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ABSTRACT

In the context of the classical study of optical systems within the geometrical Gauss approximation, the cardinal elements are
efficiently obtained with the aid of the transfer matrix between the input and output planes of the system. In order to take
into account the geometrical aberrations, a ray tracing approach, using the Snell-Descartes laws, has been implemented in an
interactive software. Both methods are applied for measuring the correction to be done to a human eye suffering from ametropia.
This software may be used by optometrists and ophthalmologists for solving the problems encountered when considering this
pathology. The ray tracing approach gives a significant improvement and could be very helpful for a better understanding of an
eventual surgical act.
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1. INTRODUCTION

This article is devoted to the study of complex optical systems in the framework of geometrical optics. The ray optics is
the branch of optics in which all the wave effects are neglected: the light is considered as travelling along rays which can
only change direction by refraction or reflection. On one hand, a further simplifying approximation can be made if attention
is restricted to rays travelling close to the optical axis and at small angles: the well-known linear or paraxial approximation
introduced by Gauss. On the other hand, in order to estimate the geometrical aberrations, it is sometimes necessary to pay
attention to marginal rays. Both methods are presented and applied to the study of the human eye suffering from ametropia.
Thus, we intend to show that the tracing of both rays, paraxial and marginal, is necessary for measuring the correction to be
done. This work has lead on the development of an interactive software that may be used by optometrists and ophthalmologists
for solving the problems encountered when considering certain pathologies of the eye.

Within the frame of the linear approximation of geometrical optics, the properties of the rays travelling in 2 medium or through
an optical system can be treated with an elegant and powerful matrix formalism. When using optical angles rather than geo-
metrical ones, the elementary matrices involved in the propagation have a nice property: their determinant is equal to unity.
This formalism resulting from the Gauss approximation, as well as the basic propagation matrices, are presented in the first
section of this paper. There exist certain planes within an optical system that play an important role. This is the case for the
couples of conjugate planes, because the intensity distribution across one plane is an image of the intensity distribution across
the other plane. The second section is devoted to the establishment of the transfer matrix between two conjugate planes of an
optical system. The notion of power introduced at the end of this section is coherent with the refractive power of a spherical
interface. The intrinsic characteristics and properties of a focal optical system within the Gauss approximation are contained
in the cardinal elements. With the power, they provide the necessary information for determining, within the frame of paraxial
optics, the location and the size of the image of an object given by the optical system. These cardinal elements are described in
the third section. When studying optical systems within the Gauss approximation, it is sometimes necessary to determine the
location and the size of the image of an object. This can be done in a geometrical manner by considering particular rays, but the
transfer matrix of the optical system provides an elegant and accurate way to reach this goal. Another algebraic way is given
by the cardinal elements themselves. These two approaches are compared in the fourth section. The Newton and the Descartes
relations suffer from a restricting assumption: the optical system should be a focal one, otherwise the cardinal elements would
not be defined. This is not the case of the homographic relation which is still valid for nonfocal optical systems.

When studying complex optical systems, it is necessary to determine the path of the light with a greater accuracy than that
obtained in the paraxial approximation. This may be done with the aid of elementary geometry, by successive application of
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the Snell-Descartes laws of refraction (or reflection). This method, which is known as ray tracing, is extensively used in the
practical study of complex optical instruments. Since in an ideal system all rays that form an image are concurrent at the same
image point, only two rays need to be traced to determine the image point at their intersection point. However, as we will see
in the two last sections, because of geometrical aberrations, marginal rays are not concurrente at a single point, while paraxial
ones are. This is why ray tracing is the only way to properly take into account aberrations in an optical system. The very last
section of this work is concerned by the comparison between the Gauss approximation and the ray tracing of marginal rays, in
the study of the correction to be done to a human eye suffering from ametropia. As expected, the ray tracing approach gives a
significant improvement and could be very helpful for solving the problems encountered when considering this pathology.

2. GAUSS APPROXIMATION

The Gauss approximation is the linear approximation of geometrical optics. Within this frame, the properties of rays travelling
through an optical system can be treated with an elegant matrix formalism.! We first define the column vector X whose
complex components are the spatial coordinates £ = x + iy in a front plane perpendicular to the optical axis z, and the optical
angles na = n(a + iB3) of a point lying in a medium with refractive index n:

z . _ . _ .
X—(ng) with z =z +14y and a = a +i8. 1)

For reasons that will be explained later in this section, it is preferable to use optical angles rather than just geometrical ones.

