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Abstract. A multimodal sparse reconstruction approach is proposed for localizing defects in thin plates in Lamb
wave-based structural health monitoring. The proposed approach exploits both the sparsity of the defects and
the multimodal nature of Lamb wave propagation in plates. It takes into account the variation of the defects’
aspect angles across the various transducer pairs. At low operating frequencies, only the fundamental symmet-
ric and antisymmetric Lamb modes emanate from a transmitting transducer. Asymmetric defects scatter these
modes and spawn additional converted fundamental modes. Propagation models are developed for each of
these scattered and spawned modes arriving at the various receiving transducers. This enables the construction
of modal dictionary matrices spanning a two-dimensional array of pixels representing potential defect locations in
the region of interest. Reconstruction of the region of interest is achieved by inverting the resulting linear model
using the group sparsity constraint, where the groups extend across the various transducer pairs and the differ-
ent modes. The effectiveness of the proposed approach is established with finite-element scattering simulations
of the fundamental Lamb wave modes by crack-like defects in a plate. The approach is subsequently validated
with experimental results obtained from an aluminum plate with asymmetric defects. © 2016 SPIE and IS&T [DOI: 10
.1117/1.JEI.25.4.043013]
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1 Introduction
Structural health monitoring (SHM) is at the forefront of
emerging methods for the assessment of the integrity of a
variety of structures.1–4 Under the realm of SHM applica-
tions, guided ultrasonic waves are employed for real-time
detection and localization of defects in thin-walled struc-
tures, such as aircraft wings and wind turbine blades.5–8

Guided ultrasonic waves in such structures are referred to
as Lamb waves.9–11 These waves are solutions to the wave
equation for a thin plate, subject to traction free conditions
on the plate surfaces. Lamb wave-based sensing modality
has gained preference in SHM of thin plate and shell struc-
tures due to the ability of these waves to travel large distances
without significant attenuation, while providing rich inter-
actions with defects.12–15 As such, Lamb wave-based SHM
systems permit quick examination of broad areas of struc-
tures with a small number of transducers, thereby offering
cost savings and economic advantages.

Much of the attention garnered lately by Lamb wave-
based SHM is due to recent advances in computing, process-
ing, and electronic technologies that can handle the complex-
ities associated with Lamb wave propagation. Several factors
contribute toward the complexity of Lamb wave-based
SHM. Lamb wave propagation is multimodal in nature.
The multiple modes can be separated into symmetric (S)
and antisymmetric (A) modes. The total number of symmet-
ric and antisymmetric modes present can be controlled by the
choice of the frequency of operation. At low frequencies,
only the fundamental symmetric (S0) and antisymmetric

(A0) modes are present. However, at higher frequencies,
there can be a profusion of higher order Lamb modes propa-
gating in the thin structure. It is noted that at a given fre-
quency, each mode propagates with a different speed. All
modes are dispersive since the phase and group velocity
of each individual mode is a function of frequency. The addi-
tional wave modes spawned by asymmetric defects are
responsible for added complexity in the Lamb wave
signal.16,17

The multimodal nature of Lamb waves has typically been
considered a nuisance and avoided by operation at a suffi-
ciently low frequency where only a single fundamental
propagating mode exists. Despite the complexity of the
propagating Lamb waves, the additional information con-
tained in the various modes can be properly exploited to pro-
vide an enhanced assessment of the health of the structure.
For instance, the antisymmetric modes, A0 and A1, interact
well with delamination cracks lying in a plane parallel to the
plane of the plate. Meanwhile, the S0 mode is appropriate for
detecting transverse cracks in the middle of thin plates, and
the symmetric S1 mode is well suited for detecting smaller
transverse cracks at the surface of plates.14,15,18

While several techniques exist, including delay-and-
sum beamforming, adaptive beamforming, and sparse
reconstruction,16,19–23 for defect localization under single
Lamb mode propagation, research efforts have only recently
been directed toward exploiting the multimodal nature of
Lamb waves in SHM. Subspace-based high-resolution meth-
ods were reported in Ref. 24. A data-driven improvement
to matched field processing for defect localization in a

*Address all correspondence: Fauzia Ahmad, E-mail: fauzia.ahmad@villanova
.edu 1017-9909/2016/$25.00 © 2016 SPIE and IS&T

Journal of Electronic Imaging 043013-1 Jul∕Aug 2016 • Vol. 25(4)

