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Abstract. Exact focusing is essential for any automatic image capturing system. Performances of focus mea-
sure functions (FMFs) used for autofocusing are sensitive to image contents and imaging systems. Therefore,
identification of universal FMF assumes a lot of significance. Eight FMFs were hybridized in pairs of two and
implemented simultaneously on a single stack to calculate the hybrid focus measure. In total, 28 hybrid FMFs
(HFMFs) and eight FMFs were implemented on stacks of images from three different imaging modalities.
Performance of FMFs was found to the best at 50% region sampling. Accuracy, focus error, and false maxima
were calculated to evaluate the performance of each FMF. Nineteen HFMFs provided >90% accuracy. Image
distortion (noise, contrast, saturation, illumination, etc.) was performed to evaluate robustness of HFMFs. Hybrid
of tenengrad variance and steerable filter-based (VGRnSFB) FMFs was identified as the most robust and accu-
rate function with an accuracy of ≥90% and a relatively lower focus error and false maxima rate. Sharpness of
focus curve of VGRnSFB along with eight individual FMFs was also computed to determine the efficacy of HFMF
for the optimization process. VGRnSFB HFMF may be implemented for automated capturing of an image for
any imaging system. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.12.126004]
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1 Introduction
Automated focusing techniques were widely implemented in
various optical imaging systems, such as microscopes, industrial
inspection tools, and cameras.1–4 This technique determines
the best-focused image by analyzing the content of a sequence
(stack) of images of the same view field acquired on different
focal positions. A focused image is defined as the best average
focus over an entire view field on a stack of images acquired at
different focuses from a single view field. The maximum value
of the focus measure function (FMF) generally corresponds to
the best-focused image.5 Studies have indicated that the perfor-
mance of FMFs depends on image content, which is broadly
classified as higher, medium, and lower density background
images.6,7 General images have low-density background, whereas
images captured from different experiments such as conventional
bright-field microscope (CM) have higher density background
due to the presence of artifacts, dye to stain the bacteria, etc.
Similarly, fluorescent microscope (FM) images have average
(medium) density background. Most of the FMFs efficiently
work on visible optical systems like commercial cameras and
have a higher accuracy rate due to the high resolution and sharp
edges of visible image. However, it is difficult to obtain a high
accuracy rate for the infrared optical system (near infrared,
thermal, etc.) due to the poor resolution, low contrast, and blur
edges in infrared images.8 Studies have also indicated that the
significantly better performing FMFs in fluorescence microscopy
images produced average outcomes in CM9–11 and vice versa.12

Several studies were performed to determine the efficient
FMFs on microscopic (CM and FM) imaging data, but most of

their outcomes led to different conclusions.1,2,5,6,12 Mateos–
Pérez et al.2 found that midfrequency discrete cosine transform
(96.67%), Vollath’s autocorrelation (VCR) (89%), and tenen-
grad (TGR) (89%) were the efficient FMFs in FM images. Two
different studies were performed to determine efficient FMF
for Ziehl–Neelsen (ZN)-stained sputum smear CM images.
Six [normalized gray-level variance (GNV), Brenner gradient
(BGR), modified Laplacian, energy of Laplacian (ELP), VCR,
and TGR] and three [ELP, Gaussian derivative (GDR), and
variance of the log histogram] were the most commonly used
FMFs on CM images.1,6 VCR and BGR were reported as the
best FMFs in the first study, while ELP was the best in the sec-
ond. GNV, gray-level variance (GLV) and VCRwere reported as
the most efficient FMFs in CM pathological images.13 Studies
were also performed to determine the efficient FMFs on
visible2,4,14,15 and infrared optical system.8,16,17 The ELP oper-
ator was the best FMF for visible and near-infrared images,
while fast Hessian detector-based FMF was the best in thermal
spectrum (TS).16

Incorporation of automated methods in microscopy can
increase the sensitivity and specificity by analyzing a large
number of view fields.18 Exact focusing is very crucial in
any automatic microscopy system as performance of successive
steps such as automatic object segmentation and classification
depends on it.1 Autofocusing is also very significant in devel-
oping consumer-level user friendly digital cameras that can
capture high-quality images with minimal user intervention.19