2.1. Propagation through free space

Geometrical rays travel in straight lines in a medium with a constant refractive index n. Therefore the effect of propagation
through free space is simply to translate the location of the ray, in proportion to the angle at which it travels, and to leave the
angle of the ray with the optical axis unchanged. Consequently, the transfer matrix describing the propagation between two
front planes A; zy and Aszy (see Fig. 1) is given by:

X, = T(A A7) X, with T(AAz) = G} Al“}Z/ "). @)

It is worthy of note that the effective length of propagation involved is not the algebraic drift distance A; Ay, but the reduced
length A1 A2 /n which takes into account the refractive index of the medium.

x T

Figure 1. Propagation through free space. The ray travels in an
homogeneous medium with constante refractive index n. It leaves
the first front plane from £; = z; + 4y, with an optical angle
na, = n(a + i8), and hits the second one with the same optical
angle no, = n(a +1i0) inz, = 2 + iy.

Figure 2. Refraction at a spherical interface. The ray travels
through a spherical interface with extreme refractive index n; and
no. It hits the refractive surface in £, = = + iy with an optical
angle nya; = mi(on + 4B1), and leaves it from the same point
Z, = z + iy with an optical angle naa, = n2(a2 +iB:).
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2.2. Refraction (or reflection) at a spherical interface

At a spherical interface between an initial medium with refractive index n; and a final one with refractive index ny, the
position of a geometrical ray is not changed, but the optical angle varies according to the Snell-Descartes laws. In the linear
approximation of geometrical optics, the transfer matrix for a spherical interface with algebraic radius R = SC, where S is the
vertex of the spherical surface and C is the centre of curvature (see Fig. 2), is given by:

X, =R(S)X, with R(S) = <_1V g’) , where V = "21:2"1. 3)

Note that the matrix governing the reflection on a spherical mirror lying in an homogeneous medium with refractive index n is
analogous to the matrix R(S) with V = —2n/R. In both cases, a positive value for R means a convex surface encountered from
left to right, while a negative value signifies a concave surface. The effect of the refraction (or reflection) on the propagation is
governed by the sign of the refractive (or reflective) power V': a positive value signifies a convergent refractive (or reflective)
interface, while a negative value signifies a divergent interface.

Remark. Because we have chosen to use optical angles rather than geometrical ones in (1), the determinant of the elementary
matrices (2) and (3) is equal to unity, and the bottom-left element of the transfer matrix (3) for a spherical interface is equal to
the opposite value of the power V. Moreover, according to (3), the transfer matrix for a planar interface (R — o) between a
medium of refractive index n; and a medium of refractive index ns is reduced to the identity matrix.

2.3. Propagation through a centered optical system

Consider now a complex optical system consisting of regions of free space with a constant refractive index separated by
spherical refracting surfaces (see Fig. 3): between the input and the output front planes, Ezy and Szy, the optical system is
homogeneous step by step. Propagation through this system can be treated with the elementary matrices (2) and (3). Denoting
by X, and X, the input and output vectors, we therefore have:

X, = TSBR(S,) - T(GiS)R(SHT(ESX, . )

The product of these elementary matrices, written from right to left following the path of the light, is the transfer matrix of the
centered optical system within the Gauss approximation:

T(ES) = T(S,8)R(S,) - - - T(5152)R(S1) T (ESy). ®)

It can be written in the shorter form:
rE)- (4 }). ©

All the elementary matrices 7 and R involved in the product (5) have their determinant equal to unity. Consequently, according
to a basic property of linear algebra, the determinant of T'(ES) is also equal to unity.

Remark. When studying catadioptric systems like optical cavities, it is useful to express the transfer matrix describing prop-
agation from S to E. It turns out that T'(SE) can be derived from T'(ES) by simply permuting the diagonal elements a
and d.

3. TRANSFER MATRIX

The typical kind of ray propagation problem, that must be solved in order to study the properties of an optical system, is
shown on Fig. 3. The goal is to determine the position z, and the angle a, of the output ray in a front plane A»zy, for every
possible z; and @, associated with an input ray crossing a front plane A, zy, after a first free propagation in a medium with
refractive index n,, travelling through an optical system, and a last free propagation in a medium with refractive index n;.

