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Abstract. Optical coherence tomography (OCT) is a light-based intracoronary imaging modality that provides
high-resolution cross-sectional images of the luminal and plaque morphology. Currently, the segmentation of
OCT images and identification of the composition of plaque are mainly performed manually by expert observers.
However, this process is laborious and time consuming and its accuracy relies on the expertise of the observer.
To address these limitations, we present a methodology that is able to process the OCT data in a fully automated
fashion. The proposed methodology is able to detect the lumen borders in the OCT frames, identify the plaque
region, and detect four tissue types: calcium (CA), lipid tissue (LT), fibrous tissue (FT), and mixed tissue (MT).
The efficiency of the developed methodology was evaluated using annotations from 27 OCT pullbacks acquired
from 22 patients. High Pearson’s correlation coefficients were obtained between the output of the developed
methodology and the manual annotations (from 0.96 to 0.99), while no significant bias with good limits of agree-
ment was shown in the Bland-Altman analysis. The overlapping areas ratio between experts’ annotations and
methodology in detecting CA, LT, FT, and MT was 0.81, 0.71, 0.87, and 0.81, respectively. © 2014 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.2.026009]
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1 Introduction
Optical coherence tomography (OCT)1,2 is a relatively new im-
aging modality, which was introduced to overcome the limita-
tion of previous imaging techniques as it provides high
resolution cross-sectional images of coronary arteries. In con-
trast to intravascular ultrasound, OCT is based on the analysis
of reflected light, instead of acoustic waves, allowing visualiza-
tion of plaque features with a higher analysis (axial resolution:
12 to 18 μm, lateral resolution: 20 to 90 depending on the depth
of focus).3 The unique imaging resolution of OCT has drawn the
attention of the scientific community from its early stages.
However, its clinical applications were initially limited due to
the fact that imaging required blood removal. This drawback
was addressed with a proximal balloon occlusion4 which, how-
ever, caused ischemia and possibly vessel wall trauma. A later
approach used saline injection for blood removal but the slow
image acquisition speed restricted OCT imaging in short seg-
ments. The recent introduction of the second-generation OCT
systems, the so-called frequency domain OCT (FD-OCT),1

permits fast image acquisition (up to 160 frames∕s) and fast
pull-back speeds allowing thus visualization of long segments
within few seconds.5 These systems increased considerably

the applicability of OCT and today this modality constitutes
an indispensable tool in the clinical and research arena.

OCT allows evaluation of the luminal dimensions, assess-
ment of vessel wall morphology and identification of features
associated with increased vulnerability, such as the thickness
of fibrous cap, microcalcifications, neo-vessels, and the pres-
ence of macrophages, which cannot be evaluated by other intra-
vascular imaging modalities.6,7 OCT has limited penetration,6

and quite often does not allow imaging of the entire vessel
wall, especially in segments with large lumen and increased
plaque burden. However, its high resolution permits detailed
evaluation of the superficial plaque and nowadays this modality
is considered as the gold standard for the in vivo characterization
of plaque. According to the recently published expert consen-
sus,6–8 four different tissue types can be detected in OCT: cal-
cium (CA), that appears as a signal poor region with sharply
delineated borders, fibrous tissue (FT), that is portrayed as a
high back-scattering homogeneous area, lipid tissue (LT), that
is a shown as a signal poor region with diffuse-delineated
borders with a fast drop-off and little or no back-scattering sig-
nal, and mixed tissue (MT), that features characteristics from
multiple tissue types.
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Traditionally, OCT lumen detection and plaque characteriza-
tion9,10 was performed manually. However, this process is time
consuming and can be unreliable in the hands of nonexperienced
operators. To overcome these drawbacks and enhance the clini-
cal and research applications of OCT, several methodologies
have been developed for the automated processing of OCT
images.11,12 The most recent ones were proposed by Ughi et
al.13 and Tsantis et al.14 who presented an automated method-
ology that permitted detection of the lumen borders and the stent
struts, allowing evaluation of their apposition and coverage. Xu
et al.15 were the first who attempted to develop an automated
plaque characterization methodology. They used histological
images as gold standard and studied the backscattering and
attenuation coefficient in three tissue types (CA, LT, and FT),
aiming to determine a cutoff value for each tissue. Similarly,
the methodology proposed by van Soest et al.16 examined the
attenuation coefficients of healthy segments, intimal thickening
plaques, LT and fibrous caps infiltrated by macrophages.
However, both approaches failed to define fixed cutoff
values of the backscattering and attenuation coefficients that
would allow reliable plaque characterization. In addition, both
approaches analyzed the backscattering and attenuation coeffi-
cients across the entire A-lines without being able to identify
the plaque region. Wang et al.17 proposed a semiautomated
methodology for detecting CA. They segmented the lumen,
applied edge detection to detect roughly the CA borders, and
then, by applying active contours, they detected the CA borders.
However, the methodology had one major limitation: the occur-
rence of many false-positive CA which have to be removed
by the user manually to apply clinical measures. Although
the authors have proven that image processing techniques can
be applied to detect CA they did not present a plaque charac-
terization methodology.