To overcome inconsistent performance of FMFs, this study
evaluated the performance of HFMFs across the different
modalities as well as to different imaging conditions (noise,
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saturation, etc.). The eight most common autofocus algorithms
were hybridized by simultaneously implementing two FMFs on
well-versed datasets from three different modalities, namely
CM, FM, and multispectral (MS) images, to identify efficient
hybrid focus measure functions (HFMFs) for any imaging sys-
tem. MS datasets contain diverse images from visible, near-
infrared, and TS, and it will be helpful to determine a robust
and global HFMF. Three different categories of FMF algorithms
were incorporated in this study according to their working
principles. The changes in performances of HFMFs were also
analyzed after image distortion using noise addition, saturation
increment, contrast reduction, and uneven illumination to
evaluate the effectiveness of this approach. The performance of
every HFMF is also compared with individual FMFs for better
interpretation.

2 Material and Methods
The methodology followed identifying robust HFMFs using dif-
ferent experiments/parameters is shown in Fig. 1 and Table 1.

2.1 Datasets

Three different image modalities containing 87 stacks of images
were used to evaluate the performance of individual and hybrid
FMFs. Three diverse data types covering ZN (CM), FM, and
multispectral (MS) images were used to evaluate HFMFs.
Detailed description for each imaging modality is given below.

2.1.1 Ziehl–Neelsen sputum smear conventional
microscopy

A total of 31 autofocusing stacks were extracted from ZN
Sputum Smear Microscopy Image Database.20 These stacks
were prepared from 10 different ZN-stained sputum smear slides
of tuberculosis patient using three different microscopes. Each
stack contains 20 images captured at different focus points over
the same view field [Fig. 2(a)]. Acquired images were diverse as
image contents ranged from medium to high noisy backgrounds.
Image contents also varied due to improper use of staining dye
(over- and under-staining).

2.1.2 Fluorescent sputum smear microscopy

In total, 35 autofocusing datasets, prepared from smear slides of
10 patients, were randomly extracted from Ref. 2. Every stack
has 20 images that were acquired at different focus points over
the same view field [Fig. 2(b)].

2.1.3 Multispectral dataset

In total, 21 autofocusing datasets in visible, near-infrared, and
TS were retrieved from Ref. 16. The images acquired in visible
spectrum (VS) were divided into seven sets, where each set
contains a stack of 12 images [Fig. 2(c)]. Acquired objects in
the VS include headphones, keyboard, keys, loudspeaker, mixer,
sunglasses, and guitar. The images acquired in near-infrared
spectrum (IS) were divided into seven sets where each set
contains a stack of 21 images [Fig. 2(d)]. Acquired objects in
IS include building, car, corridor, head, keyboard, office desk,
and pens. The images acquired in TS were divided into seven
sets where each set contains a stack of 27 images [Fig. 2(e)].
Acquired objects in TS include building, circuit breaker, circuit,
car engine, printer, server, and tube.

2.2 Focus Measure Functions

The eight most common FMFs were included in this study as
their performances in ZN (CM) and FM images were good.1,2,21

Other FMFs such as Laplacian-based operator and wavelet-
based operator drastically failed on CM images; therefore,
they were not included in the current study. These eight FMFs
were hybridized, and their performances were evaluated in this
study to identify the best-focused images from ZN, FM, and
MS images (Table 2). An FMF has the highest value at the

Fig. 1 Flow diagram of methodology used in identifying robust
HFMFs.

Table 1 Experiments performed for performance evaluation of
HFMFs.

Category Experiment Sectiona

Region sampling Central parts containing 25%,
50%, and 75% of original
image were used to evaluate
FMFs and HFMFs

Sections 2.4
and 3.1

Without
preprocessing

Preprocessing technique
was not applied

Section 3.2

Preprocessing Poisson noise addition Sections 2.5
and 3.3

Saturation increment

Contrast reduction

Uneven illumination
incorporation

Performance
evaluation

Accuracy Sections 2.6
and 3.4

Focus error

False maxima

Convergence rate Sharpness curve Sections 2.7
and 3.4

aMethods and results are provided in subsequent sections.
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best focus position, and the values reduce sequentially in both
directions as focusing decreased. Three major categories of
FMFs and their HFMFs were implemented in MATLAB
(Table 2).

