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Abstract. Topical 5-aminolevulinic acid �ALA� is widely used in pho-
todynamic therapy �PDT� of actinic keratoses �AK�, a type of prema-
lignant skin lesion. However, the optimal time between ALA applica-
tion and exposure to light has not been carefully investigated. Our
objective is to study the kinetics of protoporphyrin IX �PpIX� accumu-
lation in AK after short contact ALA and relate this to erythemal re-
sponses. Using a noninvasive dosimeter, PpIX fluorescence measure-
ments �5 replicates� were taken at 20-min intervals for 2 h following
ALA application, in 63 AK in 20 patients. Data were analyzed for
maximal fluorescent signal obtained, kinetic slope, and changes in
erythema. Our results show that PpIX accumulation was linear over
time, becoming statistically higher than background in 48% of all
lesions by 20 min, 92% of lesions by 1 h, and 100% of lesions by
2 h. PpIX accumulation was roughly correlated with changes in le-
sional erythema post-PDT. We conclude that significant amounts of
PpIX are produced in all AK lesions by 2 h. The linear kinetics of
accumulation suggest that shorter ALA application times may be effi-
cacious in many patients. Noninvasive fluorescence monitoring of
PpIX may be useful to delineate areas of high PpIX accumulation
within precancerous areas of the skin. © 2010 Society of Photo-Optical Instru-
mentation Engineers. �DOI: 10.1117/1.3484255�
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Introduction

hotodynamic therapy �PDT� for actinic keratoses �AK�, us-
ng porphyrin precursors that prime cells to accumulate high
evels of intracellular photosensitizer followed by exposure to
trong visible light, is now a popular treatment modality
orldwide.1 In the United States, the combination of
-aminolevulinate �ALA� and blue light �417 nm� was ap-
roved in 1999 for AK, while in Europe, the combination of
ethyl-aminolevulinate and red light ��630 nm� is now
idely employed for both AK and nonmelanoma skin

ancers.2,3 However, the question of how long before irradia-
ion these precursor drugs must be applied in order to obtain a
seful level of photosensitizer and a satisfactory response to
DT has not been completely answered. For example, the

ddress all correspondence to: Edward Maytin, MD PhD, Desk A61, Dermatol-
gy, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195. Tel: 216-
45-6676; E-mail: maytine@ccf.org
ournal of Biomedical Optics 051607-
original FDA approval of PDT for the treatment of nonhyper-
trophic AK of the face and scalp specified a 14- to 18-h drug
incubation time after application of 20% ALA �Levulan Kera-
stick; DUSA Pharmaceuticals, Inc., Wilmington, Massachu-
setts�, followed by irradiation with 417-nm blue light at
10 J /cm2 for 1000 s �Ref. 4�. However, because patients
must make two office visits �on the first day for drug applica-
tion, and on the second day for light exposure�, this regimen
was inconvenient. When Touma et al.5 demonstrated in 2004
that shorter ALA incubation times �1, 2, or 3 h� were effective
for treatment of AK, clinicians began experimenting infor-
mally with reduced contact times in their practices. Many now
routinely employ a 2-h drug-light interval, and therapeutic
efficacy has been reported with even shorter contact times, for
example after 30, 45, or 60 min �Refs. 6–8�. However, the
biological rationale for PDT using short-contact times remains

1083-3668/2010/15�5�/051607/8/$25.00 © 2010 SPIE
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n open question. Mechanisms by which efficacy under short-
ontact conditions may occur have not been established, and
he question of how much intracellular PpIX is necessary to
chieve therapeutic destruction of preneoplastic cells has not
een adequately addressed.

In this report, in situ fluorescence measurements of photo-
ensitizer �PpIX� levels were used to address the hypothesis
hat changes in PpIX in AK lesions after short-contact ALA
pplication are predictive of cutaneous responses to PDT.
rythema after irradiation was assessed as the primary clinical
utcome; the question of whether erythema can be correlated
ith rates of PpIX accumulation, maximum PpIX attained, or

ffectiveness of photobleaching was addressed.

