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Abstract. Karyotyping is an important process to classify chromo-
somes into standard classes and the results are routinely used by the
clinicians to diagnose cancers and genetic diseases. However, visual
karyotyping using microscopic images is time-consuming and tedious,
which reduces the diagnostic efficiency and accuracy. Although many
efforts have been made to develop computerized schemes for auto-
mated karyotyping, no schemes can get be performed without sub-
stantial human intervention. Instead of developing a method to clas-
sify all chromosome classes, we develop an automatic scheme to
detect abnormal metaphase cells by identifying a specific class of
chromosomes �class 22� and prescreen for suspicious chronic myeloid
leukemia �CML�. The scheme includes three steps: �1� iteratively seg-
ment randomly distributed individual chromosomes, �2� process seg-
mented chromosomes and compute image features to identify the
candidates, and �3� apply an adaptive matching template to identify
chromosomes of class 22. An image data set of 451 metaphase cells
extracted from bone marrow specimens of 30 positive and 30 nega-
tive cases for CML is selected to test the scheme’s performance. The
overall case-based classification accuracy is 93.3% �100% sensitivity
and 86.7% specificity�. The results demonstrate the feasibility of ap-
plying an automated scheme to detect or prescreen the suspicious
cancer cases. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction
ince chromosomal abnormalities are powerful biomarkers in

he detection and diagnosis of cancers and other genetic dis-
ases, visualization and classification of metaphase chromo-
ome cells into standard classes �karyotyping� is a fundamen-
al clinical procedure performed in genetic laboratories. A
ormal metaphase cell includes 46 chromosomes that are
rouped into homologous pairs �or classes� 1 to 22 as well as
sex chromosome pair of either XX for a female or XY for a
ale.1 Karyotyping aims to identify individual chromosomes

n a metaphase cell and arrange them in order based on the
stablished atlas.2 In 1960, Nowell and Hungerford3 described
unique and consistent abnormal pattern in chronic myeloid

eukemia �CML� patients in which one chromosome 9 and
ne chromosome 22 swap genes between each other �named a
�9;22� translocation�. Thus, the metaphase cell obtained
rom a CML patient only has one normal chromosome 9 and
ne normal chromosome 22. CML is also one of the four
ommon types of leukemia with a poor prognosis.4 Hence,

ddress all correspondence to: Xingwei Wang, University of Pittsburgh, Depart-
ent of Radiology, 3362 Fifth Avenue, Pittsburgh, Pennsylvania 15213. Tel:
12-641-2567. E-mail: wangx6@upmc.edu
ournal of Biomedical Optics 046026-
early detection and diagnosis of CML is clinically important
for optimal treatment of patients to reduce the mortality rate.

Figure 1 shows an example of an analyzable metaphase
cell �Fig. 1�a�� selected from a bone marrow specimen. After
karyotyping the metaphase cell �Fig. 1�b��, a t�9;22� translo-
cation was discovered and the patient was diagnosed with
CML. To show the details of this translocation, the ideogram
of these two chromosome classes �9 and 22� are displayed in
Figs. 2�a� and 2�b�, respectively. As seen in Fig. 2�c�, a piece
of chromosome 22 �band q11� breaks, involving a breakpoint
cluster region �BCR� gene and attaching to chromosome 9.
Similarly, some parts of chromosome 9 �band q34�, involving
a gene called the Abelson �ABL� gene, attaches to chromo-
some 22. This translocation makes chromosome 9 longer and
shortens chromosome 22 The BCR and ABL genes are5 fused
together into what is called the BCR-ABL cancer gene causing
CML.

Although karyotyping is a key process for cytogenetic di-
agnosis of cancers and genetic disorders, visual karyotyping is
very tedious and time-consuming. It also introduces substan-
tial interobserver variability. Thus, developing automated
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aryotyping schemes has been attracting research interests.2

n the last 30 years, the efforts in developing automated
aryotyping schemes primarily focused on the classification
f chromosome classes by assuming that all individual chro-
osomes in a cell have been presegmented. Thus, a set of

mage features was extracted and different machine learning
lassifiers including artificial neural networks,6–9 statistical
odels,10–14 a genetic algorithm,15 knowledge-based expert

chemes,16–18 a transportation algorithm,19 a homologue-
atching algorithm,20 and a fuzzy-logic based classifier21

ere developed and tested. For example, one study compared
he performance of a neural network and a maximum-
ikelihood-model-based classifier using the same data set and
eported22 similar classification accuracy rates of 82.8% �for
he neural network� and 81.7% �for the maximum likelihood

odel�. Since the performance of computerized schemes de-
ends on difficult levels of the testing datasets,23 another
tudy compared the classification performance of a neural-
etwork-based scheme using three publicly available data-
ases with different difficult levels. The study reported the
lassification error rates of 6.2, 17.8, and 22.7%, when apply-
ng the scheme to Copenhagen, Edinburgh, and Philadelphia
atabases, respectively.24 A previous study25 also showed that
y reducing the network size �i.e., the number of hidden neu-
ons�, the testing accuracy rate on the chromosome classifica-
ion increased from 75.8 to 88.3%. In our own previous
tudy,15 we developed an adaptively optimized neural-
etwork-based two-layer decision tree classifier. When apply-

Fig. 1 Example of �a� an analyzable metapha

ig. 2 �a� Ideogram of chromosomes 9 and 22, �b� special transloca-
ion between chromosome 9 and 22, and �c� Philadelphia chromo-
ome in t�9;22� translocations.
ournal of Biomedical Optics 046026-
ing it to identify and classify chromosomes in 150 metaphase
cells, the classification accuracy rates varied in different
classes of the chromosomes ranging from 67.5 to 97.5% �with
the overall accuracy rate of 86.8%�.