2.2.1 Gradient-based focus measure functions

These functions assume that a well-focused image has more
high-frequency content. Therefore, large intensity differences

between neighboring pixels leads to sharper edges. A higher
gradient represents more sharp edges; therefore, these FMFs
use the gradient (first-order derivative) of the image to find
the best-focused image.

2.2.2 Statistics-based focus measure functions

These FMFs use various statistical measures, such as standard
deviation, variance, and autocorrelation, to identify the best-
focused image. Generally, these FMFs are more consistent in
high frequency noise as compared with derivative-based FMFs.

2.2.3 Other focus measure functions

This group contains the functions, which are not in the above
two categories due to their working principles.

2.3 Hybridization

Eight FMFs were hybridized in pairs of two, and a total of
36 combinations were obtained. Hybridization of FMFs means
two FMFs are implemented simultaneously on a single stack to
calculate the hybrid focus measure using the following equation:

EQ-TARGET;temp:intralink-;e001;326;164Hybrid FMFðHFMFÞ ¼ FMF1þ FMF2

2
; (1)

where FMF1 and FMF2 are the two FMFs, which were used
simultaneously. Hybrid focus measure is the average of two
FMFs.

Fig. 2 Image modalities used to evaluate HFMFs. (a) Image acquired from ZN sputum smear CM,
(b) image acquired from sputum smear fluorescent microscopy (FM), (c) image acquired in VS,
(d) image acquired in near-IS, (e) image acquired in TS, (f) depiction of the 50% region sampled
area, and (g) depiction of the 25% region sampled area used to evaluate FMFs.

Table 2 Category of FMFs used to form the hybrid FMF for identifying
the best-focused images.

S. No. Category FMF Reference

1. Gradient-based GDR 22

2. TGR 11

3. VGR 23

4. Statistics-based GNV 24

5. VCR 10 and 11

6. Other Hemli and Scherer’s
mean (HELM)

25

7. SFB 3

8. Spatial frequency
measure (SFM)

26
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2.4 Region Sampling

Region sampling was performed to implement FMFs on 25%,
50%, and 75% central parts of whole image. For 25% region
sampling, a total of 25% of pixels from the central part of
the original imagewere retained. For 100 × 100 size (10,000 pix-
els) image, 25 pixels from each end of the rows and columns
were removed to get an image of 50 × 50 dimensions (2500 pix-
els). The resultant image was sampled to 25% as the total num-
ber of pixels was reduced to one fourth of the original image
[Fig. 2(g)]. Similarly, region sampling of 50% [Fig. 1(f)] and
75%was performed. Region sampling was performed to achieve
better accuracy as well as to reduce computation time.9,27

2.5 Image Preprocessing

Poisson noise was added to check the robustness of HFMFs to
noise. A MATLAB function “imnoise” is used to add Poisson
noise generated from the image itself. A scaling factor 1 × 10−10

is used for the significant effect of noise on the image. In gen-
eral, FMFs are more sensitive to the higher level of noise.2

The saturation level of an image also alters the performance
of FMFs, which was previously tested on normal images.28

To check the efficacy of HFMFs with respect to an increase in
the saturation level, ZN and FM images were converted to hue,
saturation, and value (HSV) color space. Furthermore, satura-
tion of HSV images was increased by 25% using MATLAB.

Reduced contrast level leads to smoothening of edges in
images, which reduces differentiation of the best focus image
from the defocused one. Contrast was incorporated in the pre-
processing step to verify the effectiveness of HFMF at the low
contrast level. Generally better focused methods are not per-
turbed by low contrast, which was reduced for every stack by
mapping the image pixel values to a narrow range.28

Uneven illumination was incorporated into images using
a luminance gradient to test the effectiveness of HFMFs in
low signal-to-noise ratio conditions due to poor illumination.
Grayscale image is used to represent luminance gradient using
quadratic polynomial function, and it is multiplied by the
original images to get resultant images.