3.1. Transfer matrix between two front planes

According to equations (2) and (3), the transfer matrix between two front planes A;zy (in front of the input plane Ezy) in the
object space, with refractive index n,, and A;zy (beyond the output plane Szy) in the image space, with refractive index n;
(see Fig. 3), is given by the product 7(SA2)T(ES)T (A1S) = T(A1Az). Setting z; = EA; and 25 = S A3, and denoting




by T;;(A) the elements of the transfer matrix for the two points A; and A,, we therefore have:

(i @) =6 "¢ 96 ™) o
that is to say:

Thu(A) =a+c2  Tip(A) = —a2 4b+ 2(—c2 4 q)
ni No n; o

' 8
T21(A) =cC T22(A) =d— c;_l ( )

o

The only element of the four which is independent from the two points A; and Aj is T5;(A4) = c. Thus, this coefficient is
an intrinsic characteristic of the optical system. By definition, the power of a focal optical system is the opposite value of this

element:

V=-—c ®

This definition is coherent with the power of a spherical interface (3). A positive value for V signifies a convergent optical
system, while a negative one signifies a divergent system. If V' = 0, the system is said to be nonfocal.

Ty Te Ts T2
t . L X =TESX, 4 . 4
e ——
A 4 °
Figure 3. Propagation through an optical system. Figure 4. Transfer between two conjugate planes.

3.2. Transfer matrix between two conjugate planes

Suppose now the two planes A;zy and Azzy are two conjugate planes A,zy and A;zy (see Fig. 4). Substituting z, = FA

[ 0
and z; = S A; for 2; and z5 in (7), equations (8) become:

Tu(A) =a+ct  Tip(4) = —a22 4 b+ 2= 4 g)
n; o n; No

1
Tn(A)=c Tpa(A) =d - CZ—O 10

o

Due to the fact that the two off-axis points B, and B; are conjugate ones, the spatial coordinates z; of B; are independent of
the angle a,,. As a consequence, it turns out that T12(A4) = 0. Hence, T11(A4) = z;/z, = G, where G} is the transversal
magnification, and T2(4) = (nia;/n0Q,)z,=0 = Gani/n,, where G, is the angular magnification. Finally, the transfer
matrix between two conjugate planes is given by:

—-— _ [ Gt 0
1@ = (5 uma.) an
Since the determinant of T'(A,A;) is equal to 1, we thus have:
:—ZGtGa =1 with G¢ = z,/z, and Ga = (a;/a,)z. o- (12)

This relation is the linear approximation of the Abbe relation: it is known as the Lagrange-Helmoltz relation.
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4. CARDINAL ELEMENTS

We consider in this section an optical system of refracting surfaces characterized by the transfer matrix given by (6), with V' # 0.
There exist certain points and planes within such a system that play an important role. These intrinsic characteristics are known
as the cardinal elements. With the power of the optical system, they contain the necessary information for determining, within
the Gauss approximation, the location and the size of the image of an object given by the centered optical system. We first
recall the definition of the focal lengths, then we give the definition of these cardinal elements: principal (or unit) planes, nodal
points and focal planes.

4.1. Focal lengths

By definition, the image and object focal lengths, f; and f,, of an optical system with power V' lying between an initial medium
with refractive index n, and a final medium with refractive index n;, are the signed quantities:
=2 and f,=-22. (13)

=y %
According to the meaning of the sign of the power, f; > 0 and f, < 0 for a convergent optical system, while for a divergent

one f; < 0 and f, > 0. If V = 0, when the system is nonfocal, the focal lengths and the other cardinal elements are not
defined.

No

4.2. Principal planes

These front planes are conjugate to one another with a transversal magnification G; between them equal to unity (this is why
these planes are often called unit planes). As a consequence, the transfer matrix for the passage between the object and the
image principal planes, H,zy and H;zy (see Fig. 5), is given by:

T(EH) = (_lv (1’) . 14)

Comparing the elements of this matrix with those of the transfer matrix of the system between Exy and Sy (6), it turns out
that we therefore have:

SH; = fila—1) and EH, = f,(d—1). (15)

No i H n;

Figure 5. Principal planes: G = 1. Figure 6. Nodal points: G, = 1.