Patients/Methods
.1 Study Design
his small observational study of 63 AK in 20 patients was
esigned to measure relative changes in PpIX levels in the
kin following application of ALA under routine clinical con-
itions. The study was approved by the Institutional Review
oard of the Cleveland Clinic and conducted according to the
rinciples of the Declaration of Helsinki. Interested patients
eceived verbal and written information about the study prior
o the first visit; signed informed consent was obtained. The
tudy duration was 4 weeks, including the treatment visit and
1-month follow-up visit.

.2 Patients: Inclusion and Exclusion Criteria
ales and females with nonhypertrophic AK of the face or

calp were eligible. AK lesions were clinically defined as
caly patches of skin that were distinctly rough to palpation.
atients who were pregnant, nursing, or using any topical

reatment for AK were excluded. Immunosuppressed patients
n systemic steroids, cyclosporine, or mycophenolate mofetil
ere allowed in the study, although only one such patient was

ctually enrolled.

.3 Treatment and Measurement Procedures
n the day of PDT, the patient’s face or scalp was lightly

leansed with alcohol, and three AKs in different regions �i.e.,
eft face, forehead, right face� were identified and outlined
ith a pen. Areas adjacent to each lesion �perilesional;
0.5 to 1 cm away from the AK center�, and further away

distant; within 2 cm of the center� were also selected and
hotographed. Once the zones were selected, surface PpIX
easurements were taken using a hand-held fiber optic–based
uorescence dosimeter �described more fully later�. Then,
evulan Kerastick �aminolevulinic acid HCl for topical solu-

ion, 20%; DUSA Pharmaceuticals, Wilmington, Massachu-
etts� was applied to the entire face or scalp. Within 5 min,
nother set of dosimeter measurements was taken �defined as
ime zero�. Measurements were repeated every 20 min, out to
20 min. The skin was then gently wiped with a damp wash-
loth to remove remaining ALA, the patient was given pro-
ective eyewear, positioned in front of the Blu-U light source
DUSA Pharmaceuticals; �417 nm�, and 1000 s of light ex-
osure �10 J /cm2� was administered. Cold air, cold ultra-
ound gel, and cool washcloths were used for pain relief as
escribed in Ref. 9. After irradiation, photos were taken of the
ournal of Biomedical Optics 051607-
three previously marked areas. A final set of dosimeter read-
ings was taken within 5 min post-irradiation to assess how
much photobleaching of PpIX had occurred. At 48 h post-
treatment, a telephone call to the patient was made to identify
any problems or concerns. Patients returned to clinic at one
month to assess general clinical response and the need for any
additional treatment.

The fluorescence dosimeter used in this study was devel-
oped as described in Refs. 10–12, and is manufactured by
Aurora Optics, Inc. �Hanover, New Hampshire�. A
405-nm-wavelength laser diode sends excitation light down a
single 100-micron-diam quartz optical fiber to the skin; fluo-
rescent light is collected and returned to a photomultiplier
tube via a ring of seven optical fibers surrounding the excita-
tion fiber �Figs. 1�a� and 1�b��. Fluorescence is optically fil-
tered to detect only wavelengths above 690 nm, eliminating
the excitation light and emission from PpIX photobleaching
product fluorescence. For data acquisition, a laptop computer
running a customized LabView software program �National
Instruments, Inc.� initiates the laser with intensity modulation
at 200 Hz, allowing signal detection at this frequency, thereby
reducing effects of 1 / f noise and 60-Hz optical interference
from room lights; the emission signal was sampled at 10-kHz
rate for 1-s sampling periods. This was routinely repeated five
times to allow for assessment of the stability of the signal.
The average power delivered to the tissue is 1 mW, an energy
of 1 mJ per 1-s sample period, which has been found in pre-
vious studies to cause little photobleaching of the PpIX. The

Fig. 1 �a� Fluorescence dosimeter probe applied to patient skin during
measurement. �b� Close-up of probe tip, viewed end-on. The central
optical fiber carries excitation light �405 nm� to the skin, and the
peripheral optical fibers carry the fluorescent PpIX emissions back to
the detector. �c� Close-up of patient’s forehead prior to illumination
with blue light, to illustrate the relative locations of the clinical lesion
�AK�, the immediate perilesional zone �Peri�, and a distal region �Dis-
tant� that were selected for fluorescence measurements. �d� Appear-
ance of same forehead area following 2 h of topical 5-ALA and a
1000-s exposure to blue light. Note that the clinically selected AK
lesion and also the perilesional skin nearby show bright red erythema.
�Color online only.�
September/October 2010 � Vol. 15�5�2
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ve repeated measurements show significantly less than 10%
hotobleaching during a single acquisition.