2.6 Evaluation of Focus Measures

The following three criteria were used to evaluate the perfor-
mance of FMFs and HFMs.29

Accuracy criterion: The accuracy value was assigned a score
of 1, 0.5, or 0 if a stack was correctly classified; if the second

best focus was classified as the best focus when the difference
between the best and second best image differs marginally; or if
the stack was misclassified, respectively. Finally, the accuracy
rate in percent was calculated using the following equation:1

EQ-TARGET;temp:intralink-;e002;326;708

Sum of all scores

Total number of stacks
× 100: (2)

A higher score represents a more accurate FMF.
Focus error: It determines the difference between the

manually obtained and predicted best-focused image.2

Number of false maxima: This criterion was used to calculate
the number of false maxima produced by an HFMF or FMF.
A number of maxima present in a sharpness curve of the FMF
or HFMF excluding global maximum was determined.1

2.7 Convergence Rate of Focus Measure Functions

Finally, “sharpness of focus curve”was used to identify the FMF
and HFMFs with better convergence rate. It is used to calculate
the narrowness of the peak. Narrower peak of FMF represents
rapid convergence to the best focus point; hence, FMF would be
implementable in the real system.16

3 Results and Discussion
The ZN, FM, and MS (VS, IS, and TS) datasets are diverse in
terms of image contents, and performances of FMFs were not
consistent in these modalities.12,16 Therefore, this study pro-
posed an autofocus system using HFMF and assumed that some
HFMFs could be effective across diverse image modalities as
well as different imaging conditions (noise, saturation, etc.).
The eight most commonly used FMFs that performed better
in highly noisy ZN and FM images were hybridized and
implemented.

3.1 Region Sampling and Hybridization of Focus
Measure Function

Different parameters and configuration were checked prior to
evaluating the performance of HFMFs. Images regions were
sampled to 25%, 50%, and 75% to evaluate the accuracy of
FMFs on different region sampling rates in comparison with
original images [Fig. 2(a)]. Overall accuracy of most of the
FMFs was reduced by 1% to 11% at 25% region sampling,
while it was increased by 1% to 4% at 50% and 75% region
sampled images (Fig. 3). HFMFs analyses were performed

Fig. 3 Accuracy of FMFs in percent with different region sampling data, i.e., 25%, 50%, 75%, and original
image.
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only on 50% region sampled images as the result was optimal
and the mean computation time was minimal at this level.
Improved performance of FMFs on 50% and 75% region sam-
pling might be due to better focusing on the central part of
the image than boundaries. Hybridization of two and three
FMFs implemented on separate locations of the same view field
was evaluated, but performance of most of these FMFs was
inconsistent and poor due to the different imaging contents.
Therefore, the FMFs were superimposed on the same location
of view field image to calculate the unbiased focus measure.
A combination of three FMFs yielded poor accuracy in most
of the HFMFs, while combinations of two FMFs have provided

a better accuracy rate. Therefore, only two FMFs were super-
imposed and used as the final configuration. Performances of
HFMFs were evaluated on overall datasets as well as separately
on three individual types of datasets (ZN, FM, and MS) to deter-
mine the effect of different imaging modalities on HFMFs.
ZN datasets also contain microscopic images captured from
a Smartphone camera to evaluate the performance of HFMFs.
Mean computational time taken by each FMF or HFMF was
determined on Intel® Core™ i3-3220 CPU at 3.30 GHz with
eight GB RAM (Table 4 of Appendix). The comparative perfor-
mances of HFMFs without preprocessing and post preprocess-
ing are provided in the following sections.

Fig. 4 Performance of FMFs and HFMFs without preprocessing at 50% region sampling data.
(a) Accuracy in percent, (b) focus error, and (c) false maxima.
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3.2 Without Image Preprocessing

Average performances of 36 (eight individual and twenty-eight
HFMFs) FMFs were computed separately on each dataset
at different region sampling rates (Fig. 3). More than 90%
overall accuracy at 50% region sampling was obtained using

19 HFMFs, which indicated that HFMFs were consistent
w.r.t different imaging modalities [Fig. 4(a) and Table 3].
Focus error and false maxima rate of these 27 FMFs (eight
individual and nineteen HFMFs) were also computed to validate
the analysis. Most of these HFMFs performed accurately and
had less focus errors [Fig. 4(b)] and false maxima [Fig. 4(c)],

Table 3 Accuracy in percent, focus error and false maxima of FMF and HFMF without preprocessing at 50% subsampling.