Journal of Electronic Imaging 25(4), 043013 (Jul∕Aug 2016)

http://dx.doi.org/10.1117/1.JEI.25.4.043013
http://dx.doi.org/10.1117/1.JEI.25.4.043013
http://dx.doi.org/10.1117/1.JEI.25.4.043013
http://dx.doi.org/10.1117/1.JEI.25.4.043013
http://dx.doi.org/10.1117/1.JEI.25.4.043013
http://dx.doi.org/10.1117/1.JEI.25.4.043013
mailto:fauzia.ahmad@villanova.edu
mailto:fauzia.ahmad@villanova.edu
mailto:fauzia.ahmad@villanova.edu


multimodal propagation environment was utilized in Ref. 25.
Sparse signal recovery methods were employed in Ref. 26 to
account for mode conversion under single-mode excitation
in ultrasonic nondestructive evaluation applications, which
can also be applied to address defect-spawned modes in
Lamb wave-based SHM. In previous work, we have utilized
sparse reconstruction for multimodal imaging in SHM.27,28

The case of multiple modes emanating from the transmitters
and being scattered by defects was considered in Ref. 27.
This case was extended in Ref. 28 by the inclusion of addi-
tional defect-spawned modes. However, both Refs. 27 and
28 ignored the dependency of the defect scattering on the
aspect angle and did not provide rigorous performance
validation.

In this paper, we perform joint exploitation of the multi-
modal nature of the Lamb waves and the sparse nature of the
defects for efficient and reliable defect localization using a
limited number of transducers distributed around the region
of interest (ROI). The received signal model considers both
excited and defect-spawned S0 and A0 Lamb modes and
accounts for the fact that the defects’ aspect angles may
vary considerably across the various transmitter–receiver
transducer pairs. The defect localization problem is formu-
lated as group sparse reconstruction, which exploits the mul-
timodal measurements from all transducers to form an image
of the ROI. Note that although only two excited fundamental
modes are considered herein, the proposed model and
reconstruction method can readily be extended to a higher
number of Lamb wave modes. The effectiveness of the pro-
posed method is verified through both finite-element simu-
lations and real data experiments; the former involves
symmetric crack-like defects in a plate, whereas the latter
deals with a thin aluminum plate with masses glued to
the surface to simulate asymmetric defects. To the best of
our knowledge, multimodal exploitation in sparse image
reconstruction for varying defects’ aspect angles across the
different transmitter–receiver pairs has not been addressed in
prior works in the context of guided wave SHM.

The remainder of this paper is organized as follows. In
Sec. 2, the multimodal signal model is formulated and the
sparse reconstruction approach for defect localization is pre-
sented. Supporting finite-element simulation results are pro-
vided in Sec. 3, while experimental results are presented in
Sec. 4, both of which demonstrate the efficacy of the multi-
modal sparse reconstruction approach in localizing defects in
thin plate-like structures. Section 5 contains the concluding
remarks.

2 Multimodal Signal Model and Sparse
Reconstruction

In this section, we first present the multimodal signal model,
followed by a description of the sparsity-based scene
reconstruction for defect localization.

2.1 Signal Model
Consider a spatially distributed network of J piezoelectric
transducers attached to one of the surfaces of a thin plate
(as shown in Fig. 1). The transducers are assumed to be
employed in a pitch-catch mode for data collection. That
is, the transducers work in pairs with one transducer trans-
mitting the signal and the other acting as the receiver. As

such, a total of L ¼ JðJ − 1Þ∕2 unique transmitter–receiver
combinations are used for interrogating the ROI.

Let the transmitter and receiver corresponding to the l’th
pair be located at position vectors tl and rl, respectively. Let
hðtÞ be the analytic signal corresponding to the excitation
waveform, whose center frequency is chosen such that the
only modes propagating in the plate are the fundamental
A0 and S0 modes. For a single defect located at position vec-
tor sp, both S0 and A0 waves will be scattered by the defect.
The respective received scattered waves at rl for the two
modes can be expressed in the frequency domain as
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Glp;A0
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ðfÞ�;
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�

α
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�
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σlp;S0HðfÞ

× exp½j2πfðktl − spk2 þ krl − spk2Þ∕cS0ðfÞ�;
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where HðfÞ is the Fourier transform of hðtÞ, cA0
, and cS0 are

the frequency-dependent phase speeds of the A0 and S0
modes, respectively, and α is an arbitrary constant with
dimensions of length. The inverse square root dependence
on ktl − spk2 and krl − spk2 accounts for attenuation caused
by the geometrical spreading of the wavefront on the transmit
and receive paths to the defect. The parameters σlp;A0

and
σlp;S0 are the respective defect reflectivities under the A0

and S0 modes. While the reflectivities are assumed to be in-
dependent of frequency, they are functions of the aspect
angles relative to the l’th transmitter–receiver pair.