Despite the previous research efforts and the reported
progress, most schemes were trained and tested with limited
data sets, including normal metaphase chromosome cells ex-
tracted from nondiseased specimens. All individual chromo-
somes have been presegmented �manually or semiautomati-
cally�. However, the chromosomes overlapping with each
other in the metaphase cells obtained from clinical specimens
is often unavoidable. Automatically identifying and segment-
ing the overlapped chromosomes remains an unsolved techni-
cal challenge.26 As a result, it still requires substantial human
efforts to sort individual chromosomes and visually correct
karyotyping errors when using computerized schemes in the
clinical practice.2 Since the most recognized genetic abnor-
malities or diseases have specific numerical/structure changes
of only a few chromosomes, identifying such changes is ac-
tually the key factor in detecting these abnormalities and help-
ing clinicians make the correct diagnostic decision. Hence,
apart from developing the schemes for automated karyotyp-
ing, some researchers have focused on developing schemes to
detect specific classes of chromosomes without performing
the complete karyotyping.27 For example, one research group
developed a computerized scheme targeted to detect acute
promyelocytic leukemia �APL� that is associated with the dis-
tortions in chromosomes 15 and 17. The scheme applied a
data-driven homologue-matching algorithm to identify chro-
mosomes of class 17. If the scheme was unable to identify
two normal chromosomes 17 in a metaphase cell, the cell was
classified as positive for APL. Using a testing dataset involv-
ing 55 metaphase cells, the study reported 89.1 and 85.5%
cell classification accuracy by using the features extracted
from either the density profile or the binary band segmenta-
tion profile, respectively.28

In this study, we developed and tested a new computerized
scheme to automatically detect and identify normal chromo-
somes of class 22 using a clinical image data set of bone
marrow specimens. Our hypothesis is that if a cell has only
one normal chromosome 22, it is highly suspicious for CML
and a warning signal should be flagged. The clinicians should
pay more attention to examine the case involving the abnor-

and �b� the corresponding karyotyped image.
se cell
July/August 2010 � Vol. 15�4�2
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al cell. Therefore, the purpose of this study is to test whether
computerized scheme can automatically prescreen and iden-

ify which cases are suspicious for CML with high accuracy.

Material and Methods
n this study, a computerized scheme was developed to iden-
ify suspicious metaphase cells that may be associated with a
pecific type of leukemia �CML�, in which one of the two
hromosomes in class 22 either has the t�9;22� translocation
r is missing. For this purpose, our strategy is to detect and
dentify whether the cell contains two normal chromosomes in
lass 22. If the scheme detects either none or only one normal
hromosome 22 in a metaphase cell, this cell is flagged as
uspicious for being associated with CML. Figure 3 shows a
ow diagram of each step of our scheme. Following are the
etailed descriptions of our image data set and the steps of the
cheme.

.1 Image Data Set
o detect CML, a bone marrow specimen is obtained from the
atient. The technicians in the genetic laboratory process the
cquired specimen based on a standard protocol.29 Briefly, the
pecimen is incubated in RPMI �Roswell Park Memorial In-
titute� medium at 37 °C for 24 to 48 h. Warmed hypotonic
olution is added and the specimen is placed in 37 °C water-
ath for 30 min. The processed specimen is then washed four
o five consecutive times with a fresh cold fixative solution
5:2 methanol:acetic acid�, which is stored at −20 °C. During
he process, cell pellets are dropped on the clean glass slides,
ir-dried, and stained with Giemsa dye. For each case, three to
ix slides are prepared to produce a sufficient number of ana-
yzable metaphase cells. During the diagnostic process, the
ytogeneticist captures the analyzable metaphase cell images

ig. 3 Flow diagram of our computerized scheme to detect and iden-
ify chromosomes in class 22.
ournal of Biomedical Optics 046026-
using a digital camera installed on the Nikon LABOPHOT-2
optical microscope �Nikon Instruments, Inc., Japan� equipped
with an oil-immersion-based objective lens for 100� magni-
fication and has a numerical aperture of 1.45. Each recorded
digital image has the pixel size of 0.2�0.2 �m and a gray
level of 8 bits �from 0 to 255�. The captured image size is
768�576 pixels.

Recently, a large number of images acquired from the
clinical diagnostic process have been stored in our clinical
database. In this study, we first searched through this prees-
tablished clinical database and selected an image data set that
contains specimens from 30 verified positive and 30 negative
cases obtained from patients who underwent CML diagnosis.
Since in the clinical practice, the cytogeneticist typically se-
lect 5 to 20 analyzable metaphase cells for each case, we
found a total of 254 and 197 images �cells� were included in
these 30 positive and 30 negative cases, respectively. These
metaphase cells contain more than 20,000 chromosomes.
Note that in the clinical practice, a positive case may contain
a few normal cells �containing two normal chromosomes 22�,
while a negative case may also include a few “abnormal” cells
�i.e., loss of a few chromosomes 22 due to technical reasons
during specimen preparation�. In summary, in this image data
set, the cytogeneticists identified two normal chromosomes 22
in each of 187 cells �normal� and only one in each of 10 cells
�abnormal� in the 30 negative cases; while in the 30 positive
cases the cytogeneticists identified only one normal chromo-
some 22 in each of 245 cells �abnormal� and two in each of 9
cells �normal�.