Method

Accuracy Focus error False maxima

ZN FM MS SD Mean Combined ZN FM MS SD Mean Combined ZN FM MS SD Mean Combined

GDR 91.9 94.3 100.0 3.39 95.41 94.8 0.08 0.06 0.00 0.03 0.05 0.05 0.13 0.11 0.00 0.06 0.08 0.09

GNV 80.6 8.6 60.0 30.31 49.74 46.5 0.48 3.36 2.35 1.19 2.06 2.09 0.23 1.00 0.45 0.33 0.56 0.59

HELM 96.8 65.7 90.0 13.34 84.16 82.6 0.03 0.77 0.10 0.33 0.30 0.35 0.06 0.43 0.15 0.16 0.21 0.23

SFB 93.5 25.7 70.0 28.12 63.09 60.5 0.03 1.60 0.80 0.64 0.81 0.86 0.10 0.94 0.30 0.36 0.45 0.49

SFM 88.7 87.1 90.0 1.17 88.62 88.4 0.53 0.27 1.65 0.60 0.82 0.69 0.13 0.20 0.10 0.04 0.14 0.15

TGR 95.2 92.9 100.0 2.98 96.01 95.3 0.05 0.07 0.00 0.03 0.04 0.05 0.10 0.14 0.00 0.06 0.08 0.09

VCR 74.2 92.9 77.5 8.13 81.52 82.6 1.35 0.07 1.53 0.65 0.98 0.87 0.29 0.14 0.25 0.06 0.23 0.22

VGR 71.0 97.1 97.5 12.42 88.54 87.8 0.39 0.03 0.03 0.17 0.15 0.16 0.39 0.06 0.05 0.16 0.16 0.17

GDRnTGR 91.9 94.3 100.0 3.39 95.41 94.8 0.08 0.06 0.00 0.03 0.05 0.05 0.13 0.11 0.00 0.06 0.08 0.09

HELMnGDR 91.9 94.3 100.0 3.39 95.41 94.8 0.08 0.06 0.00 0.03 0.05 0.05 0.13 0.11 0.00 0.06 0.08 0.09

HELMnTGR 96.8 92.9 100.0 2.92 96.54 95.9 0.03 0.07 0.00 0.03 0.03 0.04 0.06 0.14 0.00 0.06 0.07 0.08

SFBnGDR 91.9 85.7 100.0 5.85 92.55 91.3 0.11 0.20 0.00 0.08 0.10 0.12 0.13 0.23 0.00 0.09 0.12 0.14

SFBnTGR 93.5 84.3 100.0 6.45 92.61 91.3 0.16 0.24 0.00 0.10 0.13 0.16 0.10 0.23 0.00 0.09 0.11 0.13

SFMnGDR 91.9 94.3 100.0 3.39 95.41 94.8 0.08 0.06 0.00 0.03 0.05 0.05 0.13 0.11 0.00 0.06 0.08 0.09

SFMnHELM 96.8 87.1 90.0 4.04 91.31 91.3 0.03 0.27 1.65 0.71 0.65 0.51 0.06 0.20 0.10 0.06 0.12 0.13

SFMnTGR 95.2 92.9 100.0 2.98 96.01 95.3 0.05 0.07 0.00 0.03 0.04 0.05 0.10 0.14 0.00 0.06 0.08 0.09

SFMnVCR 91.9 91.4 90.0 0.82 91.12 91.3 0.08 0.23 1.65 0.71 0.65 0.51 0.10 0.14 0.10 0.02 0.11 0.12

VCRnGDR 91.9 92.9 100.0 3.60 94.93 94.2 0.08 0.21 0.00 0.09 0.10 0.12 0.13 0.11 0.00 0.06 0.08 0.09

VCRnSFB 93.5 88.6 87.5 2.64 89.87 90.1 0.16 0.26 0.23 0.04 0.21 0.22 0.10 0.20 0.15 0.04 0.15 0.15

VCRnTGR 95.2 91.4 97.5 2.50 94.70 94.2 0.05 0.23 0.03 0.09 0.10 0.12 0.10 0.14 0.05 0.04 0.10 0.10

VGRnGDR 91.9 95.7 100.0 3.29 95.88 95.3 0.08 0.04 0.00 0.03 0.04 0.05 0.13 0.09 0.00 0.05 0.07 0.08

VGRnHELM 93.5 97.1 97.5 1.78 96.06 95.9 0.06 0.03 0.03 0.02 0.04 0.04 0.10 0.06 0.05 0.02 0.07 0.07

VGRnSFB 93.5 95.7 97.5 1.62 95.59 95.3 0.16 0.04 0.03 0.06 0.08 0.08 0.10 0.09 0.05 0.02 0.08 0.08

VGRnSFM 88.7 97.1 92.5 3.45 92.78 93.0 0.24 0.03 0.08 0.09 0.12 0.12 0.13 0.06 0.10 0.03 0.10 0.09

VGRnTGR 91.9 95.7 97.5 2.32 95.05 94.8 0.08 0.04 0.03 0.02 0.05 0.05 0.13 0.09 0.05 0.03 0.09 0.09

VCRnHELM 96.8 91.4 82.5 5.89 90.23 91.3 0.03 0.23 1.38 0.59 0.55 0.42 0.06 0.14 0.20 0.06 0.14 0.13