In this study, for the first time, we introduce an automated
methodology for the segmentation of the lumen border and
the characterization of the composition of the superficial plaque
in OCT images. The methodology proposed for the identifica-
tion of the different tissue types relies on the combination of
medical knowledge, image processing, and machine learning
techniques and is able to process high-quality OCT images in
a fully automated manner without user interaction. The innova-
tive aspects of the proposed methodology are:

• It focuses on regional analysis of tissues, rather than sin-
gle A-scan-based analysis.

• The ability to detect accurately the lumen borders and
define a tissue area (TA).

• The fact that it is able to identify the tissue types with
a typical morphology.

The proposed approach was validated against the estimations
of expert observers in real patient data. Our results indicate that
our methodology can accurately detect luminal borders and
characterize the composition of superficial plaque.

2 Dataset
Twenty-seven OCT pullbacks from 22 patients, who underwent
OCT investigation for clinical purposes after giving consent,
were used to train and validate the proposed methodology.
The images were acquired by a C7XR Fourier Domain system
(Lightlab Imaging, Westford, Massachusetts) with the use of

an automated pull-back device under continuous injection of
contrast medium.

3 Materials and Methods
Four steps are followed in order to characterize the composition
of the plaque: image acquisition, detection of the TA, TA seg-
mentation, and plaque characterization. Each one of these stages
is described in detail in the following sections and is shown
schematically in Fig. 1.

3.1 Image Acquisition

OCT systems acquire individual A-lines containing the informa-
tion of the reflected optical energy as a function of time.18 These
A-lines are stored sequentially in a two-dimensional (2-D)
matrix (IMatrix) with each line corresponding to polar intensity
data Iðr; θÞ, with r representing the range dimension and θ the
acquisition angle. Each frame corresponds to an Iðr; θÞ dataset
(grayscale image). For the true morphology of the tissue to be
revealed, the polar 2-D data [Iðr; θÞ grayscale image] must be
converted to Cartesian coordinates [Iði; jÞ]. This transformation
is performed using: i ¼ r cos θ, j ¼ r sin θ.

A. Image acquisition

B. TA
definition

Polar intensity data OCT image

C. TA
segmentation

D. Tissue 
characterization

Calcium: 
Lipid pool:   
Fibrous tissue:
Mixed tissue:

The lumen border is 
detected and expanded 

up to 1.5 mm

The plaque region is 
detected within the TA

Calcium detection

Lipid pool 
enhancement 

Plaque region 
classification

Fig. 1 Schematical representation of the proposed plaque characteri-
zation methodology.
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3.2 Detection of the TA

A region in each OCT frame is determined for the plaque char-
acterization methodology to be applied. This region is called TA
and is located between the lumen border and the expanded (up to
1.5 mm) lumen border (outer border of the TA). The TA detec-
tion stage includes two steps: the detection of the lumen border
and the extraction of the outer border of the TA.

3.2.1 Lumen detection

Lumen border (Lmn) detection is performed in the polar OCT
images [Iðr; θÞ] [Fig. 2(a)–2(c)] and includes the following
steps:

1. Apply a Gaussian filter on the initial image [Iðr; θÞ].
2. Perform Otsu’s automatic thresholding method19 in

order to reveal binary objects and remove the catheter
pixels.

3. Remove the 8-connected neighborhood nonzero
objects (artifacts).

4. Remove the object close to the catheter with area less
than 1∕5 of the image area and mean intensity [of the
objects’ pixels that correspond to Iðr; θÞ image] higher
than 200. This area belongs to the catheter artifact
area Acath.

5. Scan each column of the image from top to bottom,
save the first nonzero pixel of the column, and connect
the nonzero pixels in order to find the lumen contour.