2.2 Segmentation of Chromosomes in an Analyzable
Metaphase Cell

Although a metaphase cell typically includes approximately
46 chromosomes, the individual chromosomes are randomly
distributed and many are overlapped �Fig. 1�a��. Thus, the first
step of our scheme is to segment as many individual chromo-
somes as possible in one cell using the following method.
First, the scheme preprocesses the image by eliminating un-
related objects and applies a morphological opening filter to
reduce the image noise and small artifacts found in the back-
ground of the chromosome images. The scheme then applies a
region-growing algorithm to define �cluster� the remaining ar-
eas. A four-connect component-labeling algorithm30 and a
raster-scanning method are used to label all connected re-
gions. Based on the criteria of the size and circularity of a
region,31 the scheme removes the interphase nuclei �e.g., the
size �1000 pixels and the circularity �0.8�, stain debris, and
other small isolated areas. Second, the scheme focuses on the
detection and segmentation of the remaining individual chro-
mosomes. Although a pixel-value-based threshold method is
considered a simple and the most efficient method to segment
chromosomes, finding a fixed threshold that can optimally
segment chromosomes in the diverse clinical images is ex-
tremely difficult due to the large pixel value variation of the
chromosomes.32 To solve this problem, we applied an iterative
multiple threshold method to gradually segment chromo-
somes. Based on our previous experience working on the
large number of 8-bit chromosome images,15 we selected a
threshold array that includes five empirically selected values
of 210, 200, 190, 180, and 170, respectively. After applying
July/August 2010 � Vol. 15�4�3
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ne threshold to the image, a binary image buffer is created to
ecord all pixels smaller than the threshold. A labeling algo-
ithm is applied to label and segment the connected regions.
sing a set of knowledge-based rules on region size, circular-

ty, and width profile, the scheme classifies all labeled regions
nto two groups: �1� individual chromosomes �segmentation
uccessful� and �2� clustered or overlapped chromosomes
segmentation failed�. The successfully segmented chromo-
omes are removed from the original image buffer and saved
n a new buffer. The next threshold is followed and applied to
he original image buffer again to segment the remaining
hromosomes. This process is repeated five times in our cur-
ent computerized scheme.

.3 Processing Individual Chromosomes and Feature
Extraction

he second step of the scheme is to search for and identify the
nitial candidates for chromosome 22. Since chromosome 22
s a relatively short chromosome, our scheme first identifies
he candidates for chromosome 22 using a simple length cri-
erion to eliminate all chromosomes with relatively longer
ength �longer than a preestablished threshold�. In our experi-
ent, we measured the length of all chromosomes of class 22

n the images of our data set and set up the threshold as 125%
f the maximum length of the measurement. To classify
hether these selected candidates are true chromosomes of

lass 22, not other types of short chromosomes or broken
arts of long chromosomes, a set of image features must be
xtracted and computed from each initially selected candidate.
efore computing image features from three profiles de-

cribed later in this section, the scheme must perform several
dditional steps to define the principal axis of a chromosome
nd align the axis in the vertical �y� direction through chro-
osome rotation. Since the procedure of defining the princi-

al axis and the axis rotation can be applied to all chromo-
omes in a metaphase cell �not being limited only to
hromosome 22�, to better illustrate this process in the follow-
ng descriptions, we selected the longer chromosome 3 as an
xample �Fig. 4�.

.3.1 Identifying a convex polygon using a Graham
scan

he scheme uses a Sobel filter to detect the contour of each
egmented and selected chromosome �Fig. 4�a�� and records
he corresponding locations of the contour points �Fig. 4�b��.
fter detecting the contour points of the chromosome, the

ig. 4 Example of finding a minimum enclosing rectangle of a chro-
osome: �a� an original chromosome, �b� the contour of the chromo-

ome detected by a Sobel filter, and �c� the convex polygon obtained
y the Graham scan.
ournal of Biomedical Optics 046026-
convex polygon is computed using a Graham scan.33 After the
Graham scan, the vertices of this convex polygon must be
identified and recorded. For each point P, the slopes between
the previous point and the next point are calculated. If these
two slopes are the same, P will be deleted. Figure 4�c� is the
output of a convex polygon of the chromosome �Fig. 4�a��
after implementing the Graham scan and vertex search.

2.3.2 Searching for a minimum enclosing rectangle
for the convex polygon

In the next step, the scheme identifies a minimum enclosing
rectangle �MER� for the defined convex polygon. For this
purpose, Toussaint34 proposed an algorithm to search for
MER by rotating calipers. First, it computes a new set of
angles between four sides of the polygon and a rectangle that
passes through all these four vertices. Then, the procedure is
repeated to search for the rectangle until it has scanned the
entire convex polygon. Based on the same theory that the
MER for a convex hull has a side collinear with one of the
edges of the polygon, we proposed and tested a new MER-
searching algorithm with improved computational efficiency
by substantially reducing the searching points on the defined
convex polygon. The algorithm includes the following steps:

1. The scheme searches for the initial four extreme points
along both the x and y directions of the convex polygon,
which are recorded as xmax, xmin, ymax, and ymin. It constructs
a rectangle composed of four lines through these extreme
points. The beginning point is V0 with the minimum value
xmin in the x direction. Figure 5�a� displays the rectangle ob-
tained by the initial four extreme points.