In addition to these scattered modes, an incident A0 mode,
upon interaction with an asymmetric defect, will spawn an
additional S0 mode, where the asymmetry of the defect is
defined relative to the midplane of the plate. The same

Fig. 1 Simulation setup (top view). The cyan grid indicates the ROI
and the red triangles represent the transducers located circumferen-
tially around the blue circle of radius 100 mm.
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phenomenon occurs for the S0 mode interacting with the
asymmetric defect, resulting in an additional spawned A0

mode. The received signal components corresponding to
these two converted modes are represented in the frequency
domain as

EQ-TARGET;temp:intralink-;e003;63;697
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where the notation S0∕A0 and A0∕S0 denote the two con-
verted modes with reflectivities σlp;A0∕S0 and σlp;S0∕A0

; i.e.,
the incident S0 wave that spawns a reflected A0 from the
defect and vice versa. For convenience, the attenuation fac-
tors in Eqs. (1)–(4) can be combined with the respective
defect reflectivities, leading to

EQ-TARGET;temp:intralink-;e005;63;483Glp;A0
ðfÞ ¼ xlp;A0

HðfÞ exp½j2πfðktl − spk2
þ krl − spk2Þ∕cA0

ðfÞ�; (5)
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þ krl − spk2Þ∕cS0ðfÞ�; (6)
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The time-domain equivalents of the received signal compo-
nents corresponding to the direct and converted modes
are simply the inverse Fourier transforms of Eqs. (5)–(8)
and are denoted by glp;A0

ðtÞ, glp;S0ðtÞ, glp;A0∕S0ðtÞ, and
glp;S0∕A0

ðtÞ, respectively. Thus, the total received signal at
rl due to the defect at sp is given as

EQ-TARGET;temp:intralink-;e009;63;197z̃lðtÞ ¼ blðtÞ þ glp;A0
ðtÞ þ glp;S0ðtÞ þ glp;A0∕S0ðtÞ

þ glp;S0∕A0
ðtÞ; (9)

where blðtÞ represents the background signal corresponding
to the l’th transmitter–receiver pair, which comprises the
direct path signals between the transmitter and receiver as
well as any edge reflections.

For the general case of P structural defects in the plate, the
received signal, pertaining to the l’th transmitter–receiver
pair, is obtained by the superposition of the direct signal

and the complete set of scattered and converted modes pro-
duced by all defects and is expressed as
EQ-TARGET;temp:intralink-;e010;326;730

z̃lðtÞ ¼ blðtÞ þ
XP−1
p¼0

½glp;A0
ðtÞ þ glp;S0ðtÞ

þ glp;A0∕S0ðtÞ þ glp;S0∕A0
ðtÞ�: (10)

Note that the interactions between the defects are ignored in
this model. Further, access to the background signals in the
absence of the defects is assumed. This permits background
subtraction to be performed, resulting in a difference signal,
which only contains the defect-scattered and defect-spawned
waveforms

EQ-TARGET;temp:intralink-;e011;326;596zlðtÞ ¼ z̃lðtÞ − blðtÞ

¼
XP−1
p¼0

½glp;A0
ðtÞ þ glp;S0ðtÞ þ glp;A0∕S0ðtÞ þ glp;S0∕A0

ðtÞ�:

(11)

2.2 Matrix–Vector Representation
An equivalent matrix–vector representation of the difference
signals, zlðtÞ; l ¼ 0;1; : : : ; L − 1, is obtained as follows. The
ROI is conceptualized as a uniform grid of M pixels where
each pixel represents a potential defect location. In general,
P ≪ M, i.e., the number of defects is typically much smaller
than the number of potential defect locations. Let xl;A0

and
xl;S0 be the lexicographically ordered M × 1 scene reflectiv-
ity vectors corresponding to the spatial sampling grid for the
l’th transmitter–receiver pair under the A0 and S0 modes,
respectively. Likewise, xl;A0∕S0 and xl;S0∕A0

represent the
respective scene reflectivity vectors under the converted
modes of the incident A0 and S0 modes. Sampling zlðtÞ at
times tk; k ¼ 0;1; : : : ; K − 1, we obtain a K × 1 vector zl.
Then, using Eqs. (5)–(8) and (11) and with the introduction
of measurement noise nl, we obtain the linear relationship
between the l’th difference signal and the corresponding
scene reflectivity vectors as

EQ-TARGET;temp:intralink-;e012;326;316zl ¼ Ψl;A0
xl;A0

þΨl;S0xl;S0 þΨl;A0∕S0xl;A0∕S0

þΨl;S0∕A0
xl;S0∕A0

þ nl; (12)

where Ψl;A0
, Ψl;S0 , Ψl;A0∕S0 , and Ψl;S0∕A0

are the dictionary
matrices corresponding to the scattered and the converted
modes, each of dimension K ×M. The m’th column of
Ψl;A0

consists of the scattered A0 wave corresponding to a
defect at the m’th grid-point sm with the k’th element of
the m’th column given as

