1 October 1994 Noniterative reconstruction of complex-valued objects from two intensity measurements
Mohammad H. Maleki, Anthony J. Devaney
Author Affiliations +
Abstract
We present results obtained from the application of a novel phase-retrieval algorithm for recovering a complex-valued object from a set of two intensity measurements. The algorithm requires two intensity measurements at different distances from a weak scatterer, where the total transmitted field is composed of the coherent sum of an incident plane wave and the scattered wave. The algorithm is noniterative and does not have the convergence problems associated with iterative algorithms. The new technique shows great promise for inverse-scattering applications, such as optical diffraction tomography and in-line holography of complex-valued objects, with the aim of eliminating the twin-image problem. Results are presented from a computer simulation of a simple object and from experimental data obtained from a microlens array. Our results obtained using the new algorithm on experimental data compare well with those obtained with a modified form of the Gerchberg-Saxton algorithm, at a significantly reduced computational cost.
Mohammad H. Maleki and Anthony J. Devaney "Noniterative reconstruction of complex-valued objects from two intensity measurements," Optical Engineering 33(10), (1 October 1994). https://doi.org/10.1117/12.181248
Published: 1 October 1994
Lens.org Logo
CITATIONS
Cited by 35 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Reconstruction algorithms

Diffraction

3D image reconstruction

Holography

Computer simulations

Holograms

Deconvolution

Back to Top