
 

 

Quantum Cascade Lasers: A Game Changer for Defense and 
Homeland Security IR Photonics 

C. Kumar N. Patel 

Pranalytica, Inc., 1101 Colorado Avenue, Santa Monica, CA 90401 and Department of Physics & 
Astronomy, University of California, Los Angeles, CA 90095 

Abstract 

I will describe recent developments of continuous wave, room temperature (CW/RT) high power QCLs at wavelengths  
< 3.8 μm to > 12 μm. QCLs now provide, on a commercial basis, CW/RT power of over 3 W at 4.6 μm, with a wall plug 
efficiency of over 15%, over 2 W at 4.0 μm, and over 1.2 W at 7.1 μm, with a wallplug efficiency >8%. I will describe 
insertion of QCLs into applications including MWIR countermeasures (IRCM), MWIR and LWIR target illuminators 
and designators, MWIR beacons (IFF), test equipment for measuring the efficacy of IRCM and sources for MWIR and 
LWIR radiation for detection of chemical warfare agents and explosives.  
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I.  Introduction 

Quantum cascade lasers (QCL) were first demonstrated 
(1) in 1994.  However, it took nearly eight years before 
the first continuous wave, room temperature (CW/RT) 
operation was successful, brought about by an improved 
design for rapidly depopulating the lower laser level 
thorough the use of two phonon resonance design (2).  
The progress since 2002 has been remarkable in 
improving the power output and wallplug efficiency.   
Furthermore, a newer structure design idea (the 
nonresonant extraction, NRE, principle for rapid 
depopulation of the lower laser level without the use of 
two phonon resonance) has emerged (3), which increases 
the structure design flexibility for simultaneous 
improvements in various operating parameters of QCLs.  
At present, CW/RT power outputs of >3 W and wall plug 
efficiency in excess of 15 % have been demonstrated at 
4.6 μm in the midwave infrared (MWIR) region (4). 
Using the NRE structure design ideas we have 
demonstrated CW/RT power output in excess of 2 W at 
4.0 μm (5) and have extended QCL operation up to 3.6 
μm, where average power output of more than 300 mW 
has been obtained for room temperature operation (6).  
The NRE design principle is also applicable to longwave 
infrared (LWIR) regions leading to improvements in 
power output and wallplug efficiency similar to those 
attained in the MWIR region. Over all CW/RT operation 
of QCLs now covers a wavelength region from 3.6 μm to 

longer than 12 μm.  Pranalytica, being a vertically 
integrated (from fundamental design of the structure to 
final customer usable product, albeit fabless) 
manufacturer of QCLs, has been supplying high power 
CW/RT QCLs as well as cryogenically cooled QCLs 
producing substantially higher power output (>7 W, CW) 
at very high wallplug efficiency (>30%) to military, 
homeland security and civilian customers. 
 
In addition to the scientific advance of NRE design, 
Pranalytica pioneered the use of epi-down mounting of 
the QCLs using Au:Sn hard solder on CTE matched AlN 
substrates, which improves the thermal management 
considerably and makes the QCLs appropriate as reliable, 
robust sources of MWIR and LWIR radiation (7). 
Because the emitting region is quite small, the QCL 
output needs to be collimated using appropriate optics 
placed very close to the exit facet of the laser.  We 
package the QCLs in hermetically sealed butterfly 
packages (Figure 1) that include a thermoelectric cooler 
for maintaining the QCL for efficient thermal 
management and appropriate optics for collimating the 
laser output. These butterfly packages are robust and 
rugged and satisfactorily pass the MIL-STD 
environmental tests for vibration/shock and temperature.   
 
The high wallpug efficiency also makes it possible to 
operate the QCLs in an uncooled mode, i.e., without 
TECs, for incorporation into handheld, battery operated 
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applications such as target illuminators and designators 
and IFF beacons.  In the uncooled mode, we have 
demonstrated QCW (high duty cycle, pulsed mode 
operation) average power output of >2 W at 4.6 μm and 
>1.5W at 4.0 μm (8, 9).  Similar performance is also 
expected in the LWIR region. 
 
The performance improvements in QCL operation have 
allowed MWIR and LWIR QCLs to make significant 
inroads into applications areas where a number of 
alternate laser technologies have already been extensively 
deployed in the MWIR and LWIR regions. These 
applications include laser sources for MWIR 
countermeasures for protection of aircraft from shoulder 
fired missiles (MANPADS), MWIR and LWIR battlefield 
target illuminators and designators, MWIR identify-
friend-or-foe (IFF) beacons, test equipment for measuring 
the efficacy of infrared countermeasures and sources of 
MWIR and LWIR radiation for high sensitivity in-situ 
and standoff spectroscopic measurements of chemical 
warfare agents and explosives.   The drivers are the small 
size, reduced weight and high wallplug efficiency, which 
make the overall systems more attractive. 
 