4.3. Nodal points

These two points, N, and N;, are conjugate points on the optical axis such that the angular magnification G, between them
is equal to unity: any incident ray crossing N, leaves the system from V; with the same direction as the incident one. Conse-
quently, the transfer matrix between the object and the image nodal points (Fig. 6), is given by:

~\ _ [Mo/mi 0
o) = (" 0. 16)
Comparing again the elements of this matrix with those of the transfer matrix of the system (6), their position with respect to £
and S is given by the relations:

SN; = fila— 22) and EN, = f,(d - 2. an

n; No

It is sometimes convenient to evaluate the position of these points with respect to the principal planes. It is easy to show that
we then have: H;N; = H,N, = f; + fo. According to the definition of the focal lengths (13), if the extreme mediums are
identical (n, = n;), we therefore have H;N; = H,N, = 0: the nodal points coincide with the principal points.




4.4. Focal planes

Despite the notation, F;, and Fj, the object and the image focal points are not a pair of conjugate points on the optical axis. The
mapping from Fj, to F; is one that maps angles into positions, and positions into angles:

T(EF) = (_OV 1{)‘/) . (18)

Coming back to the relation X, = T(ES)X,, any incident ray coming from F, emerges parallel after travelling through the
optical system: @, = 0 whatever z, and a, (Fig. 7). Likewise, F; is the point of convergence of any incident ray parallel to the
optical axis: a, = 0 whatever z, and o, (Fig. 7). Thus, according to (6) and (13), the location of F, and F; with respect to B
and S is given by the relations:

SF; = fia and EF, = f,d. (19)

According to equations (15) and (19), the algebraic distances between the principal planes and the focal points are nothing but
the focal lengths: H;F; = H;S + SF; = f; and H,F, = H,E + EF, = f,.

Figure 7. Focal points and focal lengths. Figure 8. Focal planes and secondary focal points.

The object and the image focal planes F,zy and F;zy are the planes perpendicular to the optical axis erected through the
focal points F;, and F;. It is well-known that F;zy is the conjugate of the object plane lying at infinity. Likewise, F,zy is the

conjugate of the image plane lying at infinity. The points lying in these planes, except F, and F}, are called secondary focal
points (see Fig. 8).

4.5. Graphical determination of an image point

The properties of the cardinal elements can be used for the graphical determination of the image point B; of an off-axis object
point B,. From a geometrical point of view, two rays entering the system from B, are necessary to determine B; at the
intersection of the two emerging rays.> However, it is recommended to use three particular rays!:
i) the ray entering the system from B, parallel to the optical axis,
ii) the ray entering the system from B, and crossing the object focal point F,,
iii) the ray entering the system from B, and crossing the object nodal point N,.

5. HOMOGRAPHIC RELATION

When studying optical systems, within the Gauss approximation, the game is sometimes to determine the location and the size
of the image of an object given by the system. This can be done in a geometrical manner by considering particular rays (as
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explain above in the previous section), but the knowledge of the transfer matrix of the optical system provides an elegant and
accurate way to reach this goal. Another algebraic way is given by the cardinal elements themselves.

Coming back to the transfer matrix between two conjugate planes (11) and to equations (10) with Ty2(A) = 0, we thus have:

az—o -b
Zo Mo yith z, = FA, and 2z = SA,. (20
ni Vn—" +d

This relation is known as the homographic relation. Provided that the transfer matrix of the optical system T'(ES) is per-
fectly known, it is thus possible to compute the location z; = SA; of the image of an object given by the system from
the location of the object z, = EA,, even if the optical system is a nonfocal one (V = 0). The transfer matrix between
the two conjugates points A, and A; thus obtained can be easily derived from the transfer matrix of the optical system:
T(4,4;) = T(z,)T(ES)T(—zO) According to (11) and (12), the transversal magnification G; is equal to the upper-left
element of T(A4,A;), and the angular magnification G|, is related to its lower-right element. It is thus possible to compute the
components of the vector X ; from those of X : z; = Gz, and ¢; = G, q,,.