2. The scheme defines two vectors � and � �as shown in
Fig. 6�a��. Vector � is constructed from point Vi to Vi+1, i
=0, . . . , istop, and the vector � is perpendicular to the � vec-
tor. The scheme searches for the four new extreme points
along the � and � directions to obtain a new MER.

3. The scheme searches for two new extreme points
E� max and E� min along the �-positive direction �Fig. 6�a��.
Let � j be a vector that is constructed from the point Vj�j
=0, . . . ,N−1, j� i , j� i+1� to Vi, and ��Vj� is the orthogo-
nal projection of the point Vj projected onto the vector �.
Two extreme points can be found by utilizing the following
pseudocode: Input E� max=E� min=0; for the point Vj, �j
=0, . . . ,N−1, j� i , j� i+1�. If � ·� j �E� max, then E� max
=Vj; If � ·� j� E� min, then E� min=Vj.

4. The scheme searches for another two extreme points
E and E along the �-positive direction �Fig. 6�b��.

Fig. 5 �a� Initial rectangle constructed from the initial four extreme
points in both the x and y directions, �b� an example of rotating the
rectangle found in the first step by using the � direction composed by
V0 and V1, �c� the final minimum enclosing rectangle of the chromo-
some, and �d� the final rotated chromosome.
� max � min

July/August 2010 � Vol. 15�4�4
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ince the rectangle always coincides with the line Vi to Vi+1,

� min=Vi=Vi+1. The pseudo code to search for the maximum
oint E� max is: For each point Vj�xj ,yj�, �j=0, . . . ,N−1, j
i , j� i+1�, calculate the distance between Vj�xj ,yj� to the

ector �. Input Dmax=0; If Dj = �m1xj −yj +d1� / �m1
2+1�1/2

Dmax, then E� max=Vj, in which m1= �yi+1−yi� / �xi+1−xi�,
1=yi−xi� �yi+1−yi� / �xi+1−xi�.

5. The scheme constructs a new rectangle from the de-
ected four extreme points in both the � and � directions. The
ines of this rectangle are parallel to the directions of two
ectors � and �. One side of this rectangle coincides with the
ine composed of Vi and Vi+1. The scheme computes the area
f a new rectangle: AreaN= �� / �� � ·E� max
�� / �� � � ·E� min��Dmax. Figure 5�b� is a rectangle and one
f its lines is constructed by V0 and V1.

6. If the area of the new rectangle is smaller than the old
rea, the scheme keeps the current rectangle and deletes the
ld one. The scheme further rotates the rectangle in the coun-
erclockwise direction.

7. The scheme repeats steps 3 to 6 until the rectangle has
een rotated 180 deg. The rectangle with the minimum area is
elected as the final minimum enclosing rectangle for a con-
ex polygon. Figure 5�c� is the finally identified MER to
over the chromosome.

.3.3 Feature extractions
fter the MER is obtained, the scheme rotates the chromo-

ome to make its principal axis parallel to the y axis. A de-
ailed description of computing the principle axis was re-
orted in our previous study.35 Figure 5�d� shows the aligned
hromosome after the automated rotation process. After rota-
ion, a segmented chromosome is aligned in the vertical posi-
ion and its principal axis is calculated. The scheme then ex-
racts and computes chromosome image features based on
hree profiles, namely, the density, shape, and banding profile.
ach profile defines a 1-D graph of a rotated chromosome
omputed at a sequence of points along the principal axis. The
ensity profile is calculated as D�x�= ��i=1

n gi�x�� /n, where

i�x� is the gray value of the chromosome projected on the
rincipal axis, and n is the number of all pixels in each per-
endicular line. Shape profile S�x�=n is the number of all
ixels in each perpendicular line of the principal axis of the

ig. 6 Constructing a rectangle by four extreme points in the � and �
wo extreme points in the � direction, and �c� constructing a rectangl
ournal of Biomedical Optics 046026-
chromosome. A banding profile is computed by processing a
density profile D�x� with a nonlinear transform filter defined
by the Kramer and Bruckner method.36 In this profile, each
band is characterized by a uniform density and the transitions
between neighboring bands are defined as the step functions.37

By assuming that x is the index number of a profile, B�x� is an
original banding profile obtained by a median filtered density
profile, IB�x� is an idealized banding profile, NF�B�x�� is a
nonlinear filter for B�x�, and N�x� is neighborhood of B�x�.
We can be compute IB�x� using the following equations:

N�x� = �B�x − 1�,B�x�,B�x + 1�� , �1�

DIFMAX = MAX�N�x�� − B�x� , �2�

DIFMIN = B�x� − MIN�N�x�� , �3�

IB�x� = NF�B�x��

= �B�x� + DIFMAX/R if DIFMAX � DIFMIN

B�x� − DIFMIN/R if DIFMIN � DIFMAX.
�
�4�

Specifically, an iterative computing method is applied to iden-
tify the idealized IB�x�. The iterations are configured to con-
tinue until the result of the current iteration remains the same
as the previous one. The idealized banding profile can avoid
the transitions between black and white bands and reduce er-
rors of analyzing band features. For example, Fig. 7 illustrates
the steps to obtain the idealized banding profile on a normal
chromosome 22.