6. Transform the image from polar to Cartesian
coordinates.

3.2.2 Detection of the Outer Border of the TA

The gravitational center of the lumen border is determined in
each OCT frame and then 360 radii (with 1-deg interval) are
drawn toward the lumen border and expanded 1.5 mm distally
to the detected border. Our decision to focus on the superficial
plaque was based on the small tissue penetration of the intravas-
cular OCT systems (1 to 2 mm) and on the fact that there is a
decreased signal-to-noise ratio in the pixels, which depict tissues
that are deeply embedded in the plaque.6 The curve that con-
nects the distal edge of the drawn radius defines the outer border
of the TA (Lexpan

mn ) [Fig. 2(d)].

3.3 TA Segmentation

TA pixels belong either to plaque or to extravascular tissue. To
discriminate the pixels that belong to the plaque from those
that image extravascular tissue, a K-means algorithm is imple-
mented. This approach appeared to outperform other methods
that were tested (automatic thresholding, border detection) in
detecting the plaque area and was capable to identify the
CATA. A K-means algorithm partitions a given set of N obser-
vations fx1; : : : ; xNg, into a fixed number of K clusters
S ¼ ðS1; S2;: : : ; SKÞ in order to minimize the within cluster
sum of squares:20

arg min
S

XK
l¼1

X
xl∈Sι

kxl − μιk2; (1)

where μι is the mean of points in Sι.
The pixels corresponding to TA are classified to K ¼ 3 clus-

ters [Fig. 3(b)] (K ¼ 2 and 4 clusters were also tested) resulting
to a segmented image Isegmði; jÞ (Appendix A). The pixels that
were classified in the first two clusters (K1 and K2) have an
intermediate signal intensity and are likely to portray either
the superficial LT, FT, and MT while the pixels classified in
the third cluster ðK3Þ have a low signal intensity and are likely
to portray either the area behind the catheter artifact (ABcath), or
CA, or a signal poor region corresponding to deeply located LT
or extravascular tissue.

3.4 Plaque Characterization

Once the TA is segmented, the different plaque types can be
detected.

3.4.1 Calcium detection

CA appears as a signal-poor region with sharply delineated bor-
ders. After applying the K-means segmentation algorithm, the
sharply delineated borders belong either to K1 or K2 cluster
while the signal poor region located between these clusters to
K3 cluster [Figs. 3(a) and 3(b)]. Therefore to find the CA,
each radius of the Isegmði; jÞ [Fig. 3(b)] is scanned from the
lumen border to the outer border of the TA. The radial segment
which is clustered to K3 and is enclosed by pixels that belong to
the cluster K1 or K2 is labeled as calcium [Fig. 3(c)]. The above
procedure is shown schematically in Fig. 3.

(a) (b) 

(c) (d) 

Catheter  artifact

Area behind the
catheter artifact

Gravitational 
center of the lumen

Fig. 2 Detection of the lumen border and extraction of the tissue
area (TA): (a) Initial image in polar coordinates, (b) catheter and
catheter artifact removal, (c) the lumen border in polar coordinates,
and (d) lumen border marked with blue on the reconstructed OCT
image. To extract the outer border of the TA, radii are drawn toward
the lumen border and extended by 1.5 mm, the curve defined by
the distal end of the radius corresponds to the outer border of the
TA (yellow curve).
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3.4.2 Feature extraction

For each pixel of the area that corresponds to clusters K1 and
K2 [Fig. 3(b)], a set of texture and intensity-based features is
calculated in a n × n pixel neighborhood (Appendix B). Local
binary patterns (LBPs) and gray level co-occurrence matrices
(GLCMs) are the texture features which are employed.

The GLCM21 is a matrix with dimensions L × L, defined
over an image Iði; jÞ that calculates how often a pixel with
gray-level value i (grayscale intensity) occurs spatially adjacent
to a pixel with value j. The spatial relationship of the pixels is
defined by an offset ðDx;DyÞ as

Dx ¼ D · cosðθÞ; Dy ¼ D · sinðθÞ; (2)

where θ is the spatial direction and D is the Euclidean distance
between the pixels. For the proposed methodology, we compute
the co-occurrence matrices CðDx;DY Þði; jÞ using all the possible
values of θ ½θ ¼ ð0;45;90;135;180;225;270;315 degÞ� and D ¼
2 (D ¼ 1, 3 were also tested). Thus, eight CðDx;DY Þði; jÞ are
computed for each pixel in a n × n neighborhood. For each
co-occurrence matrix CðDx;DYÞði; jÞ, the following measures
are calculated:
Contrast:

fθcontrast ¼
XL
i¼1

XL
j¼1

ði − jÞCðDx;DyÞði; jÞ: (3)

Correlation:

fθcorrelation ¼
P

L
i¼1

P
L
j¼1½ði · jÞCðDx;DyÞ� − μi · μj

σi · σj
; (4)

where μi¼
P

L
i¼1 iCðDx;DyÞði;jÞ and σ2ι ¼

P
L
i¼1 i

2CðDx;DyÞði; jÞ−
μ2ι .