5.1. Descartes relation

Measuring the location of A, and A; with respect to the principal points H, and H;, relation (20) becomes:
hiy fo
Di Po

This relation is known as the Descartes relation with regards to the principal points. The transversal and the angular magnifica-
tions are given by:

=1 where p, = H,A, and p; = H;A;. 1)

n. m;
Go="2P and G, = . (22)

N Po y2
Ay -
2, Figure 9. Geometrical interpretation of the Descartes relation. When p, = H, A,

varies from —oo to +00, p; = H; A; is obtained by extending the straight line A, M
to its intersection with the y-axis.
For a convergent system (f; > 0 and f, < 0), M lies in the upper-left quadrant.
Three cases should be considered:

(1) the object A, is in front of Fy, the image A; is behind F;,

(2) the object A, is in between F, and H,, the image A; is in front of H;,

(3) the object A, is behind H,, the image A; is in between F; and H;.
Note that, for an object in front of H, at a distance equal to 2f,, the image A; is
: behind H; at a distance 2 f;.
A, 2fo fo AN Ao For a divergent system (f; < 0 and f, > 0), three cases should be also considered,
A; now in the lower-right quadrant

5.2. Newton relation

Likewise, measuring the location of A, and A; with respect to the focal points F, and F;, relation (20) becomes:
000 = fif, where o, = F,A, and o; = F;A;. 23)

This relation is known as the Newton relation with regards to the focal points. The transversal and the angular magnifications
are now given by:

G=-%=_Josag =% o (24)

fi Oo fi g;

Remark. Relations (21) and (23) provide two algebraic ways to compute the location of the image of an object given by the
system from the location of that object. In this sense they are as useful as the homographic relation. However, they suffer
from a restricting assumption: the optical system should be a focal one (V' # 0), otherwise the cardinal elements would not be
defined. This is not the case of (20) which is still valid for nonfocal optical systems (V' = 0).



5.3. Geometrical illustration

A nice graphical illustration of the Descartes relation has been given by H. Bouasse® in 1947 (see Fig. 9). Indeed, this relation
can be seen as the locus of a point M (f,, f;) belonging to the straight line z/p, + y/p; = 1 connecting A, (po,0) to A4;(0, p;).
This construction is interesting above all for discuting the different cases of the respective positions of an object and its image.

6. RAY TRACING

When studying complex optical systems it is necessary to determine the path of the light with a greater accuracy than that given
by the Gauss approximation. This may be done with the aid of elementary geometry, by successive application of the Snell-
Descartes laws of refraction (or reflection). This method, which is known as ray tracing, is extensively used in the practical
study of complex optical instruments.

6.1. Numerical ray tracing

Ray tracing falls within the realm of geometric optics: light travels in straight lines which are only deviated by reflections or
refractions due to a change in refractive index, and can be traced using conventional geometry and trigonometry. Ray tracing
can be decomposed in four steps: constructing an appropriate straight line to represent the ray, locating the point of intersection
with the next interface, refracting the ray by applying the Snell-Descartes laws, and representing the refracted ray by another
straight line. In a rotationally symmetric optical system, meridional rays stay in the same plane as they are refracted, while
skew rays does not. Thus, ray tracing meridional rays is a two dimensional exercise, while ray tracing of skew rays is a
three dimensional one. Consequently, for practical reasons, only meridional rays are considered in this section, but despite the
complexity, there is no difficulty to extend this method to skew rays.

Figure 10. Refraction at a spherical interface with sign conventions.
The common cartesian and trigonometric sign conventions are used
with the axis origin placed anywhere on the optical axis. The incident
ray travelling from M is characterized by the unit vector u;, while the
> 2 refracted one is represented by the unit vector uy and the intersection
point I on the refractive surface. The unit vector N, normal to the
surface at I, is always oriented towards the center C of the spherical
surface. These vectors are related together by the Snell-Descartes law
whose vector writing is n2uz —n;u; = alN, where a is a real number.

Provided that the sign convention is that shown on the previous figure, tracing the refracted ray (I,u,) from the incident
one (M, u;) and from the characteristics of the interface (1,12, R) does not rise any difficulty and could be achieve in three
numerical steps:
step 1: Calculation of the intersection point .
Calculation of the surface normal N at I.
step 2: Calculation of the angle of incidence at I': i; = arccos(N - u;).
Calculation of the angle of refraction at I': iy = arcsin(n; sini; /ns).
step 3: Calculation of the refracted ray: u; = (n1u; + alN)/ny, with a = ny cosis — nq cosiy.

6.2. Computer aided ray tracing

The above procedure can readily be applied to ray tracing through an optical system of any number of interfaces. After
refraction, the ray is transferred to the next interface, where the next refraction takes place. At this interface, the new angle a;
is the old one a3, and the new starting point is the previous intersection point I. The procedure is performed until the ray is
stopped by a diaphragm in the system, or leaves it through the exit pupil. In this latter case, it is straightforward to compute the
intersection of the exit ray with the optical axis or with any front plane perpendicular to the optical axis.