EQ-TARGET;temp:intralink-;e013;326;199ðΨl;A0
Þk;m ¼ F−1fHðfÞ exp½j2πfðktl − smk2

þ krl − smk2Þ∕cA0
ðfÞ�gjt¼tk ; (13)

where F−1f·g is the inverse Fourier Transform operator.
Likewise, the m’th column of Ψl;S0 consists of the scattered
S0 wave corresponding to a defect at sm with its k’th element
given as
EQ-TARGET;temp:intralink-;e014;326;103ðΨl;S0Þk;m ¼ F−1fHðfÞ exp½j2πfðktl − smk2

þ krl − smk2Þ∕cs0ðfÞ�gt ¼ tk. (14)
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The same logic follows for the converted mode dictionary
matrices, with the corresponding (k;m)’th elements
expressed as
EQ-TARGET;temp:intralink-;e015;63;719
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�������
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�������
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Equation (12) only considers the contribution of a single
transmitter–receiver pair. The signal model corresponding to
all L transmitter–receiver combinations can be obtained as

EQ-TARGET;temp:intralink-;e017;63;538z ¼ ΨA0
xA0

þΨS0xS0 þΨA0∕S0xA0∕S0 þΨS0∕A0
xS0∕A0

þ n;

(17)

where
EQ-TARGET;temp:intralink-;e018;63;482

z ¼ ð zT0 zT1 · · · zTL−1 ÞT;
n ¼ ð nT0 nT1 · · · nTL−1Þ T
xΛ ¼ ð xT0;Λ xT1;Λ · · · xTL−1;Λ ÞT
Ψ ¼ blkdiagðΨ0;Λ;Ψ1;Λ; : : : ;ΨL−1;ΛÞ

for Λ ¼ A0; S0; A0∕S0; S0∕A0; (18)

the superscript “T” denotes the matrix transpose operation,
and blkdiagð·Þ denotes block diagonal matrix operation. The
respective dimensions of the dictionary matrices,ΨΛ, the
measured data vector, z, the reflectivity vectors,xΛ, and
the noise vector n are KL ×ML, KL × 1, ML × 1, and
KL × 1. Equation (17) can be expressed more compactly as

EQ-TARGET;temp:intralink-;e019;63;320z ¼ Ψxþ n; (19)

where x ¼ ð xTA0
xTS0 xTA0∕S0 xTS0∕A0

ÞT and Ψ ¼
ðΨA0

ΨS0 ΨA0∕S0 ΨS0∕A0
Þ, with respective dimensions

4ML × 1 and KL × 4ML. Note that the block diagonal
nature of ΨΛ represents the inherent separability of the
time-domain returns for each transducer–receiver pair,
whereas the structure of the composite multimodal diction-
ary matrix Ψ indicates that no such separability of the dis-
tinct wave mode returns is assumed.

It is noted that if downsampling in the time and/or spatial
domains is desired, it can be incorporated in the signal model
via premultiplying z by a downsampling matrix. For more
details on the design of the downsampling matrix, refer to
Refs. 29 and 30.

2.3 Group Sparse Reconstruction
Although the defect reflectivities vary from one transmitter–
receiver pair to the next and from one mode to another, the
defect locations remain unchanged as all transmitter–receiver
pairs are inspecting the same physical scene, potentially from
different viewpoints. That is, if a particular element of x0;A0

is
nonzero, then so are the corresponding elements of xl;A0

,
xl;S0 , xl;A0∕S0 , and xl;S0∕A0

for all l ¼ 0;1; : : : ; L − 1. In
other words, the various reflectivity vectors share a common
support, leading to a “group” sparsity pattern in the vector x
with each group extending across the four considered modes
and the L transmitter–receiver pairs for each pixel location.
As such, the vector x can be recovered from the measure-
ments z through a mixed l2∕l1 norm optimization31–33

EQ-TARGET;temp:intralink-;e020;326;528x̂ ¼ arg min
x

1

2
kz − Ψxk22 þ λkxk2;1; (20)

where kxk2;1 ¼
P

M−1
m¼0

		
 x̂m0;A0
· · · x̂mL−1;A0

x̂m0;S0 · · · x̂mL−1;S0
x̂m0;A0∕S0

· · · x̂mL−1;A0∕S0 x̂m0;S0∕A0
· · · x̂mL−1;S0∕A0

�
T
		
2
with the

superscript “m” indicating the m’th pixel, and λ is a regulari-
zation parameter. Note that the mixed norm kxk2;1 is the sum
(the l1-norm) of the l2-norms of the groups and thereby
encourages occurrences of whole groups of zeros in the sol-
ution while minimizing the number of nonzero groups.
Rather than solving Eq. (20) explicitly, which can be com-
putationally expensive, greedy algorithms, such as a Block
version of the Orthogonal Matching Pursuit (BOMP), can be
used to recover the vector x from the measurements z.34