The system was calibrated for intensity before each use;
emiautomated measurements are taken on a black negative
uorescence standard, followed by a blue positive fluores-
ence standard made from rubberized foam. With these data,
aily variations in response are automatically normalized, al-
owing quantitative comparison of measurements between ac-
uisition sessions. Data, in standard fluorescence units, are
table because of the calibration process but do not have spe-
ific units associated with them.

.4 Analysis of PpIX Fluorescence
luorescence dosimeter readings were in arbitrary units �AU�.
aximal increases in PpIX fluorescence ��F �, reported in

Table 1 Changes in PpIX fluorescence �maxima
lesions from twentya patients during the first 2 h

Patient
identifier Sex Age �yr�

Lesion
location

C

A m 74 Scalp

B f 60 Face

C f 65 Face

D m 74 Face

E m 61 Face

F f 75 Face

G f 72 Face

H f 46 Face

I m 71 Face

J f 79 Face

K m 55 Scalp

L m 52 Scalp

M m 78 Scalp

N f 55 Face

O f 60 Face

P m 71 Scalp

Q m 62 Scalp

R f 71 Face

S m 76 Face

T m 55 Face

U m 65 Face

Patients are arranged in order of ascending value of th
Each value is an average of three AK lesions per patien
aPatients K �scalp� and T �face� are the same individual
max

ournal of Biomedical Optics 051607-
Tables 1 and 2, were calculated by subtracting time-zero read-
ings from the 2-h readings. Rates of PpIX production were
determined from the fluorescence versus time curves �AU/
min� for each lesion.

2.5 Analysis of Photobleaching
Photobleaching �PB� from the light treatment, which reflects
the relative loss of fluorescent signal due to destruction of
PpIX molecules during exposure to light, was calculated by
taking a last fluorescence measurement immediately post-
irradiation, correcting it by subtracting out the time-zero
background, dividing this difference by �Fmax, and subtract-
ing that value from 1. PB is quantified as a percentage and is
reported in Table 2.

attained, and rates of accumulation� within AK
pical 5-ALA.

in signal ��Fmax� Kinetic slope ��1000�

S.D. Mean S.D.

1.1 16.67 13.2

0.1 29.67 22.0

0.8 19.00 7.9

2.3 20.00 16.5

3.5 16.33 33.1

0.9 21.00 9.0

2.3 24.33 16.6

3.4 40.67 35.4

5.0 29.00 35.7

1.0 41.67 10.0

1.7 33.33 12.7

2.2 39.67 11.6

3.7 40.67 31.8

2.2 49.67 16.2

4.1 50.67 37.7

4.9 59.00 38.7

8.1 54.00 89.4

1.9 55.00 28.8

1.9 65.67 12.9

1.7 55.67 8.6

4.4 88.00 22.9

�Fmax.
l levels
after to

hange

Mean

1.82

1.95

2.32

2.44

2.49

2.51

2.96

4.04

4.07

4.43

4.77

5.17

5.31

5.64

5.86

6.24

6.41

6.73

6.82

7.43

10.93

eir mean
t.
.

September/October 2010 � Vol. 15�5�3
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Table 2 Clinical erythema responses in AK lesions, in relation to maximal change in fluorescence
��Fmax� and extent of photobleaching �PB�.