To extract and compute chromosome features from these
three profiles, the scheme must identify the centromere of a
chromosome �a reference point�. The centromere is a unique
region in the chromosome where the chromatids are joined
and by which the chromosome is attached to the spindle dur-
ing cell division.38 Usually, the centromere is the narrowest
place in a chromosome. There are three types of centromeres:
metacentric, submetacentric, and acrocentric. A centromere
separates a chromosome into two arms: a short arm �p-arm�
and a long arm �q-arm�. How to identify different types of

ns: �a� searching two extreme points in the � direction, �b� searching
four new extreme points.
directio
e from
July/August 2010 � Vol. 15�4�5
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entromeres and polarities �which arm is a p-arm� has been
eported elsewhere.35 Chromosome 22 is acrocentric and it
ontains two dark bands. The darkest band is located just
elow the centromere. The lighter of these two dark bands is
ituated under the darkest band. To identify chromosome 22,
he following features are extracted: �1� the size of a chromo-
ome �S�; �2� the intensity �or the average gray level� of a
hromosome; �3� the standard deviation of the intensity of a
hromosome; �4� the centromere index �CI�, which is com-
uted as the ratio of the length of a shorter arm to the total
ength of a chromosome; �5� the darkest band index �DI�,
hich is calculated by the location of the darkest band to the

otal length of a chromosome; �6� the number of the darkest
ands that is obtained by applying a four-component labeling
lgorithm30 to the binary chromosome image; and �7� the
arkest band ratio, which is computed as DR=SD /S �SD is the
ize of the darkest band�. During the computations of these
eatures, if the intensity value of a pixel within a chromosome

ig. 7 Feature profiles of a normal chromosome 22 including �a� the n
eversed density profile, and �d� the idealized banding profile filtered
ntensity is the average gray value of a perpendicular line along the p

Table 1 Four conditions for pote

Number of the Darkest
Bands �ND� Darkest Band Index �D

1 �0.4

ig. 8 Examples of computing the templates from the normal chromos
2, �b� and �d� the normal chromosome 22, and �c� and �e� the calcu
ournal of Biomedical Optics 046026-
is smaller than a threshold, it is set as “1” and added to the
corresponding pixels for SD; otherwise, it is set as “0.” Based
on our experiments and observation on our image dataset, the
threshold was predetermined at 65.

2.4 Searching for the Homologue-Matched Pair of
Normal Chromosomes of Class 22

After chromosome segmentation, alignment, and feature ex-
traction, our scheme uses two additional steps to identify
chromosome 22. From initially selected candidates of chro-
mosome 22, the scheme sets up four rules �Table 1� to further
identify them. If one candidate passes all of these four rules, it
stays for further analysis; otherwise, it is discarded. In this
step, a set of final candidates is selected. Then the scheme
applies a template-matching algorithm to classify each re-
maining candidate. Specifically, the scheme computes the nor-
malized cross-correlation score between a candidate and the

hromosome 22, �b� the original density profile, �c� the median-filtered
nlinear filter. �Note length is the principal axis of a chromosome and
l axis of a chromosome.�

andidates of chromosome 22.

rkest Band Ratio �DR� Centromere Index �CI�

�0.02 �0.25

acquired in bone marrow: �a� the prototype template of chromosome
orresponding reference template of chromosome 22 in �b� and �d�.
ormal c
by a no
rincipa
ntial c

I� Da
ome 22
lated c
July/August 2010 � Vol. 15�4�6
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eference �standard� template of chromosome 22 �Fig. 8�a��.
Due to the uncontrollable technical aspects during the

linical processing of the bone marrow specimens, normal
hromosomes 22 in different metaphase cells could have
ariations in the actual length and intensity �pixel value� dis-
ribution. Therefore, the length and average intensity of the
eference template used in our scheme are adaptively adjusted
o fit with different matching candidates. Specifically, in each

atching test, the reference template is automatically adjusted
o have the same length and the same average intensity as the

atching candidate. By computing the length �L� and average
ntensity �D1� of the matching candidate, we defined the cor-
esponding parameters of the reference template as follows.
s shown in Fig. 8�a�, the reference template of chromosome
2 includes two dark bands. However, the intensity levels of
hese two dark bands are different. The one with higher inten-
ity or pixel value locates around L /5. The length of this dark
and is 2L /15 with the average intensity value �D2� of the
arkest bands in chromosome 22. The second dark band be-
ins at L /2 with the same length as the first dark band
2L /15� but with a different average intensity level �D3�,
hich is computed by D3= �D2+D1� /2. Using this adaptively

djusted template, the scheme computes the Pearson’s corre-
ation coefficient �cr1� between the detected matching candi-
ate and the corresponding template using the following equa-
ion:

cr1 =

�
i=1

N

�Xi − X̄��Yi − Ȳ�

	�
i=1

i=N

�Xi − X̄�2
1/2	�
i=1

i=N

�Xi − X̄�2
1/2 , �5�

here X̄= ��i=1
i=NXi� /N, Ȳ = ��i=1

N Yi� /N, Xi is the gray value of
’th pixel inside the template, Yi is the gray value of i’th pixel
nside the candidate, and N is the total number of pixels
ithin the candidate. The cr1 is defined as the similarity score.
y sorting through all the computed similarity scores, the

cheme selects one chromosome that has the highest score as
he first identified �primary� chromosome 22, which is re-
orded as 22-1.