Energy:

fθenergy ¼
XL
i¼1

XL
j¼1

½CðDx;DyÞði; jÞ�2: (5)

Homogeneity:

fθhomogeneity ¼
XL
i¼1

XL
j¼1

CðDx;DyÞði; jÞ
1þ ji − jj : (6)

Therefore, 32 features are computed (f1glcm; f
2
glcm; : : : f

32
glcm),

four features for each angle θ ¼ ð0; 45; 90; 135; 180; 225; 270;
315 degÞ.

LBPs22 determine uniform texture patterns of P members
into circular neighborhoods with radius R. Among the various
LBP tested, we used the rotation invariant LBPriu2P;R:

23

LBPriu2P:R ¼
�P

P−1
p¼0 sðgp − gcÞ; if UðLBPP;RÞ ≤ 2

Pþ 1; otherwise
; (7)

where gc is the intensity of the center pixel and gp are the inten-
sities of the circularly symmetric neighborhood, superscript ri
refers to “rotation invariant” while u2 means that the pattern
has U values (U is the number of spatial transitions in the pat-
tern) of at most 2, UðLBPP;RÞ ¼ jsðgP−1 − gcÞ − sðg0 − gcÞj þP

P−1
p¼1 jsðgp − gcÞ − sðgp−1 − gcÞj whereas the function sðxÞ, is

defined as

sðuÞ ¼
�
1; u ≥ 0

0; u < 0
:

LBPriu2P;R output is a fixed set of discrete values:
0; 1; 2; : : : ; Pþ 1. P ¼ 8 and R ¼ 1 are used in the proposed
methodology (P ¼ 4, R ¼ 1, P ¼ 12 R ¼ 1.5, and P ¼ 16,
R ¼ 2 were also tested but the results were suboptimal)
hence 10 LBP features f0lbp, f

1
lbp; : : : ; f

9
lbp are computed.

The above 42 features (32 GLCMs and 10 LBPs) along with
the entropy (fen) and mean value (fmv)

24 of the n × n neighbor-
hood result to a set of 44 features for each pixel belonging into
the two clusters: K1 and K2.

3.4.3 Feature selection

Many factors affect the accuracy and success of classification
algorithms on a given task. One of these factors is the redundant
information given in the classifier. Therefore, feature selection is

(a) (b) (c)

Gravitational 
center of the lumen

Abcath area

Cluster 3

Cluster 1, 2

Fig. 3 (a) Initial image, (b) segmented image using the K -means clustering method, blue and yellow
pixels belong to lipid tissue (LT), fibrous tissue (FT), and mixed tissue (MT). The light blue pixels belong
to: the area behind the catheter artifact, CA, extravascular tissue, or the deeper layers of LT, and (c) the
calcium detected in the initial image is marked with white color.
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crucial for improving the accuracy of the proposed plaque char-
acterization methodology. We have employed the wrapper fea-
ture selection (WRP)25 to find the best features for the proposed
methodology. The WRP method produces feature subsets from
all possible feature combinations. Afterward, all the possible
feature combinations are used as input to a target classification
algorithm, and the overall accuracy of each combination is esti-
mated. The feature subset that achieves the highest classification

accuracy is chosen as the best feature combination for the
specific classification algorithm (Appendix C).

3.4.4 Classification

Once the features are extracted, the pixels belonging to the clus-
ters K1, K2 are classified to one of the remaining three plaque
types: LT, FT, and MT. For this purpose, different classification

(a) (b)

(c) (d)

(e) (f)

Lipid Tissue

Inner plaque border

Outer plaque border

???

Outer border of the TA

Lipid Tissue region 

Fig. 4 The postprocessing step of the proposed methodology: (a) initial image, (b) expert limitation on
detecting the outer border of the LT plaque, (c) the initial image with the segmented region marked with
white color, (d) the expanded lumen border transformed to polar coordinates, the distal border of the TA
(yellow line) is reduced to 0.75 mm and a new line is drawn (yellow dashed line) in order to detect the
outer border of the LT, (e) the image characterized before applying the postprocessing step, and (f) the
image characterized after applying the postprocessing step, (CA: white, LT: red, FT: dark green, and MT:
light green).
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algorithms were tested [support vector machines, neural net-
works, and random forests (RF)]. The RF provided the best
classification results and thus this classification algorithm was
used by our methodology. The RF26 is an ensemble classifier
that consists of many decision trees; RF selects randomly the
number of features in order to construct a collection of decision
trees with controlled variation. Several numbers of features and
trees were tested to find the best combination for the RF clas-
sifier (Appendix C).