Lesion* �Fmax

PB
�%�

Erythema assessment

Change# Baseline## Comboa

E1 0.3 100 0 0 0
D1 0.4 3.7** 0 1 1
G1 0.5 50** 0 1 1
E2 0.7 39** 1 1 2
I1 0.9 49** 0 0 0
P1 1.1 83 0 1 1
Q1 1.2 38** 1 1 2
F1 1.4 96 0 1 1
I2 1.5 98 1 0 0
H1 1.5 52** 0 0 0
C1 1.7 50** 1 1 2
B1 1.9 53** 1 1 2
B2 1.9 63 0 0 0
D2 1.9 100 0 1 1
C2 2.1 38** 1 1 2
B3 2.1 64 1 0 1
Q2 2.3 98 1 1 2
O1 2.6 58** 1 1 2
H2 2.7 80 0 0 0
L1 3.0 53** 0 1 1
F2 3.0 83 0 1 1
F3 3.1 83 0 1 1
C3 3.2 67 0 1 1
G2 3.3 100 0 1 1
K1 3.6 84 0 1 1
J1 3.6 61** 1 1 2
M 3.9 75 1 1 2
K2 3.9 47** 1 1 2
J2 4.2 62** 1 1 2
O2 4.5 76 1 0 1
R1 4.6 97 0 1 1
D3 5.0 68 0 1 1
S1 5.0 55** 1 1 2
G3 5.1 99 0 1 1
L2 5.3 91 1 1 2
J3 5.5 80 1 1 2
T1 6.0 100 1 1 2
E3 6.6 94 1 1 2
S2 6.8 84 1 1 2
K3 6.8 65 1 1 2
T2 6.9 86 1 0 1
P2 7.0 91 0 1 1
L3 7.3 66 1 1 2
R2 7.3 84 0 1 1
H3 7.9 90 1 0 1
U1 8.1 79 1 1 2
R3 8.3 97 1 1 2
U2 8.7 88 1 1 2
S3 8.7 74 1 1 2
T3 9.4 91 1 1 2
ournal of Biomedical Optics September/October 2010 � Vol. 15�5�051607-4



2
E
v
g
w
p
1
q
W
A
n
g
i

3
T
P
t

F
P
c
a
A
a
E
l
P
�
�
f

Warren et al.: Noninvasive fluorescence monitoring of protoporphyrin IX production…

J

.6 Analysis of Erythema
rythema, defined as the presence of a red color due to blood
essel dilation in the skin, was scored from clinical photo-
raphs for each AK lesion by two independent observers who
ere blinded as to when the photographs had been taken. Two
arameters were evaluated, each in a binary fashion �0=no,
=yes�, by using the photographs to answer the following
uestions: �1� Did the lesion show erythema at baseline? �2�
as there a visible increase in erythema following PDT?
lso, to improve the discriminatory power of the data, the
umerical answers from questions 1 and 2 were added to-
ether to create an erythema combined score �ECS�, compiled
n Table 2 and Fig. 2; see Sec. 3 for further details.

Results and Discussion
wenty patients, already scheduled to undergo routine ALA-
DT for actinic keratoses treatment were serially enrolled in

his pilot study to monitor rates of PpIX accumulation in AK

Table 2

Lesion* �Fmax

PB
�%�

M 9.6 82
I3 9.8 99

O3 10.5 82
P3 10.7 98
Q3 15.8 89
U3 16.0 99

Values are for individual lesions, arranged in ascending
* Individual AK, identified by patient �A to U� and lesi
** Photobleaching value less than 63% �see text�.
# Change in erythema: 1 if erythema was increased a
## Baseline erythema: 1 if erythema was present before
a Erythema combined score, sum of the two preceding

ig. 2 Correlation between erythema and the maximal increase in
pIX fluorescence ��Fmax� at 2 h after ALA application. An erythema
ombined score �ECS� was determined from 56 lesions available for
nalysis and plotted versus �Fmax from the data in Table 2. An
NOVA �one-way between subjects� was performed to compare ECS
nd �Fmax using the Analyse-it v. 2.20 add-in software for Microsoft
xcel. Here, a significant effect of erythema on �Fmax at the p�0.05
evel was shown � *� for the three groups �F�2,58�=8.00, p=0.0009�.
ost hoc comparisons using the Tukey range test indicated that
Fmax values for an ECS of 2 �M=6.27, SD=3.91� versus ECS of 0

M=1.42, SD=0.83� were significantly different, as were �Fmax values
or ECS of 2 versus ECS of 1 �M=3.65, SD=2.57�.
ournal of Biomedical Optics 051607-
lesions on the face or scalp �Table 1�. Ages of the patients
ranged from 52 to 79 �mean 65.6 years�, and nine patients
�45%� were women. For the 21 ALA-PDT study sessions, a
total of 63 lesions and 126 adjacent sites were measured. An
example of how noninvasive measurements were done is il-
lustrated in Fig. 1. Although data were collected from both
within and around each AK lesion, our analysis for this report
will deal primarily with the PpIX produced within lesions. A
preliminary analysis of perilesional effects is discussed at the
end of this section.

