coherent Light Source (LCLS) beam split
and delay mirror.30 The DLTP is capable of slope metrology
for plane surfaces with absolute error better than 80 nrad and
rms error <50 nrad.31,32 The overall error of the used data is
estimated to be <60 nrad (rms).

5.1 Autoregressive Moving Average Model for Slope
Data Measured with the Linac Coherent Light
Source Beam Split and Delay Mirror

Figure 1(a) (blue solid line) shows the residual (after subtrac-
tion of the best-fit third-order polynomial) slope variation
over the mirror clear aperture of 138 mm. The trace
consists of N ¼ 691 points measured with an increment of
Δx ¼ 0.2 mm.

The best-fit slope trace, shown in Fig. 1(a) with the red
dashed line, corresponds to the ARMA model specified in
Table 1. The table, generated by EViews 8 software19 as
the regression output, includes only the statistically signifi-
cant ARMA parameters.

The slope difference trace shown in Fig. 1(b) is the driv-
ing noise of the ARMA model, i.e., ν½n� in Eq. (1). It should
be distinguished from any observation noise or measurement
error. The details of the ARMA modeling of the slope met-
rology with the LCLS beam split and delay mirror can be
found in Refs. 12 and 13.

5.2 Autoregressive Moving Average Forecasting of
Surface Topography for Mirrors with 500-mm
Length, Statistically Identical to the Linac
Coherent Light Source Split and Delay Mirror

The ARMA model established for the LCLS beam split and
delay mirror and depicted in Table 1 was used to forecast
a number of new surface slope distributions that can be

thought of as the data for prospective mirrors manufactured
with the same polishing process at the fabrication facility of
the real mirror modeled with ARMA.

Forecasting a new slope trace with the determined ARMA
model is performed in two steps. First, we generate a new
sequence of white-noise-like, normally distributed residuals
ν½n� with a length of 500 mm (with 0.2-mm increment)
corresponding to the new desired mirror length. Second,
by using Eq. (1) with the ARMA parameters in Table 1
and the extended residuals, a new slope trace is generated
and normalized to get the rms slope variation of 0.1 μrad.
Using uncorrelated sets of residuals ν½n�, a number of
statistically independent (inherently noncorrelating) but sta-
tistically identical (with the predetermined ARMA parame-
ters) slope traces are generated with the EViews 8 software.19

The blue solid line in Fig. 2(a) presents one of the slope
distributions, slope 09, forecast based on the described pro-
cedure and the ARMA model in Table 1. The best-fit slope
trace corresponding to the ARMAmodel specified in Table 3
is shown in Fig. 2(a) with the red dashed line. By ARMA
modeling the traces with EViews 8 in a similar manner to
that described in Refs. 8–13, we verify the statistical identity
of the generated slope traces to the used ARMA model.

Within statistical uncertainty, AR parameters of the
ARMA models identified for the generated slope traces (see

Fig. 1 (a) Measured slope trace (blue solid line) after subtracting the best-fit third-order polynomial shape
to remove the trend, i.e., characteristic for short x-ray mirrors, and the best-fit slope trace (red dashed
line), corresponding to the ARMA model specified in Table 1. The rms variation of the measured slope
trace is 0.099 μrad. (b) Difference between the measured and fitted traces, i.e., the driving noise of the
model in Eq. (1). The rms variation of the slope difference is 0.053 μrad.

Table 1 Parameters of the ARMAmodel [red dashed line in Fig. 1(a)]
that best fit the surface slope trace for the LCLS beam split and delay
mirror measured with the ALS DLTP. In Eqs. (1)–(5), b0 ¼ 1 and σ2 is
equal to the standard error of the regression of 0.053 μrad (rms). The
data are the regression outputs generated by EViews19 software.
In the table, the standard error of the corresponding coefficient
determines the statistical significance of the parameter.

Variable Coefficient Standard error

AR(1): a1 0.637 0.036

AR(2): a2 0.352 0.041

AR(5): a5 −0.147 0.027

MA(2): b2 −0.0659 0.0035
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Table 2) are equal to those of the ARMA model of the mea-
sured slope trace.