3.4.5 Postprocessing

In the available IV-OCT imaging configurations, the optical
properties of LT limit the ability of OCT to image the full extent
of lipid-rich plaques. Since the K-means algorithm segments
only the pixels portraying FT, MT, and superficial LT, the pixels
that portray deeper layers of LT cannot be classified (Fig. 4).
When experts manually annotated LT tissue, they approximate
the outer border of LT. In brief, they identify the external elastic
lamina and draw an arc that connects its lateral extremities
[Fig. 4(b)]. Following the same rationale with experts, we auto-
matically estimate the outer border of LT implementing the
following approach:

1. Transform the segmented image [Isegmði; jÞ] into polar
coordinates [IPsegmðip; jpÞ].

2. Scan each column of image [IPsegmðip; jpÞ] from the
Lexpan
mn to Lexpan

mn − Thpost and save the first zero pixel
of the Isegmði; jÞ.

3. The area between the connected zero pixels and the
segmented region is considered as LT plaque.

4. Transform the image from polar to Cartesian
coordinates.

The above described approach is shown in Fig. 4, while the
sensitivity analysis for applying the postprocessing threshold
(Thpost ¼ 0:75 mm) is described in Appendix D.

4 Validation Methodology
From our data set (27 OCT pullbacks), 556 OCT images were
randomly selected and one expert annotated the lumen borders.
Images portraying stented segments as well as frames with a
minimal thrombus burden or a small amount of residual blood
that did not affect image quality were included in the validation
set. On the other hand, frames portraying malapposed struts or
having an increased thrombus burden or residual blood in the

Table 1 Results of the proposed methodology using different validation metrics.

Validation metrics Lumen

Plaque type

Calcium (CA) Lipid tissue (LT) Fibrous tissue (FT) Mixed tissue (MT)

Pearson’s correlation coefficient 0.99 0.96 0.96 0.97 0.96

Bland-Altman limits of agreement −0.080� 1.96×
0.082 mm2

0.008� 1.96×
0.04 mm2

0.06� 1.96×
0.14 mm2

−0.09� 1.96×
0.13 mm2

−0.04� 1.96×
0.1 mm2

Overlapping area (sensitivity) 0.99 0.81 0.71 0.87 0.81

Nonoverlapping area 0.02 0.35 0.51 0.37 0.47

Positive predictive value (PPV) 0.98 0.83 0.76 0.78 0.74

(a) (b)

(mm2)

(mm2)
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m
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Fig. 5 (a) Correlation plot and (b) Bland-Altman plots for the lumen areas estimated by our methodology
and the expert.
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lumen were excluded from the analysis. We also excluded
frames having motion artifacts.7 To validate the performance
of the proposed segmentation methodology, we compared the
expert’s estimations with those derived by our approach.

Furthermore, two experts selected 200 images with no arti-
facts that portrayed diseased coronary segments, identified the
presence of tissues with a typical morphology, and detected
the CA, LT, FT, and MT.6–8 In this analysis, MT was defined
as the tissue that has features noted in CA and LT. Any disagree-
ments in experts’ annotations were resolved by consensus. Sixty
images were randomly selected and used to train the classifica-
tion algorithm and the rest to validate the performance of the
proposed methodology. From the training set of 60 images, a
fully balanced dataset of 12,000 pixels was created by randomly
selecting 4000 pixels from each one of the annotated plaques LT,
FT, and MT. In the 140 images that were used for testing the
methodology, 150 tissue regions with a typical morphology
were annotated (34 CA, 36 LT, 47 FT, and 33 MT) by the two
experts, and their mean estimation was used as gold standard to
validate the proposed methodology.