VGRnGNV 79.0 95.7 97.5 8.32 90.75 90.1 0.50 0.04 0.03 0.22 0.19 0.20 0.26 0.09 0.05 0.09 0.13 0.14

Note: GDR, Gaussian derivative; GNV, normalized gray-level variance; HSM, Hemli and Scherer’s mean; SFB, steerable filters-based; SFM,
spatial frequency; TGR, tenegrad; VCR, Vollath’s autocorrelation; and VGR, tenengrad variance. HFMFs abbreviations are created by concat-
enating original FMF abbreviations using “n” letter. ZN, Ziehl–Neelsen stained sputum smear conventional microscope; FM, fluorescent micro-
scope; MS, multispectral datasets; and SD, standard deviation.
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whereas most of the individual FMFs provided an accuracy
<90%, with higher focus error and false maxima (except
GDR and TGR). HELMnTGR, SFMnTGR, VGRnGDR,
VGRnHELM, and VGRnSFB HFMFs obtained>95% accuracy
and outperformed most of the individual FMFs. Measures such
as accuracy, focus error, and false maxima along with standard
deviation, mean, and combined results for each dataset are
also provided (Table 3). Mean accuracy, its standard deviation,
and combined accuracies showed that VGRnHELM and
VGRnSFB were the most accurate and consistent HFMFs with
minimal standard deviation of 1.78 and 1.62, respectively
(Table 3).

3.3 Image Preprocessing

Effectiveness of HFMFs to different imaging conditions is
very important because the occurrence of noise, poor contrast,
illumination, etc. may affect its performance. Poisson noise
addition, saturation-level increment, contrast reduction, and
uneven illumination were incorporated to find out the effect
of image distortion on FMFs and HFMFs performance.

In the first step, Poisson noise was added to all the images.
Generally, a higher level of noise in an image significantly
affects FMF performance.2,28 Most of the HFMFs were more
robust than individual FMFs after noise addition (Fig. 5).
Though GDR and TGR FMFs produce higher accuracy in

Fig. 5 Performance of FMFs and HFMFs after noise addition at 50% region sampling data. (a) Accuracy
in percent, (b) focus error, and (c) false maxima.
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focused image identification, they failed drastically after noise
addition [Fig. 5(a)]. GDR FMF accuracies dropped to 25.8%,
67.1%, and 65% for ZN, FM, and MS datasets, respectively.
Similarly, the TGR accuracies dropped to 90%, 30%, and
80% for the above datasets after noise addition. Focus error
[Fig. 5(b)] and false maxima [Fig. 5(c)] rate were also increased
in the above two individual FMFs. VGRnSFB HFMF was least
affected by noise addition and outperformed all the individual
FMFs in terms of accuracy, focus error, and false maxima,
whereas VGRnGNV HFMF ranked second after noise addition
[Fig. 5(a)].