After obtaining the primary chromosome 22, there are two
ethods to detect and identify whether there is the second

ormal chromosome 22 in a metaphase cell. The first method
s to directly select the second candidate in the sorted list of
omparing with the reference template as the second chromo-
ome 22. The second method is to use the identified normal
hromosome 22 �namely, 22-1� as a new template to redetect
hether there is a homologue matching pair for the chromo-

ome 22-1. Although the identified chromosome 22-1 is the
ost similar to the reference template, there is always a subtle

ifference between the real chromosome in the metaphase cell

Table 2 The similarity score betwee

�Rr−Rc� �Ir− Ic� �SDr−SDc�

�3 �20 �30

Note: r represents the primary chromosome 22-1 and c
ournal of Biomedical Optics 046026-
and the idealized template. Hence, to further improve detec-
tion accuracy, we used the second method to identify the sec-
ond normal chromosome 22. In this approach, a set of new
feature differences are computed and assessed between the
identified chromosome 22-1 and each of the remaining candi-
dates. The smaller the feature difference, the higher the degree
of similarity is between these two compared chromosomes.
Table 2 lists the thresholds of the six feature differences be-
tween the chromosome 22-1 and the candidate including �1�
the order of the size �R�, �2� the intensity of a chromosome
�I�, �3� the standard deviation of intensity inside the chromo-
some �SD�, �4� centromere index �CI�, �5� the location of
darkest band in the chromosome �LD�, and �6� the size ratio
�SR� between the chromosome 22-1 and the candidate. If the
candidate satisfied all six conditions, the scheme further com-
putes the cross-correlation score between the chromosome
22-1 and the candidate. Since the sizes of the potential candi-
dates of chromosome 22 are different, the cross-correlation
will be computed within the banding profile instead of the
chromosomes themselves. Comparing the length of the poten-
tial candidates’ banding profiles with one of the identified
primary chromosome 22-1, the shorter length is chosen as a
standard to calculate the cross-correlation20 between these two
chromosomes. The cross-correlation �cr2� is computed as

cr2 = �
i=1

i=L

�Xi − X̄��Yi − Ȳ�/�SxSy� ,

where Sx= ��i=1
i=L�Xi− X̄�2�1/2, Sy = ��i=1

i=L1�Yi− Ȳ�2�1/2, X̄

= ��i=1
i=LXi� /L, Ȳ = ��i=1

i=LYi� /L, and L is the shorter length be-
tween the potential candidate and the identified primary chro-
mosome 22-1. After analyzing all chromosomes in the candi-
date list and sorting this new set of similarity scores �cr2�, the
scheme selects the one with the highest correlation score
among those candidates with cr2�0.7 as the second normal
chromosome 22-2. Otherwise, the second normal chromo-
some 22 is considered not detected �or missing�.

2.5 Experimental Procedure and Data Analysis
In this study, we applied this new scheme to detect normal
chromosomes of class 22 in all 451 digital images of
metaphase chromosome cells obtained from 60 patients
�cases�. In our experiment, a set of classification criteria was
set up. If the scheme detects none or only one normal chro-
mosome of class 22, this metaphase cell is classified as an
“abnormal” �or positive� cell. If a matched homologue pair for
chromosomes 22 is identified within the metaphase cell, this
cell is classified as a “normal” or negative cell. Since one
diagnostic case typically involves from 5 to 20 analyzable
metaphase cells, based on our discussion with the cytogeneti-
cists in our genetic laboratory, we set up a threshold to deter-

al chromosome 22-1 and 22-2.

Ir−CIc� �LDr−LDc� �Sr−Sc � /Sr

0.2 �0.2 �0.3

nts the candidates of 22-2.
n norm

�C

�

represe
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ine the positive and negative cases for CML. Using this
hreshold, as long as four “abnormal” cells are detected in one
ase, we flag this case and classify it as the positive for CML.
e computed identification results on both positive and nega-

ive cases. Three types of performance levels, including the
hromosome-based, cell-based �in which all chromosomes 22
nvolved in the cell need to be correctly detected and identi-

ig. 9 Identification results of three metaphase cells including one abn
ne normal chromosome 22 was detected �b� and in two normal cell
2-1 is the first identified normal chromosome 22 with the highest s
ormal chromosome with the highest similarity score to 22-1.�
ournal of Biomedical Optics 046026-
fied�, and case-based �in which detection and/or classification
errors must be limited �4 cells�, were tabulated and reported.