3.1 Noninvasive Monitoring Shows Linear Rates of
Photosensitizer Accumulation in AK Lesions

Figure 3 illustrates the development of PpIX signals in AK
lesions as a function of time after ALA application, displayed
either as absolute fluorescence readings in a single lesion �Fig.
3�a�� or as normalized readings from multiple patients �Fig.
3�b��. In the latter example �Fig. 3�b��, readings from all le-
sions on the face �45 AK, from 15 patients� were combined
after normalization to the 2-h readings �set at 100%�, follow-
ing background subtraction. With either type of plot, the lin-
earity of PpIX accumulation of PpIX over the 2 h of contact
with ALA was evident, and linearity was observed for all but
a few of the 63 lesions studied. No significant differences in
lesional PpIX accumulation were observed for face versus
scalp.

PpIX accumulation between different lesions varied
widely. When expressed as a difference of PpIX readings
taken pre- and post-ALA application, the change in fluores-
cence among different lesions varied from no change to an
increase of greater than 10 A.U. at 2 h relative to baseline
�Fig. 3�c��. High variability was observed even after subtrac-
tion of the background �non-PpIX-related signal at zero time�,
as can be seen from the large standard deviations in �Fmax in
Table 1 �column 6�. While this large variability probably re-
flects several factors, including the biological heterogeneity
among lesions, it is interesting that the data do tend to cluster
in characteristic patterns in some patients. For example, from
Table 1, the mean PpIX signal attained in the three AK
lesions on the skin of patient U ��Fmax 10.93�4.4� were all
significantly higher than the three lesions on patient D

tinued.�

Erythema assessment

nge# Baseline## Comboa

1 1 2
1 1 2
1 1 2
0 1 1
1 1 2
1 1 2

of �Fmax.
, or 3�.

, 0 if unchanged after PDT.
if absent before PDT.
s.
�Con

Cha

order
on �1, 2

fter PDT
PDT, 0
column
September/October 2010 � Vol. 15�5�5
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�Fmax 2.44�2.3�, suggesting perhaps a fundamental differ-
nce in physiology between the two individuals �among other
xplanations�. The kinetics of PpIX accumulation within AK
esions followed a similar rank-order as the �Fmax values and
howed similar variability �Table 1, column 7�.

An important question, in terms of predicting therapeutic
electivity, is whether PpIX accumulates more in preneoplas-
ic skin �AK lesions� than in normal skin. In normal facial
kin of five subjects �from an area under the chin�, the mean
Fmax measured at 2 h after ALA treatment was 1.80�0.80.
atient A in Table 1 had nearly the same mean �Fmax value
1.82�, and patients B to I, while displaying mean �Fmax val-
es higher than normal skin, were statistically indistinguish-
ble from the normal skin readings. This suggests that the use
f aggregated values of �Fmax to predict lesion-selective be-
avior may not be very useful. However, an examination of
pIX fluorescence in individual lesions is more helpful �Table
�. The AK lesions in Table 2 have been arranged in ascend-
ng order of �Fmax values. Knowing that �Fmax in normal
kin is 1.80�0.80, one can see from Table 2 that the lowest
ne-third of �Fmax values �column 2� fall below or within this
ange. If one uses �Fmax of normal skin, plus two standard
eviations, as a cut-off to define a “significant increase” in
pIX levels, then AK lesions with an �Fmax of 3.4 or higher
ould be considered significantly elevated.