In the second step, the saturation was increased by 25% in
all images. Generally, performance of all FMFs decreases as

the saturation level increases.28 On MS datasets, GDR and TGR
have shown a poor accuracy rate of 65% and 75%, respectively.
The performances of most of the HFMFs were better than indi-
vidual FMFs after increased saturation levels. The performance
of VGRnSFB was altered slightly and showed highest accuracy
rate with less focus error and false maxima (Fig. 6).

In the third step, the contrasts of all images were reduced
using the imadjust function of MATLAB. Generally, marginal
reduction of contrast has no or minimum effects on FMFs
performance.22,28 Performance of all the HFMFs was affected
marginally by contrast reduction, and accuracies slightly
dropped (Fig. 7). VGRnSFB remained consistent to reduced
contrast level and obtained an overall accuracy of 91.3%.

Fig. 6 Performance of FMFs and HFMFs after 25% saturation increment at 50% region sampling data.
(a) Accuracy in percent, (b) focus error, and (c) false maxima.
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Uneven illumination has a minimal effect on performance of
HFMFs in FM images. In some cases, performance has been
improved.2 Uneven illumination was incorporated in all the
images. Most of the HFMFs have shown relatively consistent
performance and have marginal changes in accuracy (Fig. 8).

Evaluation of FMFs and HFMFS in various imaging condi-
tions (such as without preprocessing, noise addition, saturation
increment, etc.) shows that VGRnSFB was the most robust and
accurate HFMF with an overall accuracy>90%, less focus error,
and false maxima.

3.4 Discussion

The main objective of this study is to propose the most accurate
robust HFMF applicable to all the imaging modalities. Eight
FMFs, evaluated in this study, were earlier implemented in dif-
ferent applications, such as CM, FM, and shape from focus.1,2,28

VCR, BGR, and ELP were reported as the best FMFs in CM.1

Mateos-Pérez et al.2 established that midfrequency discrete
cosine transform (96.67%), VCR (89%), and TGR (89%) FMFs
performed better in FM images. Pertuz et al.28 found that
Laplacian-based operators were outperformed when preprocess-
ing was not applied. Zukal et al.16 proposed interest point detec-
tion-based FMFs (the Harris–Laplace detector, fast Hessian
detector, and the features from accelerated segment test detector)
for MS datasets. Performance of these methods is poor on VS
and IS images, and only fast Hessian detector performed better
on TS datasets. None of the previously reported FMFs were
consistent to diverse imaging modalities, such as ZN, FM, and

MS images. These inconsistencies of results have emphasized
the importance of robust HFMFs that may capture focused
images automatically irrespective of imaging system.

The performances of 36 (twenty-eight hybrid and eight
individual) HFMFs were evaluated on the datasets covering
diverse image contents with high, medium, and low density
backgrounds and lack of sharp edges in images. Initially,
19 HFMFs provided an overall accuracy rate ≥90%. VGRnSFB
HFMF has been identified as the most robust and consistent
after evaluating performance in different imaging conditions,
such as noise addition, contrast reduction, saturation increment,
and uneven illumination. VGRnSFB HFMF has also shown
consistent performance in all three modalities of MS dataset
(100%, 100%, and 92.8% accuracies without preprocessing for
TS, IS, and VS, respectively). An efficient HFMF has lots of
application potential as it is easier to implement when interven-
tion of preprocessing and other requirements is minimal. Better
performance of VGRnSFB is significant as there was no HFMF
reported earlier that was robust to ZN, FM, and MS images
simultaneously.

Finally, the sharpness of the focus curve was evaluated
for eight individual FMFs (GDR, GNV, HELM, SFB, SFM,
TGR, VCR, and VGR) and an HFMF (VGRnSFB) (Fig. 9).
VGRnSFB, VGR, and SFB are rapidly converged to the best
focus position. Though the sharpness curve of VGR is better,
the VGRnSFB HFMF curve is comparable to it and found to
be suitable for implementation in real systems. This HFMF
has also produced a comparable sharpness curve in MS images
(Fig. 10 of Appendix).