BOMP relies on an iterative process to identify the support
of x one group at a time. The algorithm begins by initializing
the residual as the measurements z. At each iteration, a group
is chosen that is best matched to the residual and is added to
the support estimate. Candidate values of the entries of x on
this support are then computed using a least squares tech-
nique, and the residual is updated. This procedure is repeated
until a stopping criterion (e.g., a preset iteration number also
referred to as the prescribed sparsity) is satisfied. Because of
the efficient manner in which this algorithm produces an
accurate solution, we use BOMP for reconstruction of
the ROI.

After the vector x̂ has been recovered, a single composite
representation of the ROI is obtained as33

EQ-TARGET;temp:intralink-;e021;63;188ðx̂Þm ¼ x̂m ¼
				
�
x̂m0;A0

· · · x̂mL−1;A0
x̂m0;S0 · · · x̂mL−1;S0 x̂m0;A0∕S0

· · · x̂mL−1;A0∕S0 x̂m0;S0∕A0
· · · x̂mL−1;S0∕A0

�
T
				
2

: (21)

3 Simulation Results
The effectiveness of the proposed multimodal scheme is first
demonstrated by applying it to numerical data corresponding
to a finite-element simulation of a plate with two crack-like
defects. The first defect is chosen to be a surface crack,
whereas the second defect is an internal crack. Finite element
simulation is employed in lieu of real experiments, since it is

difficult to create these defects in a real plate. Both defects
are constructed such that they are symmetric with respect to
the midplane of the plate; hence, these defects will scatter
incident modes without spawning additional modes. The
multimodal nature of the problem arises from the fact that
the transmitters are assumed to simultaneously generate
both fundamental Lamb modes, A0 and S0.
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3.1 Simulation Parameters
Simulations are performed using the Abaqus/EXPLICIT
commercial finite-element analysis (FEA) software. The
simulation environment consists of a 3-mm-thick aluminum
plate, whose square base dimension is 600 mm. The plate
is created using Abaqus “TIE” constraints to perfectly
bond together two identical half-plates of size 300 mm ×
600 mm × 3 mm along their longest dimension. The action
of five piezoelectric transducers is simulated through an
appropriate force excitation at five nodes on the surface of
the plate model (see Fig. 1). This arrangement provides a
total of L ¼ 10 unique transmitter–receiver combinations.
The “transducer” nodes are excited via a Hanning-win-
dowed, five-cycle burst of a 150-kHz sinusoidal signal.
The 150-kHz center frequency is chosen because only S0
and A0 modes can propagate at this frequency for the con-
sidered plate thickness.

The excitation signal is introduced into the simulation as a
concentrated load applied on the top and bottom surface of
the plate at the transducer locations. The direction of the load
is in the positive or outward normal (z-axis) direction to the
plate. The time-varying amplitude, AðtÞ, of the load corre-
sponds to the aforementioned five-cycle tone burst. To gen-
erate a pure A0 mode, the load on the top and bottom of the
plate are both applied in the þz direction with magnitude ηA.
The resulting force ΓðtÞ ¼ ηAAðtÞ produces an A0 wave with
normalized amplitude. Similarly, a force Γtop∕bottomðtÞ ¼
�ηSAðtÞ is applied with constant ηS chosen so as to produce
an S0 wave of normalized amplitude, where the signs indi-
cates that the force is applied on the top and bottom of the
plate in opposite directions along the z-axis. Using the prin-
ciple of superposition, both modes are simultaneously pro-
duced when Γtop∕bottomðtÞ ¼ ðηA � ηSÞAðtÞ is applied at the
top and bottom surfaces of the plate in the direction of the
plate normal. This force is employed in the simulations
herein, to ensure that symmetric and antisymmetric wave
modes propagate simultaneously in the plate.