.2 Photobleaching in AK Lesions

n Table 2, it can be noted that the extent of photobleaching
PB� seems to correlate with �Fmax. To formally determine
hether photobleaching is significantly less efficient for le-

ions with a low PpIX signal, a formal statistical analysis
onfirmed that for AK lesions with �Fmax�2.0, the average
hotobleaching �PB=63%� is significantly less than for le-
ions with �Fmax greater than 2.0 �PB=78%; student’s t-test,
wo-tailed, assuming equal variance, P value of 0.008�. PB
alues less than 63% are indicated with two asterisks in Table
. Why this should be the case remains unknown, but one
ossible explanation could be that lesions with low �F and

ig. 3 �a� Example of raw data for an AK lesion on the left cheek of P
ithout background subtraction. Each point is the mean of five read

eadings taken from AK lesions of the face �15 patients, 45 lesions�. Da
ackground subtraction �n=45; mean±SEM�. �c� Box-and-whisker plo
t 2 h after ALA application. PpIX signals on the y axis represent the
eadings with background subtraction�. Circles represent individual le
max

ournal of Biomedical Optics 051607-
PB values are less optically transparent than other lesions, due
for example to the presence of a thick hyperkeratotic scale
overlying the lesion.

3.3 Erythema Correlated with the Amount of PpIX
Synthesized

Because erythema can be regarded as a surrogate biological
readout of photodynamic effects in the skin, the relationship
between PpIX levels, photobleaching, and erythema within
each individual AK lesion was examined �Table 2�. As de-
scribed in Sec. 2, the degree of redness �erythema� was evalu-
ated from clinical photographs and rated for increases in
erythema induced by PDT �Table 2, column 4�. A trend be-
tween �Fmax and increased erythema was noted, but this was
not statistically significant. Also evaluated was whether AK
showed erythema at baseline, to test the hypothesis that more
severely dysplastic and inflamed AK lesions might be more
responsive to PDT �Table 2, column 5�. Again, a weak trend
between �Fmax and erythema was noted. Interestingly, by
adding the two erythema parameters together to create a com-
bined score �Table 2, column 6�, a clear-cut relationship be-
tween PpIX levels and erythema emerged, with the erythema
combined score significantly correlated with �Fmax �Fig. 2�.

Regarding therapeutic responses, this study was not de-
signed to determine long-term clinical outcomes. At the
1-month follow-up visit, 7 of 20 patients had one or more
detectable AK. Whether these lesions represented treatment
failures or new AKs could not be determined because the
study protocol was not designed to specifically follow the
three lesions measured initially in each patient.

3.4 Majority of AKs Demonstrate Significant PpIX
Accumulation within 1 Hour

Despite the possibility of a few nonresponsive lesions, the
vast majority of the 63 AKs resolved at 1 month post-PDT,
regardless of their �Fmax status. This illustrates the following
conundrum for this type of clinical study: one simply does not
know how much PpIX is sufficient to trigger lesion resolution
since the biology of the PDT response �immune responses and

J. Fluorescent PpIX signal as a function of time after ALA application,
D; readings are expressed in arbitrary units �A.U.�. �b� Summary of
normalized to the maximal fluorescence reading in each patient, after
strate variability in maximal PpIX accumulation in 60 AK on the face
e in fluorescence between 2 h and time zero �i.e., 2-h fluorescence
atient
ings±S
ta are
t to illu
chang
sions.
September/October 2010 � Vol. 15�5�6
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ell death pathways� remains incompletely understood. There-
ore, the data were evaluated from a reverse perspective. As-
uming that detectable increases in PpIX ��Fmax�, no matter
ow small, were sufficient to generate a clinically significant
DT effect �because essentially all lesions in the study re-
olved after PDT�, the ability of noninvasive monitoring to
rst detect a change in fluorescence within the AK lesions was
valuated. As an objective threshold to define “time to first
ncrease,” the variability �S.D.� of the five repeated measure-

ents taken from the lesion at any given time point was em-
loyed. �Photobleaching during repeated measurements was
ound to be insignificant.� A threshold was set, and the pro-
ortion of AK lesions that successfully crossed that threshold
as evaluated using a student’s t-test to compare measure-
ents at the test time versus zero time �p�0.05 significance�

or each time point �Table 3�. If the threshold was defined as
ne standard deviation above the time-zero baseline, then
ithin 20 min after topical ALA application, half of all le-

ions �48%� showed a statistically significant increase in PpIX
uorescence. Essentially all �98.4%� did so by 2 h. Using a
ore stringent threshold, 3 S.D. above baseline, half of all

esions �46.1%� reached the threshold value within the first
our �Table 2, row 2�.