3 Results
Figure 9 displays three examples that show the original mi-
croscopic images of the captured metaphase cells and the seg-

cell �a� and two normal cells �c� and �e�. In the abnormal cell �a� only
d �e� two normal chromosomes 22 were detected �d� and �f�. �Note:

ty score to the reference template and 22-2 is the second identified
ormal
s �c� an
imilari
July/August 2010 � Vol. 15�4�8
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entation and identification results in which most of the in-
ividual chromosomes were correctly segmented. After
hromosome alignment, the scheme sorts the segmented chro-
osomes based on their size. Then all separated chromo-

omes are displayed in the sorted order �Figs. 9�b�, 9�d�, and
�f��. In the first example �Fig. 9�a��, the cell was obtained
rom a positive case for CML and the scheme detected only
ne chromosome 22 �Fig. 9�b��. In the second and the third
xamples, the two cells are extracted from two negative cases.
he scheme correctly detected and identified two normal
hromosomes 22 in both examples. In the second example
Fig. 9�c��, two chromosomes 22 are not overlapped with the
ther chromosomes in the original metaphase cell. Thus, both
hromosomes were correctly segmented without losing any
eature information of this specific type of chromosome �Fig.
�d��. However, in the third example �Fig. 9�e��, a small frac-
ion of one chromosome 22 was lost during the segmentation
rocess due to the overlapped chromosomes. Hence, this
hromosome becomes shorter �Fig. 9�f��. Despite the loss of
artial information, this chromosome was still correctly iden-
ified because its cross-correlation score was higher than �1�
ther candidate chromosomes inside this cell and �2� the pre-
etermined threshold ��0.7�. In addition, although our
cheme was unable to correctly segment a few overlapped
hromosomes �Figs. 9�e� and 9�f��, as long as the most frac-
ion of chromosomes 22 were successfully segmented, the

Table 3 The results for identifying normal ch

Chromosome 22 Data Classified by Cytogeneticists

22-1 187 in normal cells

10 in abnormal cells

22-2 187

otal chromosomes 22 384

Total cells 197

Table 4 The results for identifying normal ch

Chromosome 22 Data Classified by Cytogeneticists

22-1 245 in abnormal cells

9 in normal cells

22-2 9 in normal cells

otal chromosomes 22 263

Total cells 254
ournal of Biomedical Optics 046026-
segmentation errors did not affect the performance of the
scheme to detect suspiciously positive cells or cases for CML.

Tables 3 and 4 summarize the scheme performance in de-
tecting and identifying chromosomes 22 in our testing image
data set. In 30 negative cases, the scheme correctly detected
and identified the first chromosome 22 �namely, 22-1� in 196
out of 197 cells �including 186 normal cells and 10 abnormal
cells�. The scheme was unable to detect one normal chromo-
some 22 in one normal cell. The scheme also detected the
second chromosome 22 in 162 out of 187 cells, resulting in
missing detecting the second chromosome 22 in 25 cells.
Thus, in a total of 384 chromosomes 22 visually identified by
the cytogeneticists, the scheme correctly detected 358 of
them, resulting in the chromosome-based accuracy rate of
93.2%. For the 197 cells included in the 30 negative cases,
172 were classified as negative cells and 25 were classified as
positive cells. Hence, the cell-based accuracy rate is 87.3%
�Table 3�. In the 30 positive cases, the scheme achieved
94.7% chromosome-based accuracy rate and 94.5% cell-based
accuracy rate �Table 4�. Combing 30 negative and 30 positive
cases together, the chromosome-based and the cell-based ac-
curacy rates are 93.8% �607 /647� and 91.4% �412 /451�, re-
spectively.

The experimental results also show that there are two types
of errors resulting in a total of 40 incorrect decisions in the
detection and identification of chromosomes 22. The first one

me 22 in 30 negative cases for CML.

Proposed Scheme

The Accuracy Rate of
Our Proposed SchemeCorrect Incorrect

186 1 99.5%

10 0

162 25 86.6%

358 26 93.2%

172 25 87.3%

me 22 in 30 positive cases for CML.

Proposed Scheme

The Accuracy Rate of
Our Proposed SchemeCorrect Incorrect

232 13 94.9%

9 0

8 1 88.9%

249 14 94.7%

240 14 94.5%
romoso
romoso
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s the inability to detect chromosome 22 due to the lower
imilarity scores �� threshold�. The scheme reported that 33
ormal chromosomes 22 were missing. The second one is
isclassification. In this testing data set, the scheme misclas-

ified one chromosome 19, three chromosomes 20, and three
hromosomes 21 as chromosomes 22, respectively. Hence, in
his experiment the 82.5% �33 /40� of errors was due to the
isdetection and only 17.5% �7 /40� was caused by misclas-

ification. The detailed distribution of these 40 misdetections
r misclassifications in both chromosomes 22-1 and 22-2 is
hown in Fig. 10. Since each of 30 positive and 30 negative
ases includes multiple analyzable metaphase cells �5 to 20�,
he scheme detected at least four abnormal cells in each of all
0 positive cases and 4 negative cases �Table 5�. Based on our
reestablished classification rules, the scheme detects 34 posi-
ive cases and 26 negative cases in our testing data set. There-
ore, the case-based accuracy is 93.3% �56 of 60�. The scheme
chieved 100% sensitivity and 86.7% specificity when apply-
ng to this testing data set.

Discussion
n this study, a new computerized scheme was developed and
ested to automatically segment individual chromosomes from
he metaphase cells as well as to detect and identify the nor-

al chromosomes of class 22 among the segmented chromo-
omes. The scheme has a number of unique characteristics.
irst, we applied and tested a new method to iteratively seg-
ent chromosomes with varying gray-level distributions. The

xperimental results show that this simple iterative threshold-

ig. 10 Histogram of the misdetection or misclassification of normal
hromosomes 22. Note: Error type 1, chromosome 22 is missing �not
etected�; error type 2, chromosome 19 is misclassified as chromo-
ome 22; error type 3, chromosome 20 is misclassified as chromo-
ome 22; and error type 4, chromosome 21 is misclassified as chro-
osome 22.