The ROI is chosen to be a 140 mm × 140 mm square area
at the center of the plate (see Fig. 1). This ensures that the
plate boundary is sufficiently far from the transducer and
defect locations. Hence, boundary reflections are considered
to be insignificant and are not included in the simulated data.
The ROI is divided into a 15 × 15 pixel-grid resulting in a
total ofM ¼ 225 pixels and the origin of the coordinate sys-
tem is chosen to be at the center of the ROI. Two defects are
implemented by “unTIEing” nodes such that the TIE con-
straint in the area of the defect does not exist. This creates
discrete finite scattering boundaries at the locations of the
defects, as shown in Fig. 2. The first defect, centered at
(−34.5; 0) mm, has a length of 45 mm (x-direction) and a
width with effective extent such that it touches the pixel
locations at �10 mm in the y-direction. This defect is con-
structed as a symmetric surface crack with a depth of 0.6 mm
on the top and 0.6 mm on the bottom. This type of defect
will interact strongly with the incident A0 mode and weakly
with the incident S0 mode. The second defect is centered at
(67.5, 0) mm and is identical in length and width to the first
defect. As shown in Fig. 2, it is symmetrically centered
relative to the midplane of the plate such that it represents
an internal crack. It spans a thickness of 1.8 mm. This
type of defect has a strong interaction with the incident
S0 mode, but a weak response to the incident A0 mode.

For each transmitter–receiver pair, the received signal,
acquired via Abaqus, is sampled at a rate of 1 MHz, resulting
in K ¼ 130 recorded samples over a time interval of
130 μs. As such, the measurement vector z has a length
of 1300. Since the symmetric nature of the implemented
defects implies that no mode conversion occurs, the con-
verted modes are excluded from the signal model in Eq. (19).
Therefore, the combined reflectivity vector x ¼ ½ xTA0

xTS0 �T
is of length 4500, the dictionaries, ΨA0

and ΨS0 are of
size 1300 × 2250 each, and the composite dictionary Ψ ¼
½ΨA0

ΨS0 � is of dimension 1300 × 4500. The dictionaries
are obtained using the analytical formulation in Sec. 2.

3.2 Reconstruction Results
In order to minimize mismatch errors resulting from a real-
valued signal being reconstructed with a complex-valued
dictionary, the Hilbert transform of the in-phase signal is
utilized to create an analytic representation of the measured
signal. First, using the multimodal measurement vector z,
single-mode-based sparse recovery is performed for the
A0 and S0 modes individually. More specifically, BOMP
is used to separately reconstruct the reflectivity vectors xS0
and xA0

by considering respective individual single-mode
signal models z ¼ ΨS0xS0 and z ¼ ΨA0

xA0
, with the groups

extending across the various transducer pairs. The number of
BOMP iterations in each case was set to 2, corresponding to
the anticipated 2 defects present. Figures 3(a) and 3(b) show
the single-mode results for the A0 and S0 modes, respec-
tively. The image intensity in each figure is plotted with the
maximum intensity value normalized to 0 dB. As expected,
the A0 only reconstruction properly locates the surface crack,
which preferentially scatters A0, but fails to correctly localize
the other defect. For the S0 only case, the reconstructed inter-
nal crack defect is in close proximity of the true location, but
the other defect is missed by a relatively larger margin.

Next, the proposed multimodal approach is employed for
scene reconstruction. Two iterations of BOMP are used for
group sparse recovery of the multimodal reflectivity vector.
However, the groups extend across both the transducer pairs
and the two fundamental modes. No converted modes are
considered due to the symmetric nature of the FEA modeled
defects. The corresponding result is shown in Fig. 4(a),
which shows that both defects have been accurately local-
ized. For comparison, Fig. 4(b) shows the noncoherent com-
bining of the single mode results of Fig. 3. That is, the
intensities of the individual mode reconstructions are added
together, i.e., group sparsity is not applied across the wave
modes. This combining is clearly inferior to the proposed
multimodal group sparse approach. The results presented

Fig. 2 Cross-section of the plate along the plane normal to the plate,
where the union of the two plate halves would be “TIEd” together
except in the regions spanning the defects. Top right shows the sym-
metric surface crack, while bottom right depicts a symmetric internal
crack.
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in Figs. 3 and 4 clearly demonstrate that the proposed multi-
modal approach is able to simultaneously detect defects that
interact primarily with the S0 mode and those that scatter
strongly the A0 mode. As it is apparent from Fig. 3, a sin-
gle-mode only approach would miss one of these defects.