.5 Noninvasive Fluorescence Monitoring to Detect
Field Cancerization Effects

hile only the intralesional PpIX data have been rigorously
nalyzed, measurements from perilesional and distant sites �as
n Fig. 1�c�� were collected. A preliminary description of the

Table 3 Duration of 5-ALA exposure required fo
that reached the fluorescence threshold at the tim

Time �min� for

20 40

Threshold:

Baseline+1 S.D. 47.6% 28.5% 15

Baseline+3 S.D. 3.2% 25.4% 17

ig. 4 Regional patterns of PpIX-specific fluorescence �see text for furt
t location specified by D. D—distance from the center of the les
rea—range of �F in normal skin. PB—photobleached.
max

ournal of Biomedical Optics 051607-
typical patterns observed is given in Fig. 4. As a function of
the distance from the center of each AK �up to 2 cm away�,
PpIX measurements yielded three overall patterns �Fig. 4�.
Half �49%� of the 63 zones around the 63 AK in the study
showed highest readings within the lesion and lower readings
at the periphery �Fig. 4, pattern a�. Another 28% of regions
displayed an extended pattern �Fig. 4, pattern b� in which
perilesional readings were very similar to the intralesional
reading. Pattern b might be explained by the “field canceriza-
tion,” a clinically well-accepted phenomenon in which pre-
neoplastic changes within the skin extend well beyond the
clinically detectable lesion.13 Last, 23% of regions had lower
readings within the lesion than in the surrounding skin �Fig. 4,
pattern c�, although these readings were still higher than read-
ings from normal skin or photobleached lesions �Fig. 4, zone
shown in gray�. Pattern c might be explained by attenuation of
the fluorescence signal due to enhanced scattering �for ex-
ample, from scale on the AK lesion’s surface�.

4 Conclusions
PDT is now a popular modality for treatment of AK, and
physicians have tried to enhance convenience for the patient
by shortening the duration of ALA application from the origi-
nally recommended 14–18 h to 2 h or less, but without any
scientific justification. To address this lack of evidence, a de-
tailed kinetic study of PpIX accumulation in AK lesions and
adjacent skin during the first 2 h following topical application
of ALA was performed, using noninvasive fluorescence moni-

ccumulation in AK lesions. Proportion of lesions
icated.

cence to reach threshold

80–99 100–119 �120

Total:

6.4% 1.6% 0.0% 100%

17.5% 12.6% 23.8% 100%

lanation�. �Fmax, fluorescence at 2 h after ALA application, measured
, 1, or 2 cm�. P/L—identifier for patient/lesion from Table 2. Gray
r PpIX a
es ind

fluores

60

.9%

.5%
her exp
ion �0
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oring to measure PpIX in patients undergoing PDT under
outine clinical conditions. From the data, the following con-
lusions can be drawn:

1. Within the 2-h period examined, PpIX accumulated in a
linear fashion. The PpIX signal reached a threshold of
one standard deviation �S.D.� above baseline in half of
all lesions within the first 20 min of ALA contact time,
and in all lesions by 2 h.

2. With a more stringent threshold criterion, 46% of le-
sions reached 3 S.D. above baseline by 1 h, and 75%
did so by 2 h. Essentially all of the AK lesions showed
clinical resolution after this PDT regimen, so the PpIX
levels measured in the lesions were biologically signifi-
cant, by definition.

3. As a more proximal means to measure the biological
effects of PDT, the amount of erythema in AK lesions
immediately post-PDT was found to correlate with
PpIX accumulation, similar to previous observations of
a positive correlation between PpIX levels and post-
PDT erythema in normal skin.14,15

4. Elevated PpIX levels were demonstrated in areas of
photodamaged skin that appeared otherwise normal �the
field cancerization effect�. While fluorescence imaging
of PpIX has been proposed as a method to define the
borders of skin tumors prior to surgical removal,16–19

our findings suggest an additional potential use. Be-
cause the conversion of ALA to PpIX reflects changes
in metabolic activity within neoplastic cells,13,20 PpIX
fluorescence imaging should be further explored as a
technique to identify epidermal regions that harbor pre-
cancerous changes that might otherwise go undetected.
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