Thanks to Object Oriented Programing (OOP) and to Rapid Application Development (RAD) tools, the implementation of this
method with a high level language does not raise any difficulty. The language adopted for this work was C++, and we are now
working on a Java implementation.
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7. APPLICATION TO THE EYE

Perhaps the simplest of the optical instruments is that consisting of a single convergent lens forming a real image of an object
upon a light-sensitive surface. Examples of more complicated optical system are found in the photographic camera and in the
eye. Inasmuch as the eye forms an integral part of many optical systems, an understanding of its characteristics is an essential
part of instrumental optics. The present section will include a description of a few of its features, and will focus on the correction
of spherical refractive errors.

7.1. Brief anatomy and functions of the human eye

The optical system of the eye is not a rotationally symmetric one. Thus the eye does not have a true optical axis. The visual
axis does not coincide with the best fit optical axis: these axis are tilted to each other by about 5°. A cross-section of the human
eye is shown in Figure 11, giving only the most relevant optical components.* The light rays enter the eye through and are
refracted by the cornea, the front shiny transparent surface of the eye. Then they are further refracted by the lens, bringing them
to a focus point on the retina, a layer of light-sensitive cells (the cones and the rods). The lens lies in two extreme mediums
with different refractive index: on the anterior face is the aqueous, a transparent liquid; and on the posterior face is the vitreous,
a gelatinous liquid.

temporal side

Figure 11. Cross-section of the human eye. Image forming light enters the eye
through and is refracted by the cornea. It is further refracted by the lens, bringing it
to a focus on the retina. Whereas the power of the cornea is constant, the power of
the lens depends upon the level of accommodation. Accommodation is the process
by which the refractive power of the eye changes to allow objects of interest at
different distances to be sharply imaged on the retina. It is controlled by the ciliary
muscle which can relax or contract, causing the zonules supporting the lens to be
contracted or relaxed, thus changing the shape of the lens capsule. The diameter
optic of the incoming beam of light is controlled by the iris, which is the aperture stop
nerve of the eye. The optical system of the eye is not a rotationally symmetric one. The
visual axis does not coincide with the best fit optical axis: these axis are tilted to
each other by about 5°.

cornea &~ retina

visual axis

optical axis

onules

ciliary muscle

nasal side

Of the two refracting elements, the cornea has the greater refractive power (about two third of the total power). However,
whereas the power of the cornea is constant, the radius of curvature of the lens capsule may be altered by muscular contraction,
to serve the purpose of focussing. Thus the power of the lens depends upon this level of adjustment, or accommodation. For
example, when the eye needs to focus on closer objects, the ciliary muscles contract, causing the suspensory ligaments (the
zonules) supporting the lens to relax. This allows the lens to take a more spherical shape, and to change its refractive power
accordingly. When the eye has to focus on more distant objects the reverse applies. There are physical limits to how far the
ciliary muscles can relax and contract, and how far the lens can be stretched and contracted. Thus there are upper and lower
limits to the refractive power of the eye, and in turn farthest and closest distances of vision (see Fig. 12). These extremes
distances refer to the far point R, (remotum) and to the near point P, (proximum).

Figure 12. Accommodation range of the human eye. When the ciliary
muscles are completely relaxed, the power of the lens is minimum and
the eye is focussed on the far point R, (distance vision). When they are
maximally contracted, the lens has its greatest refractive power and the
eye is focussed on the near point P, (near vision). The difference between
these extreme powers of the eye is called the amplitude of accommodation.

< amplitude of __
accommodation

contracted

Because of large variations in the dimensions of the components of real eyes, it is not easy to define a standard eye. However,
it is usually assumed that a normal eye should be focussed at infinity when the accommodation is relaxed: that is the normal
eye has a far point at infinity. This eye is termed emmetropic, all the other ones are called ametropic and are regarded as
having some kind of refractive errors. These refractive errors can be categorized as either spherical (myopia, hypermetropia
and presbyopia) or cylindrical (astigmatism):