It is noted that BOMP, like other greedy algorithms,
requires the specification of the scene sparsity for exact
reconstruction. However, in practice, this information is
not available a priori and the choice of the number of
iterations is heuristic. Overspecification of the sparsity will
cause measurement noise to be reconstructed in the image.
The magnitude of these false reconstructions will, in general,
be weaker relative to the intensities assigned to the true
defects, provided that the signal-to-noise ratio (SNR) is
high. Various adaptive approaches have been proposed to
counter the problem of signal reconstruction without prior
information of the sparsity under low SNR conditions.35,36

It is further noted that the extended nature of the crack-
like defects can be incorporated as part of the reconstruction
process.23,33 However, since the objective of this paper is
to demonstrate the offerings of multimodal imaging, the
simpler point-like defect model is employed for sparse
reconstruction. Nevertheless, this discrepancy between the
assumed point-like defect model and the extended defect

modeled in the FEA software contributes to the reconstruc-
tion errors. Furthermore, the errors in the single-mode
reconstructions, in particular, can also be attributed to the
high coherence of the corresponding dictionaries (the coher-
ence of a dictionary can be seen as the maximum correlation
between any two of its columns).

3.3 Quantitative Performance Evaluation
In order to provide a quantitative assessment of the perfor-
mance of the proposed multimodal approach, Earth movers
distance (EMD) is used as a metric.37,38 EMD reflects the
amount of work needed to transform the reconstructed
image into the ground truth image, with a value of 0 implying
perfect reconstruction. In this work, a fast implementation of
EMD is utilized.38 The EMD corresponding to the two-
defect FEA simulation is plotted versus SNR in Fig. 5 for
the single-mode and multimodal approaches. SNR values
in the ½−20 20� dB range with 10-dB increment are consid-
ered. In order to generate these plots, white Gaussian noise is
added to the FEA measurements. A total of 100 Monte-Carlo
runs are conducted for each SNR value with a different reali-
zation of noise each time, and the average EMD value is plot-
ted. It is observed from Fig. 5 that for both single-mode

Fig. 3 Single-mode reconstruction results with BOMP using the (a) A0 mode and (b) the S0 mode. The
true defect locations are indicated by open rectangles, while the transducer locations are represented by
red triangles.

Fig. 4 (a) Multimodal reconstruction using BOMP and (b) noncoherent combining of A0 and S0 only
results. The open rectangles and the red triangles specify the true defect and transducer locations,
respectively.
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and multimodal reconstructions, the EMD tends to decrease
as SNR increases. Further, the multimodal approach pro-
vides a superior reconstruction as manifested in a signifi-
cantly lower EMD value when compared to the single-mode
approaches for SNR values greater than 0 dB. These results
quantify and validate the superior performance of the pro-
posed multimodal approach over the single-mode only
reconstructions.

4 Experimental Results
In this section, the proposed multimodal approach is applied
to real data measurements from an aluminum plate with
asymmetric point-like defects. Such defects produce both
scattered and spawned modes corresponding to the propagat-
ing A0 and S0 modes.

4.1 Experimental Setup
We utilize a sparsely distributed transducer array of five lead
zirconate titanate (PZT) piezoelectric transducers attached to
a 1.22-m square and 3.12-mm-thick aluminum plate.
The transducers, manufactured by APC International, are
0.22 mm thick with 10 mm diameter. The transducers are
arranged in a circle of radius 250 mm at the locations
shown in Fig. 6. A pitch-catch mode was employed resulting
in a total of L ¼ 10 distinct transmitter-receiver pairs.

The transducers are excited via a Hanning-windowed,
five-cycle burst of a 150-kHz sinusoidal signal. The 150-
kHz center frequency permits only S0 and A0 modes to
propagate in the material. The group velocities for the S0
and A0 at the frequency-thickness of 0.234 MHz-mm are
5338 and 1827 m∕s, respectively, with a packet width of
33.4 μs. The combined packet width and velocity difference
permits sufficient temporal separation of the arriving wave
packets for the two fundamental modes, while the converted
modes merge together into a single third packet. National
Instruments (NI) PXI 5142 Arbitrary Waveform Generator
is used for signal generation, in conjunction with a
Krohn-Hite Model 7500 Amplifier, whose gain is set to
40 dB so as to ensure a strong incident wave. Received
data measurements are compiled and averaged over 5000
collections in LabView via an NI PXI 5105 Digitizer oper-
ating at a sampling rate of 1 MHz. Both the PXI 5142 and
5105 are housed in an NI PXI 8108 Embedded Controller.