4.1 Validation Metrics

The mean estimation was extracted using the following meth-
odology: we compute the mean perpendicular distances from

the first to the second border estimation. For an image Iði; jÞ,
let Eb1 and Eb2 be the border estimation of the first and the
second observer, respectively, and PDði; jÞ1;2 the perpendicular
distance from a pixel p1 ∈ Eb1 to a pixel p2 ∈ Eb2, where
i; j ∈ Iði; jÞ. The mean estimation of the two borders is defined
as

MEborder ¼
XPL
k¼1

PDkði; jÞ1;2
2

; (8)

where PL is the perimeter of Eb1. In addition, we computed
the interobserver variability for the two expert observers in
the 150 tissue regions (CA: −0.02� 0.16 mm2, LT: −0.08�
0.19 mm2, FT: −0.02� 0.10 mm2, and MT: 0.06�0.26 mm2).

To validate the proposed methodology, we computed
Pearson’s correlation coefficients performed Bland-Altman
analysis for the areas estimated by our methodology and the
experts’ annotations and computed the positive predictive
value (PPV). As true positive values (TP), we denote the
common area detected by the methodology and annotated by
the experts. As false positive (FP) values, we denote the area
detected by the methodology and not by the experts and as
false negative (FN) the area annotated by the experts and
not detected by the methodology. Additionally, the ratio of

Fig. 6 Correlation plots for the (a) CA, (b) LT, (c) FT, and (d) MT areas estimated by our methodology and
the two experts.
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overlapping areas between the methodology and experts’ anno-
tations was computed. The ratio of overlapping areas was
defined as

Rover ¼
TP

TPþ FN
: (9)

The ratio of overlapping areas is actual the sensitivity of the
methodology in detecting the different tissue types. However,
by computing the overlapping area (sensitivity) metric, we are
not able to understand if our methodology overestimates the
detected areas (FP > FN). Thus, we computed an additional val-
idation metric the ratio of nonoverlapping areas defined as

Rnonover ¼
FNþ FP

TPþ FN
: (10)

5 Results
An excellent agreement was noted for the lumen, CA, FT,
LT, and MT areas estimated by our approach and the experts
(Table 1). The correlation coefficient analysis and the Bland-
Altman plots for the lumen areas are shown in Fig. 5.
Figure 6 shows the correlation plots between the areas estimated
by our approach and the areas estimated by the two experts for
the four tissue types (CA, LT, FT, and MT), while Fig. 7 shows
the results of the Bland-Altman analysis.

The qualitative validation metrics showed an excellent agree-
ment between our methodology and the estimations of the
expert for the lumen areas (overlapping area ratio: 0.99, nono-
verlapping area ratio: 0.02). The overlapping area analysis
for the tissue types demonstrated that our approach classifies

correctly most of the pixels detected by the two experts that por-
tray tissues with a typical morphology (overpaying area ratio:
0.81 for the CA, 0.71 for the LT, 0.87 for the FT, and 0.81
for the MT). The disagreement between our approach and
the mean estimations of the experts was low for the CA and
FT tissue (nonoverlapping area metric: 0.35 and 0.37, respec-
tively). On the other hand, for the LT and the MT the nonover-
lapping area ratio was 0.51 and 0.47, respectively, indicating
that the position of the detected tissue within the vessel wall
is not exactly the same. These discrepancies noted in the LT
and MT are due to the limited ability of our methodology to
accurately detect their lateral extremities and to fact that the dis-
tal border of both tissues is not visible in OCT. Examples of
the proposed methodology in detecting the lumen borders are
shown in Fig. 8, while Fig. 9 presents application examples
of the proposed methodology in detecting the four tissue types.

5.1 Application

To assess and visualize the lumen borders and plaque compo-
sition in FD-OCTexaminations, an in-house tool was developed
using MATLAB r2011b. To speed up the algorithm, C++ code
was implemented and executed using MATLAB’S MEX libra-
ries. The user can import FD-OCT examinations (raw data files
extracted from the FD-OCT equipment), view the OCT images,
view the longitudinal view of the pullback, characterize the
different plaque types, and detect the lumen borders of the
pullback. The time complexity of the proposed methodology
for detecting the lumen border and characterizing the plaque
is ∼40 s per frame using a core i7 desktop computer with
8 GB of RAM.
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Fig. 7 Bland–Altman plots for the (a) CA, (b) LT, (c) FT, and (d) MT areas estimated by our methodology
and the two experts.
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6 Discussion
In this work, a fully automated luminal border detection and
plaque characterization methodology is presented that allows
expedited analysis of the FD-OCT data. In the proposed meth-
odology, the luminal borders are extracted and used to define the
TA. On the extracted TA, segmentation techniques are applied,
initially differentiating the extravascular tissue from the plaque,
and then four tissues types are detected, namely: CA, LT, FT,
and MT.