1) myopia (or short sightedness), in which the far point is at a finite distance in front of the eye. This is corrected by means
of a divergent lens placed in front of the eye (see Fig. 13).
ii) hypermetropia (or long sightedness), in which the far point is behind the eye. Correction is obtained by means of a
convergent lens (see Fig. 13).
iii) presbyopia is the refractive error of an eye with zero or very little amplitude of accommodation. It is due to advancing
age, and it cannot be corrected by a single power lens. In practice, this defect is corrected by means of multifocal lenses.

iv) astigmatism, in which the power of the eye differs in different planes containing the optical axis. This defect is corrected
by means of a suitable toric lens.

myopia hypermetropia

Figure 13. Spherical refractive errors and their correction. On the left hand, in an eye suffering from myopia the rays from an infinitely
distant object point reach a focus in front of the retina. This refractive error arises because the power of the eye is too great for its axial
length: it is corrected by means of a divergent lens placed in front of the eye. The negative power of the ophthalmic lens can be thought of
as either compensating for the excess power of the eye, or instead imaging object at infinity onto the back focal plane of the lens, which is
coincident with the far point plane of the myopic eye. On the right hand, in an eye suffering from hypermetropia the rays from an infinitely
distant object point reach a focus behind the retina. This refractive error arises because the power of the eye is too low for its axial length:
correction is obtained by means of a convergent lens. The positive power of the ophthalmic lens can be thought of as either compensating for
the insufficient power of the eye, or instead imaging distant object onto the far point plane of the hyperopic eye.

The dimensions of the eye and the characteristics of its optical components vary greatly from person to person, and some further
depend upon accommodation level, age and certain pathological conditions. Despite these variations, average values have been
used to construct representative or schematic eyes. The standard model used for this work is the Le Grand model of a relaxed
eye.* This model is a four interfaces model: the two first interfaces correspond to the cornea, the two last ones constitute the
lens. The characteristics of each interface are given in the following table.

Surface Distance (mm) Curvature (mm) Refractive index Medium Table 1. Le Grand theoretical relaxed eye.
1.0000 air The transfer matrix between the anterior
E=5 0.000 7.800 face of the cornea and the posterior face of
1.3771 cornea the lens is approximatively equal to:
S, 0.550 6.500 T(ES) ~ ( 0.74461 0.00545)
1.3374 aqueous T \—59.94043 0.90442 /-
Ss 3.600 10.200 In addition to these values, it is important
1.4200 lens to note the position of the input pupil (the
S=5 7.600 -6.000 image of the iris) in the aqueous: 3.038 mm
1.3360 vitreous behind E.

The cardinal elements can be easily derived from the transfer matrix T'(ES). For example, the eye length, given by the position
of the image focal point on the retina, is equal to 24.197 mm. Likewise, the total power of the eye is equal to 59.940 §, divided

into 42.356 ¢ for the cornea (48.356 6 for the front face, and -6.108 § for the back face) and 21.779 § for the lens (8.098 6 for
the front face, and 14.000 ¢ for the back face).
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7.2. Correction of ametropias

Nowadays, some ametropias of the eye (myopia and hypermetropia) could be corrected by means of a modification of the shape
of the anterior face of the cornea.5 A photo-ablation of a small piece of the cornea is obtained with the aid of an excimere laser.
After cicatrization, the radius of curvature of the anterior face of the cornea is modified. The refractive power of the cornea is
changed accordingly, and the ametropic eye becomes emmetropic. One of the problems accountered in practice is to evaluate
the amount of cornea removal in order to give to the cornea the expected refractive power. We show in this section that a ray
tracing approach could be very helpful to achieve this goal.

In clinical practice, the position of the far point is never measured directly, and alternative techniques are used to measure the
myopia.* One method uses a number of lenses of different power at some well-known distance  (typical distances vary from
about 12 mm to 15 mm) in front of the entrance vertex E of the cornea. Denoting by V), the power of the lens which gives
clear viewing for a target at infinity, and referring back to Fig. 13 within the Gauss approximation, the position of the far point
is given by z, = ER, = 1/V}, — h.

Within the framework of the Gauss approximation, the position of the retina with respect to the vertex of the posterior face of
the lens, z; = SR;, could be obtained with the aid of the homographic relation (20). Computing the radius of curvature of the
anterior face of the cornea required to bring the image focus point on the retina does not raise any difficulty. Indeed this linear
problem is solved with the aid of the matrix method by computing the transfer matrix (6), the refractive power (9), the focal
length (13), and equating SF; with SR;.