Defects are introduced by adhering steel rods to the plate
using a simple two-part epoxy. The rods have a diameter of
12.7 mm and are of two different heights: 50 and 57.5 mm.
The rods are glued on the top surface of the plate, with the
50 mm tall rod located at (160, 160) mm and the 57.5 mm tall
rod attached at (340, 340) mm, as shown in Fig. 6(a). The
origin of the coordinate system is located in the lower left
hand corner in Fig. 6(a). This defect configuration creates
a realistic scenario of asymmetric defects. The ROI is a
400 × 400 mm square centered at (250, 250) mm and is di-
vided into 31 × 31 grid points resulting in M ¼ 961 pixels.
The plate temperature is monitored using a J-type thermo-
couple. The thermocouple is glued to the plate with thermal
epoxy just outside the ROI, and its voltage is recorded with
an NI 9211 Thermocouple Input. LabView converts this con-
tinuous feed to temperature and displays it in real time. Due
to the dependence of the signal amplitude on temperature,
this step is necessary to ensure a clean residual using optimal
baseline subtraction.39

4.2 Reconstruction Results
The measurement system only captures the in-phase compo-
nents of the received signals. Therefore, the Hilbert trans-
form of the in-phase signal is again utilized to create an
analytic signal representation of the measured signal. The
complex-valued signals corresponding to each transmitter–
receiver pair are time-windowed retaining the returns up
to 340 μs corresponding to the interval of interest, resulting
in K ¼ 340 samples. Thus, the measurement vector z is of
dimension 3400 × 1.

As described earlier, asymmetric defects cause mode
conversion in addition to scattering of the incident modes.
Therefore, unlike the FEA simulation, which dealt with
the scattered S0 and A0 modes only, the converted mode
components are included in the signal model and
reconstruction approach in this case. As such, the combined
reflectivity vector x is of length 38,440, and the composite
dictionary Ψ is of dimension 3400 × 38;440. The BOMP-
based multimodal and single-mode only reconstruction
results are shown in Fig. 7. Black circles and red triangles
indicate the actual defect and transducer locations, respec-
tively. The number of BOMP iterations is set to 2 for each
reconstruction. The multimodal result accounting for mode
conversion in Fig. 7(c) reconstructs the defect at (160, 160)
mm with a slightly biased location, while the other defect has
been accurately localized. The A0 only reconstruction in
Fig. 7(a) provides comparable performance to the multimo-
dal reconstruction in terms of location accuracy, but assigns
its selections a much weaker magnitude. On the other hand,
the S0 only result in Fig. 7(b) fails to localize both defects,
which is attributed primarily to the relatively weak S0
mode at 150 kHz compared to the A0 mode. For comparison,
Fig. 7(d) shows the noncoherent combining of the A0 only
and the S0 only reconstructions. Although this simple com-
bining of individual mode reconstructions is able to localize
the defects, it is more cluttered compared to the group spar-
sity multimodal reconstruction. Figure 7(e) provides the mul-
timodal result when mode conversion is ignored. As it is
evident, ignoring this phenomenon results in an image
identical to Fig. 7(a) where only the A0 mode is considered.
The two localizations are accurate; however, the selections
are assigned much weaker magnitudes relative to the

Fig. 5 EMD values for the single and multimodal approaches.
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multimodal results accounting for mode conversion as seen
in Fig. 7(c).

To quantify the performance quantitatively, the EMD is
computed for the four reconstructions after each image
has been normalized to have a maximum intensity of

0 dB. The A0 only and S0 only reconstructions have respec-
tive EMD values of 0.0015 and 0.0461. The multimodal
result that ignored mode conversion matches the A0 only
result with an EMD value of 0.0015. The noncoherent com-
bining of the single mode only results has an EMD of

Fig. 6 Experimental setup. (a) Schematic showing the pixel grid in cyan, with PZT transducer location
indicated by red triangles and defects marked by red circles at (160, 160) mm and (340, 340) mm.
(b) Actual setup.

Fig. 7 Sparse reconstructions for the two-defect experiment. (a) A0 only, (b) S0 only, (c) multimodal
accounting for mode conversion, (d) noncoherent combining ofA0 and S0 only results, and (e) multimodal
ignoring mode conversion.
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0.0462, while the EMD for the proposed multimodal
approach is determined to be 0.00091. These values confirm
the performance enhancement offered by the multimodal
approach.

5 Conclusion
In this paper, a sparse reconstruction approach is proposed
for detecting defects in thin plates, which exploits the multi-
modal nature of Lamb waves and imposes a block structure
across the modes and the transducer pairs within the modes.
Model-based dictionaries, which account for the associated
dispersion and attenuation through the medium, are con-
structed for the directly scattered fundamental wave modes
as well as the defect-spawned converted modes. Results
based on simulated data from an FEA model of scattering
by two symmetric crack-like defects in a thin aluminum
plate were used to validate the dictionary constructions
and for performance evaluation of the proposed multimodal
scheme. These results exposed the shortcomings of single-
mode only reconstructions and highlighted the superior
performance of the proposed multimodal approach. The
effectiveness of the multimodal approach was further dem-
onstrated using experimental data collected from a thin alu-
minum plate with two point-like defects. The corresponding
multimodal reconstruction was accurate to within one pixel,
which is well within the tolerance of what is acceptable in
real world applications.
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