The two methodologies that have been presented in the past
for characterizing the type of the plaque in FD-OCT data15,16

relied on the analysis of the reflected light and attempted to
correlate the attenuation coefficients with various plaque forma-
tions. They both focused on the separate processing each A-line
and used the attenuation coefficient of the light to correlate each
individual line with a specific plaque type. However, these tech-
niques do not combine information provided by adjacent A-lines
to classify more accurately plaque components and failed to

define a cutoff value for each plaque type so as to develop a
precise and complete plaque classification methodology.

On the contrary, the methodology presented in this study is a
fully automated approach that is able to detect the luminal bor-
ders and identify and quantify the composition of the superficial
plaque (depth: 1.5 mm). To our knowledge, this is the first
approach that utilizes image processing, medical knowledge,
and machine learning techniques to characterize different tissue
types, and it is able to process without user interaction a
sequence of good-quality FD-OCT images that do not have
artifacts. The validation of the lumen detection methodology
showed that our approach can address some of the common
artifacts seen in FD-OCT images (i.e., the catheter artifact,
small thrombi, or residual blood) and detect accurately the
lumen borders (overlapping area ratio: 0.99 and nonoverlapp-
ing area ratio: 0.02). We also found good agreement between
the manual annotations and the estimations of our methodo-
logy for the measured areas in the four plaque components

Fig. 8 Results of the proposed lumen detection step in (a) a native segment, (b) in a stented segment,
(c) in a segment having thrombus, and (d) in a segment having residual blood. The lumen border is
marked with blue.
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Fig. 9 Application examples of the proposed methodology: (a) Initial images, (b) annotations over the
initial images (white-CA, red-LT, green-FT, and light green MT) over the initial image, (c) color-coded
images produced by our methodology using the initial images (white-CA, red-LT, green-FT, and light
green MT).
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(CA: 0.008� 1.96 × 0.04 mm2, LT: 0.06� 1.96 × 0.14 mm2,
FT: −0.09� 1.96 × 0.13 mm2, and MT: −0.04� 1.96×
0.1 mm2). In addition, the qualitative validation of our approach
for the four tissue types demonstrated that our methodology
characterizes correctly most of the pixels portraying these
tissues (overlapping area ratio >0.71 for all tissue types).
However, the nonoverlapping area analysis showed an increased
nonoverlapping area ratio for the LT and MT (LT: 0.51 and MT:
0.47), indicating that our approach has a limited ability to detect
the lateral extremities of these tissues. Additionally, there is a
discrepancy between the approximation of the observers and
our approach for the distal border of both tissues, which is not
visible in OCT (Fig. 9).

To date, FD-OCT images were analyzed manually by expert
observers. This process, however, is time consuming, it is
restricted to a fraction of the obtained data, i.e., 1 frame at
every 0.4- or 1-mm interval, and the accuracy of the reported
results relied on the expertise of the observers. The proposed
methodology appears to overcome the abovementioned limita-
tions as it is able to process the FD-OCT data and provide reli-
able estimations for the lumen border and plaque components.
However, further improvements are required and a more robust
validation using histological data is needed before this method-
ology can have applications in a clinical setting. A potential
combination of our methodology with the information provided
by the data derived from the analysis of the reflected OCT signal
(i.e., the backscattering and attenuation coefficients) is likely to
provide additional information (i.e., detection of microstructures
such as the presence of macrophages and neo-vessels) and allow
more accurate detection of different tissue types and especially
of the LT and MT.

6.1 Limitations

A significant limitation of our approach is the fact that it is
unable to detect the media, which is necessary for the charac-
terization of the phenotype of the plaque (i.e., normal vessel
wall, pathological intimal thickening, fibroatheroma, thin cap
fibroatheroma, etc.) and the identification of the normal vessel
wall.27 Additionally, the methodology is unable to detect micro-
structures such as macrophages and neo-vessels and measure
the thickness of thin fibrous caps over fibroatheromas.

In this study, we used the estimations of expert observers as
the gold standard to validate the performance of the proposed
methodology in tissues with a typical morphology. However,
quite often the morphology of a tissue is not typical and
the experts may provide unreliable estimations, especially in the
characterization of deeply embedded tissues.28 Therefore, we
are planning to further validate the proposed methodology
using histological data; these data will allow us to have a
more precise assessment of the performance of our method
and will provide us the substrate and additional information,
which can be used to re-train and optimize the efficacy of
our methodology.