Fig. 7 Accuracy of FMFs and HFMFs in percent after contrast reduction at 50% region sampling data.

Fig. 8 Accuracy of FMFs and HFMFs in percent after uneven illumination at 50% region sampling data.
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Based on content, the images for autofocusing could be cat-
egorized into three broad categories, namely low, medium, and
high density background. A current study contains a stack of
images from diverse modalities of MS, FM, and ZN with
low, medium, and high densities. It was evident from the earlier
studies that the performances of FMFs were dependent on im-
aging contents and varied when the focus area changed.1,2,16,21

However, the current study (VGRnSFB FMF) achieved better
and consistent results in all five diverse imaging modalities,
such as ZN, FM, and MS (TS, IS, and VS) (Figs. 4–8).
Furthermore, various parameters such as accuracy and focus
error have indicated that VGRnSFB is robust in different
experimental setup and imaging conditions. However, HFMFs
performance could be validated on other image modalities for
their universal applications. In the future, the effectiveness of
these HFMFs on live imaging techniques may be evaluated
for their applications in detecting objects or microorganisms,
which are not static.30 The region sampling incorporated in
this study has increased the accuracy of FMFs as well as
HFMFs. As computation time is not a major factor for FMF
evaluated in this study, image compression by means of sub-
sampling has not been performed and may be evaluated in the
future to optimize the performance of HFMFs. Nonetheless,
the HFMFs have outperformed individual FMFs in all the tested
imaging modalities, which are diverse and have low, medium,
and high density backgrounds with different levels of noise.

4 Conclusion
Exact autofocusing using FMFs is a very crucial step in any im-
aging system. Studies have reported that the performance of
FMFs is sensitive to image contents.28 Therefore, identification
of efficient and robust FMFs is very significant in any imaging
system for the development of autofocusing instrument. A com-
prehensive analysis of 28 HFMFs on diverse datasets, spanning
a broad range of image categories, provided 19 hybrid methods
with an accuracy ≥90%. Effectiveness of these HFMFs
was tested under different imaging conditions, such as noise
addition, saturation increment, contrast reduction, and uneven

illumination. VGRnSFB was found to be the most robust and
accurate HFMF as it showed the best overall accuracy and
robustness as the performances were independent of different
image distortions. This HFMF may be implemented in any
imaging system, which can capture the best-focused image
automatically.

Appendix
Mean computation time of each FMF per stack was determined
on Intel® Core™ i3-3220 CPU at 3.30 GHz with eight GB RAM
(Table 4). Images of 1600 × 1200 dimensions were subjected to
50% region sampling prior to calculation of mean computation
time.

Table 4 Mean computation time (in second) per stack of eight
FMFs at 50% region sampling. Original images were of 1600 × 1200
dimensions.

FMFsa Mean time (S)

GDR 0.76

GNV 0.17

HELM 0.97

SFB 3.37

SFM 0.49

TGR 0.41

VCR 0.4

VGR 0.58

aGDR, Gaussian derivative; GNV, normalized gray-level variance;
HSM, Hemli and Scherer’s mean; SFB, steerable filters-based; SFM,
spatial frequency; TGR, tenegrad; VCR, Vollath’s autocorrelation;
and VGR, tenengrad variance.

Fig. 9 Sharpness curve of nine FMFs including HFMF (VGRnSFB). Narrow peak represents rapid
convergence of FMF. (a) VGRnSFB (HFMF), VGR, and SFB were rapidly converged to the best focus
position in ZN (CM) images and (b) VGRnSFB and VGR were rapidly converged to the best focus
position in FM images.
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Sharpness of focus curve was also determined on MS
(visible, near-infrared, and TS) datasets (Fig. 10). Narrower
peak represents the rapid convergence rate of FMFs. VGRnSFB
along with VGR, GDR, and TGR have shown the rapid conver-
gence rates on MS datasets.
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