However, the variation of the MA(2) parameter values is
very large. A comparison with the results of an ARMA fit for
an individual trace (e.g., slope 09 in Table 3) suggests that, in
general, these ARMA fits are not sensitive to the MA term.
In the case of trace slope 09, the value of b2 is larger than its
error only by a factor of 1.5. Nevertheless, the MA(2) term

was kept in the parent ARMA model because it is needed to
randomize the residuals of the ARMA fit for the measured
slope trace in Fig. 1.

The generated slope traces, such as the one shown in
Fig. 2 and with the best-fit ARMA parameters in Table 2,
are used to test the developed algorithm for determining
the TILF weight parameters.

5.3 AR-Time-Invariant Linear Filters with Analytically
Derived Weight Coefficients for One-Dimensional
Data Generated with the Known Autoregressive
Moving Average Model

Here, we investigate the performance of modeling the sto-
chastic polishing process using symmetric TILFs and the
developed analytical procedure for determining the weight
coefficients of the optimal filter. For this, we apply the cal-
culation algorithm based on Eqs. (38) and (40) to fit nine
slope traces generated with the known parent ARMA model
as described in Secs. 5.1 and 5.2. Such generated traces are a
priori the results of a uniform, stationary stochastic process;

Fig. 2 (a) Generated slope trace slope 09 (blue solid line) and best-fit slope trace (red dashed line),
corresponding to the ARMA model specified in Table 3. The rms variation of the generated slope
trace is 0.101 μrad. (b) Difference between the generated and fitted traces. The rms variation of the
slope difference is 0.0523 μrad.

Table 2 Parameters of the ARMA models that best fit the surface
slope traces generated with the parent ARMA model specified in
Table 1. The values of the standard error of regression are given
in μrad.

Trace\
parameter AR(1): a1 AR(2): a2 AR(5): a5 MA(2): b2

Standard
error of

regression
(μrad)

Slope 01 0.6705 0.3008 −0.1512 −0.0041 0.0519

Slope 02 0.6362 0.3251 −0.1325 −0.0175 0.0523

Slope 03 0.6032 0.3737 −0.1545 −0.0376 0.0541

Slope 04 0.6517 0.3208 −0.1447 −0.0587 0.0524

Slope 05 0.6098 0.3805 −0.1556 −0.0950 0.0517

Slope 06 0.6936 0.1874 −0.0737 0.1624 0.0538

Slope 07 0.6166 0.4010 −0.1712 −0.1027 0.0531

Slope 08 0.6563 0.3244 −0.1349 −0.0560 0.0531

Slope 09 0.6378 0.3462 −0.1306 −0.0419 0.0523

Mean value 0.6418 0.3289 −0.1388 −0.0279 0.0527

Standard
deviation

0.0296 0.0623 0.0277 0.0783 0.0008

Table 3 Parameters of the ARMA model [the red dashed line in
Fig. 2(a)] that best fit the generated surface slope trace slope 09.
In Eqs. (1)–(5), b0 ¼ 1 and σ is equal to the standard error of the
regression of 0.0523 μrad (rms). Note that the ARMA fit is not sensi-
tive to the MA term; the value of b2 is larger than its error only by a
factor of 1.5. The data are the regression outputs generated by
EViews19 software.

Variable Coefficient Standard error

AR(1): a1 0.6378 0.0197

AR(2): a2 0.3462 0.0284

AR(5): a5 −0.1306 0.0172

MA(2): b2 −0.0419 0.0296
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therefore, they are ideal objects for testing the developed
TILF-based modeling approach.

Figure 3 illustrates the TILF approximation of the same
generated trace (slope 09) as the one shown in Fig. 2 with its
best ARMA fit. The blue solid line in Fig. 3 represents the
generated slope trace. The optimal approximation with
the developed symmetric TILF is shown in Fig. 3(a) with
the red dashed line.

For modeling, we use a symmetric TILF of order p ¼ 5,
corresponding to the AR order parameter p of the parent
ARMA model. The question about the optimal number of
coefficients is out of the scope of this present work and
will be investigated elsewhere.