Finally, our methodology fails to provide accurate estimation
about the composition of the plaque in stented segments and in
frames having artifacts (i.e., nonuniform rotational distortion,
proximity artifacts, or tangential signal dropout artifacts).
Moreover, although our approach is able to detect the lumen
border in images having a small amount of residual blood or
small thrombi, it is unable to provide reliable estimation about
the composition of the plaque in these segments.

Table 2 Overlapping area, nonoverlapping, and PPV for detecting
calcium (CA) using different number of clusters.

Validation Metrics

# Clusters

K ¼ 2 K ¼ 3 K ¼ 4

Overlapping area
(sensitivity)

0.008 0.81 0.27

Nonoverlapping area 0.99 0.35 0.85

PPV 1 0.83 0.68
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Fig. 10 Classification accuracy using combination of the number of trees and features as input in the
proposed methodology.

Table 3 Sensitivity and PPV of LT when applying different postpro-
cessing Thpost values.

Threshold values Thpost

0.5 mm 0.625 mm 0.75 mm 0.875 mm

Overlapping area
(sensitivity)

0.69 0.73 0.71 0.65

Nonoverlapping
area

1.09 0.57 0.51 0.57

PPV 0.47 0.70 0.76 0.74
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7 Conclusions
We present a fully automated methodology that is able to detect
the lumen borders and characterize the composition of the super-
ficial plaque in FD-OCT images. The methodology is based on
the analysis of the FD-OCT images and was validated using the
estimations of expert observers as gold standard. Our results
demonstrated that it permits reliable border detection and char-
acterization of the different tissue types with a typical morphol-
ogy. Further validation of the proposed approach in tissues with
typical morphology using histology data is needed before this
methodology is used in the clinical and research arena.

Appendix A: Cluster Parameter Selection
In order to find the best number of clusters, we tested the perfor-
mance of the K-means algorithm on the 34 CA images using
K ¼ 2, 3, and 4 clusters. The results are presented in Table 2.
When using K ¼ 2, the CA could not be detected (overlapping
area for the CA ¼ 0.008), whereas when usingK ¼ 4, the results
of the overlapping area analysis for the CAwas 0.27. On the other
hand, K ¼ 3 allowed accurate detection of the CA (overlapping
area ratio: 0.81) and permitted detection of the outer tissue border.

Appendix B:
Pixels Neighborhood Size Selection
To find the best pixels neighborhood (n × n) size for extracting
the feature set, we performed a sensitivity analysis in the training
set (60 images). Fifteen different neighborhood values (n ¼
5: : : 15) were used that provided 15 feature sets (FS5;
FS6; : : : ; FS15). In the different feature sets, a 10-fold cross val-
idation methodology was applied to find the best set for the pro-
posed methodology. RF classifier (110 trees and 8 features) was
used, and we found that FS11 outperformed the other feature
sets; therefore we used a 11 × 11 pixels size neighborhood.

Appendix C:
Feature Selection and Classifier Parameter
Selection
Since WRP’s input is a classification algorithm, we used RF (110
trees and 8 features) classifier to calculate the overall accuracy
achieved for each subset that is created and find the best
WRP’s features. From the 44 features (f1glcm–f

32
glcm, f

1
lbp–f

10
lbp,

fen, fmv) of the feature set WRP selected 17 features: (f1glcm,

f9glcm, f
11
glcm–f

13
glcm, f

15
glcm, f

1
lbp–f

10
lbp, and fen). To find the best

input parameters for the RF classifier, several numbers of features
and trees were tested. Using the 17 features selected by the WRP
and a 10-fold cross validation methodology, the best classification
accuracy was achieved using 110 numbers of trees and eight fea-
tures and was used as input for the RF classifier (Fig. 10).

Appendix D:
Postprocessing Threshold Sensitivity Analysis
To find the best threshold (Thpost) value, we shifted Thpost from
0.5 to 0.875 mm every 0.125 mm. Sensitivity-overlapping area,
nonoverlapping area, and PPVof LT were computed for apply-
ing the postprocessing step using as Thpost 0.5, 0.625, 0.75, and
0.875 mm (Table 3). As it is shown in Table 3, the best over-
lapping area was achieved when applying Thpost ¼ 0:625 mm,

however the best PPV and the best nonoverlapping area
was achieved when applying Thpost ¼ 0:75 mm. Therefore,
Pearson’s correlation coefficients were computed for these
threshold values. Thpost ¼ 0:75 mm was selected as threshold
value for the postprocessing step, as its Pearson’s correlation
coefficient (0.96) outperformed the Thpost ¼ 0:625 mm correla-
tion coefficient (0.77).
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