Another way to proceed is to determine the path of the light with a greater accuracy than that obtained in the paraxial approxi-
mation by using a numerical ray tracing procedure. The position of the retina is now defined as that of the plane perpendicular
to the optical axis where the rays coming from the far point give the smallest spot. It is then easy to remove, with the aid of the
computer, some piece of the cornea step by step (say by micrometrical slices) until rays coming from infinity converge to the
retina. This procedure is illustrated on the following figures where the diameter of the input pupil has been set to 6 mm (which
is an intermediate value between day and night vision).

lens (a) cornea

cornea lens (b)

input | pupil 1 mm retinal iR; input| pupil 1 mm retina
Figure 14. Correction of myopia with a ray tracing approach.
(a) Location of the retina: rays coming from R,, which is 265 mm cornea lens (©)

in front of the cornea, converge 1.23 mm before the conjugate
point R; given by (20) in the Gauss approximation (dashed line).
(b) Before correction, rays coming parallel to the optical axis from
infinity converge 1.27 mm in front of the retina (diameter of spot on
the retina is 0.46 mm).

(c) After axial ablation of 31 pm, rays coming parallel to the optical
axis from infinity converge on the retina (spot size on the retina less
than 0.09 mm).

input

pupil 1 mm retina

Both methods are compared on the following figure, where the amount of cornea removal has been computed for eyes suffering
from myopia (in the range -12 § to -3 ) and for two sizes of the input pupil: 4 mm and 6 mm pupil diameter. It is not surprising
to observe a difference between the two methods, since for severe myopia, that is when the far point is close to the anterior
face of the cornea, the rays become marginal and do not converge at a single point on the optical axis. As a consequence, for
severe myopia the paraxial approximation suggests to remove up to 10 zm more cornea than the marginal ray tracing approach.
To understand the consequences of this difference, it is not pointless to keep in mind that, from a clinical point of view, the
maximum amount of cornea that can be reasonably removed is about 100 uzm out of 550 pm axial thickness (see Tab. 1).



Figure 15. Correction of myopia. The range of myopia corres-
ponds to far point distances between 100 mm and 300 mm in front
of the anterior face of the cornea. Solid line is relative to the Gauss
approximation, dashed lines to the ray tracing approach with two
different diameters of the input pupil: 4 mm for the squares, 6 mm
for the circles. The closest to the cornea is the far point and the
larger is the input pupil, the more inclined on the optical axis are
the rays, and thus the more different are the amounts of axial re-
moval. For a given amount of cornea removal, the marginal ray
tracing explains a myopia correction up to 2 § stronger than the
paraxial one. Moreover, for a given level of myopia, the Gauss ap-
proximation suggests to remove up to 10 % more comea than the
ray tracing approach, depending on the size of the input pupil.

Amount of axial removal of cornea [um]

-2 11 -10 -9 -8 -7 -6 -5 -4 -3
Power of correcting spectacle lens [3]

The same approach could be easily applied to the correction of hypermetropia, where the amount of off-axis cornea removal
has just an impact on the reduction of the radius of the anterior face of the cornea, in order to grow its refractive power. This is
not the case for the myopia, because the axial removal increases the radius of curvature in order to reduce the refractive power
of the eye, but also has an impact on the axial thickness of the cornea, and therefore on the position of the entrance vertex E.

8. CONCLUSION

We have shown the interest of the matrix method for studying complex optical systems within the frame of the Gauss ap-
proximation. Indeed, thanks to the introduction of the optical angle all the matrices involved in this approach have some nice
properties. Moreover, it is the simplest way to obtain the cardinal elements, and it is well suited to the study of catadioptric
systems with both refractive and reflective devices.

With regards to the determination of the location and size of the image of an object given by a centered system, the matrix
method provides an elegant and accurate way with respect to geometrical one. However, the traditionnal relations of Descartes
and Newton suffer from a restricting assumption which supposes the optical system to be a focal one. A more general approach
is provided by the homographic relation, which is still valid for nonfocal systems.

From a pedagological point of view, the matrix method is thus a nice and precise method which does not exempt from paraxial
ray tracing within the Gauss approximation. When it is necessary to determine the path of the light with a greater accuracy, the
marginal ray tracing approach gives a significant improvement because it is the convenient way to take into account geometrical
aberrations. Beyond the example chosen to illustrate the thought process, the two methods are necessary and complementary
when studying complex optical systems.
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