Table 4 presents the weight coefficients of the optimal
symmetric TILF determined by application of the developed
fitting procedure for nine slope traces generated with the
parent ARMA model. The mean values of the coefficients
estimated by averaging of nine coefficients with the same
lag, as well as the standard deviations of the coefficients,
are shown in the last two rows of Table 4.

Note that if we double the mean values of the TILF weight
coefficients in Table 4, they will be close to the values of the
corresponding (with the same lag) AR parameters of the
parent ARMA model, given in Table 1. The small difference
is probably due to the extra two fitting AR-like parameters in
the TILF.

One of the major advantages of the developed TILF
approximation is that the residual slope, calculated as a
difference between the generated slope trace and the corre-
sponding fit, has, as predicted (see Sec. 3.2), a smaller varia-
tion than the ARMA approximation. For the slope trace slope
09, the improvement is about a factor of 1.38, close to

ffiffiffi
2

p
[compare Figs. 2(b) and 3(b)].

The algorithm of approximation with symmetric TILF
developed in this paper is based on analytical transformation
of the ACF of the stochastic process under treatment [refer to

Sec. 4 and Eqs. (38) and (40)]. Therefore, in our case, it is
natural to use, as a measure of fidelity of the TILF model, the
difference between the ACFs of the generated trace and its
TILF approximation. As a typical result, we illustrate the
fidelity of the developed TILF modeling with the example
of the generated trace slope 09.

Figure 4 shows the ACFs of trace slope 09 and its TILF
approximation [Fig. 3(a)], as well as the difference of the

Fig. 3 (a) Generated slope trace slope 09 (blue solid line) and the slope trace approximation (red dashed
line), obtained by application to the generated trace slope 09 of the optimal symmetric TILF with the
weight coefficients in Table 3, determined using the analytical procedure presented in Sec. 4.
(b) Difference between the generated and fitted traces. The rms variation of the slope difference is
0.038 μrad.

Table 4 Weight coefficients of the TILF models that best fit the sur-
face slope traces generated with the known parent ARMA model as
described in Secs. 5.2 and 5.3. An extra digit in the values of the coef-
ficients is presented to keep the data format consistent with that of the
regression outputs generated by EViews19 software and shown in
Tables 1–3.

Trace\coefficient c1 c2 c3 c4 c5

Slope 01 0.3078 0.1892 0.0170 0.0753 −0.1009

Slope 02 0.2812 0.2005 0.0601 0.0435 −0.0993

Slope 03 0.2581 0.2124 0.0619 0.0710 −0.1165

Slope 04 0.3136 0.1582 0.0322 0.0865 −0.1012

Slope 05 0.2839 0.1742 0.0648 0.0673 −0.1019

Slope 06 0.3137 0.1427 0.0647 0.0525 −0.0798

Slope 07 0.2803 0.1711 0.0607 0.1007 −0.1230

Slope 08 0.3117 0.1588 0.0486 0.0799 −0.1113

Slope 09 0.2840 0.1898 0.0549 0.0510 −0.0886

Mean value 0.2927 0.1774 0.0517 0.0697 −0.1025

Standard deviation 0.0197 0.0224 0.0166 0.0184 0.0133
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Fig. 4 (a) ACF of the generated trace slope 09 and (b) its TILF approximation. The inset shows the
difference of the ACFs in plots (a) and (b). Except for a very tiny central region, the difference has
a clear random character, indicating high-accuracy of the determined TILF.

Fig. 5 (a) Central regions of the ACFs of the generated trace slope 09 (blue solid line) and its TILF
approximation (red dashed line). (b) Difference between the ACFs of the generated and fitted traces
in plot (a). Note that the vertical scale in (b) is increased by a factor of ∼6.

Fig. 6 (a) Central regions of the ACF of the difference between the generated trace and its TILF approxi-
mation shown in Fig. 3(b). (b) ACF of white-noise trace with the same value of the rms variation. The inset
shows the difference of the ACFs in plots (a) and (b). Note that the vertical scale in inset is increased by
a factor of ∼4.
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ACFs. Almost over the entire range of lag values, except for
a very tiny central region, the difference has a clear random
character. The regions of the ACFs in the central vicinity of
lag l ¼ 0 are shown in Fig. 5 with enlarged scale. Here, also,
there is a very close resemblance of the two ACFs, almost
over the entire range of represented lags. This means that the
two stochastic processes, generated and approximated, are
spectrally close; therefore, the determined TILF is highly
accurate.