Table 5 The case-based automated classification results.

30 Normal Cases 30 Abnormal Cases

omputerized scheme Correct Incorrect Correct Incorrect

26 4 30 0
ournal of Biomedical Optics 046026-1
ing method reduces or minimizes the impact of the large
variations in the cell intensity �gray level� on the accuracy and
reliability of segmentation. Second, since the chromosomes
segmented from the metaphase cell are randomly distributed
in both positions and orientations, we applied a series of al-
gorithms to align all segmented chromosome. The experimen-
tal results show that these algorithms are able to correctly
detect the principal axis of segmented chromosomes in all 24
classes �1-22, X, and Y� and rotate �align� each chromosome
into the defaulted orientation, as shown in Fig. 9. Thus, the
image features computed from each individual chromosome
can be more consistent and comparable in the next step of the
template matching. Third, we recognized that chromosomes
of the same class in different metaphase cells could be differ-
ent in both size and intensity distribution due to the uncon-
trollable clinical environments. To compensate for such varia-
tions in the different specimens or cells, we designed a unique
dynamic template for chromosome 22. Its parameters �includ-
ing the length and average intensity level� are adaptively ad-
justed based on the different matching chromosomes. Fourth,
our scheme is a model- or knowledge-based scheme. Unlike
the previously reported data-driven template-matching
schemes that require training and cross-validation, our ap-
proach does not involve any training process �avoiding the
issues of possible overtraining�. Thus, the entire data set was
used to test the scheme performance, which maximizes the
capacity of the testing data set and increases the reliability of
the testing results.

Our scheme also has a number of unique application char-
acteristics. First, although metaphase chromosome cells can
be generated from different specimens �i.e., peripheral blood
and bone marrow�, the image quality �or visibility� of
metaphase cells varies significantly.39 In the diagnosis of leu-
kemia, bone marrow is considered to be the most informative
tissue for cytogenetic study. However, karyotyping of
metaphase cells obtained from bone marrow is much more
difficult due to its lower level of chromosome banding, lower
contrast of morphologies, and shorter length. In the clinical
practice, the cytogeneticitists typically must spend more time
and effort in karyotyping bone marrow compared with periph-
eral blood or other specimens. Applying computerized
schemes for the bone marrow specimens can be potentially
more helpful to the clinicians in the clinical practice, but it is
also technically more challenging. Therefore, the relatively
high accuracy of our scheme when applied to a diverse data
set of 451 cells from 60 cases observed in this study is en-
couraging. The overall cell-based accuracy of 91.4% achieved
in this study is very comparable to or higher than the accuracy
level reported in previous studies for the similar detection
tasks �i.e., 89.1% for detecting normal pair of chromosomes
17 in Ref. 28�. Second, although our scheme was only applied
to detect and identify chromosome 22, the potential of this
scheme is not limited to the detection and classification of this
specific chromosome class. Given the existence of the knowl-
edge of all chromosome classes, it would not be difficult to
build and test the templates for the other classes of the chro-
mosomes. The image processing steps implemented in our
scheme are also relatively easily applied to segment other
classes of chromosomes and extract or compute their features
with minor modifications.
July/August 2010 � Vol. 15�4�0
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Despite the encouraging results, this is a preliminary study
nd it also has a number of limitations. First, the automated
eparation of severely overlapped chromosomes remains a
echnical challenge. This is a prime failure of current comput-
rized schemes for automated karyotyping.2 However, a com-
uterized scheme that aims to detect and identify only a spe-
ific class of chromosomes is less impaired than automated
aryotyping. For example, some overlapping chromosomes
ere not correctly separated in the image, as shown in Fig.
�f�, but the scheme still correctly detected and identified two
hromosomes of class 22. However, since our scheme applies
hree steps �Fig. 3� to identify chromosome 22, we recognized
hat similar to all other computerized schemes using multiple
rocessing steps, our scheme can miss a few normal chromo-
omes of class 22 in any of these three steps. The results of
his study also showed that the majority of the error was
aused by the misdetection of the chromosomes �82.5%�.
hus, improving the performance of automated separation of
verlapped chromosomes remains an important research topic
n future studies. Second, at the current stage, our scheme can
nly be used to prescreen for CML based on a simple charac-
eristic of whether the metaphase cell includes two normal
hromosomes of class 22. Because the scheme is unable to
ecognize why the normal chromosomes are not detected, it is
ot a completely computerized scheme that can actually de-
ect t�9;22� translocation. Third, in our testing data set, the
one marrow specimens are acquired from patients who un-
erwent CML diagnosis and these cases have the t�9;22�
ranslocation involving the distortion of both chromosomes 9
nd 22, this scheme only focused on detecting chromosomes
2, which is typically the first chromosome class to be visu-
lly detected and analyzed for CML patients in a routine clini-
al practice. In a future study, we will expand our scheme to
etect and identify chromosomes 9, which may help improve
he case-based performance in classifying between the posi-
ive and negative cases for CML. Finally, we selected a di-
erse image data set from a clinical database in this study.
owever, the size of the data set remains relatively small.
herefore, before we can demonstrate any clinical application
tility, the performance and robustness of this scheme must be
urther tested by using much larger and more diverse image
ata sets in the future studies.
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