The ACF of the residual trace [Fig. 3(b)], which is the
difference between the generated trace and its TILF approxi-
mation, is shown in Fig. 6(a). The delta-function-like ACF
suggests a white-noise-like character of the residual trace.
For comparison, the ACF of a computer-generated white-
noise trace with the same value of the rms variation is
shown in Fig. 6(b). The inset in Fig. 6 represents the differ-
ence of the ACFs in Figs. 6(a) and 6(b), plotted with signifi-
cantly larger scale.

The two-peak character of the ACF difference in Fig. 6
can be a signature of residual MA contributions to the
stochastic process that are not approximated with the devel-
oped symmetric TILF model. However, ARMA modeling
of the residual trace in Fig. 3(b) with EViews 8 software
does not provide any reasonable model that would notice-
ably decrease the variance of the residual trace. This sug-
gests an almost perfect white-noise-like distribution of the
residuals.

6 Conclusion
In this work, we have continued the investigation started in
Refs. 8–11, which will potentially allow us to analytically
characterize/parameterize the polishing capabilities of differ-
ent vendors for x-ray optics. Based on the parametrization,
the expected surface profiles of the prospective x-ray optics
will be reliably simulated (forecast) prior to purchasing. The
simulated surface slope and height distributions of prospec-
tive optics (before they are fabricated) can be used for
estimations of the expected performance of x-ray optical
systems (beamlines and x-ray telescopes).12,13

We have analyzed a generalization of ARMA modeling
with the TILF approach. We have analytically shown that
the suggested symmetric TILF approximation has all the
advantages of one-sided AR and ARMA modeling, along
with improved fitting accuracy. It is also free of the causality
problem, which can be thought of as a limitation of ARMA
modeling of surface metrology data.

An algorithm for the identification of an optimal symmet-
ric TILF with a minimum number of parameters and smallest
residual error has been derived. We have verified the effi-
ciency of the developed algorithm applied to modeling of
a series of stochastic processes, which were generated with
the known ARMA model determined from surface slope
data of a state-of-the-art x-ray mirror.

The major application of the performed investigation of
stochastic modeling of 1-D optical surface topography is
in the field of x-ray reflecting optics, where the requirements
for the surface quality in the direction perpendicular to the
direction of the light incident at very small angle are signifi-
cantly (typically by a few orders of magnitude) relaxed (see,
e.g., Ref. 1 and references therein).

For more general 2-D applications, the considered TILF-
based modeling of surface metrology data provides the

possibility of a direct, straightforward generalization of
TILF modeling to 2-D random fields. The mathematical
foundations of the generalization are well established.29

However, its practical realization requires the development
of calculation algorithms and dedicated software for determi-
nation of the optimal TILF best-fit of measured 2-D surface
slope and height distributions. The optimization can be done
in a standard way, consisting of searching for the optimal
filter’s weights by using, e.g., a method similar to one devel-
oped in this work. For reliable TILF forecasting of new sur-
face topography based on measured and fitted ones, the
residual noise of the fit has to have a zero-mean variance
white Gaussian distribution. This is similar to the ARMA
modeling; therefore, the corresponding methods and criteria
could be applied to the statistical analysis of TILF modeling
in dedicated software under development.

The forthcoming investigations have to solve the question
about the uniqueness of the ARMA and TILF parametriza-
tions for a certain polishing process. This can be performed,
e.g., by cross-comparing the ARMA and TILF models for
different optics of identical fabrication. This work is also
in progress.

We did not discuss here the questions related to the appli-
cation of the considered stochastic modeling to performance
evaluation of particular optic and/or optical systems, or the
details of forecasting surface slope topographies suitable
for the simulations that also account for the detrended trend
and cycles. These topics will be discussed elsewhere. Note
that some related questions have been discussed in Refs. 12
and 13.
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