 
 

Figure 1.  Hermetically sealed QCL butterfly package 
(volume ~ 50 cm3, weight < 100 gm) that meets the MIL-
STD specifications for vibration, shock and temperature. 

 
While the above applications do not require QCL output 
to be single frequency and therefore lasers in Fabry-Perot 
(F-P) geometry are employed, there are other classes of 
applications that need single frequency output power from 
the QCL that is also widely tunable for the detection of 
chemical warfare agents (CWA), toxic industrial 
chemicals (TICs) and explosives, LADAR, differential 
absorption lidar (DIAL) and free space optical (FSO) 
communications.  With the developments in the QCL 
technology, the deployment of QCLs in a host of these 
applications is taking place very rapidly.  In some case, 
the QCLs are replacing older generation of bulky, 
inefficient, low power sources while some new 
applications are being enabled by the availability of the 
high power, high efficiency QCLs. 

 
II.  Progress in Extending High Performance QCL to 

Shorter and Longer Wavelengths 

With Pranalytica’s in-house QCL structure design 
capability, we have been able to extend the high 
performance operation of the QCLs to wavelengths as 
short at 3.6 μm to as long as >12 μm.  For infrared 
countermeasures applications, there is a need for CW/RT 
QCLs operating in the 3.8 μm-4.2 μm window.  We have 
extended the NRE design to this wavelength region (5) to 
obtain CW/RT power output in excess of 2 W at 4.0 μm 
(Figure 2). 

 

 
Fig. 2. CW/RT performance of a 2 W QCL at 4.0 μm. 

We have recently extended (6) the short 
wavelength operation to 3.6 μm, where we have obtained 
CW/RT power nearly 50 mW and quasi-CW (high duty 
cycle pulsed operation) output power of nearly 300 mW 
(Figure 3).  Figure 4 shows spectral analysis of the output 
form the 3.6 μm QCL. 

 

Fig. 3. QCW/RT performance of a QCL at 3.6 μm 
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Fig. 4.  Output spectrum from the QCL described in 
Figure 3. 

 
Fig. 5. QCW/RT performance of a QCL at 7.1 μm 

 

Fig. 6.  Output spectrum from the QCL described in 
Figure 5. 

Finally, for many spectroscopic applications, one 
needs high power (single frequency, tunable) laser 
radiation in the 7 μm-12 μm region.  Extension of high 
power QCL designs to this wavelength region has led to 
QCLs at 7.1 μm with CW/RT power output in excess of 

1.2 W (10) at a wallplug efficiency of nearly 8% (Figure 
5).  Figure 6 shows the spectrum of output from this QCL. 

 

III. Multiple Wavelength Lasers in a Single Module 

For many applications, including infrared 
countermeasures for protecting aircraft from MANPADS, 
one often needs multiple wavelength package that 
provides three or more wavelengths including one in the 
short wavelength infrared (SWIR) region and two 
wavelengths in the MWIR region (a true turnkey 
operation for a systems integrator) with the three laser 
outputs perfectly collimated and aligned to provide a 
single output beam with low divergence.  Furthermore, 
the three wavelengths need to have individually 
controllable amplitudes and potentially switchable with 
arbitrary pulse sequences.  We have taken up this 
challenge and have recently developed (11) a multiple 
wavelength laser system (Figure 7) which optically 
combines a 2.1 μm OEM fiber laser output with MWIR 
laser outputs form two air-cooled CW/RT QCLs 
operating at 4.0 μm and 4.6 μm, respectively. The three 
beams exit collinearly with a divergence of less than 5 
milliradians and with optical collinearity better than 1 
milliradian.  Power outputs at 4.6 μm, 4.0 μm and 2.1 μm 
are 2.0 W, 1.5 W and 3 W respectively. 

 

Fig. 7.  Multiple wavelength laser system providing one 
SWIR and two MWIR wavelengths 

IV.  Uncooled High Power Operation of MWIR and 
LWIR QCLs 

 The high power QCL operation, in the Fabry-Perot 
geometry, described above involved mounting the QCL 
on a thermoelectric cooler (TEC) for efficient thermal 
management and has proven to be very successful.  
However, TECs are very power hungry devices that 
generate as much as three to five times the heat they 
remove from the QCL.  Thus the total electrical power 
consumption can be quite substantial for high power 
QCLs in spite of the high (as much as >15%) electrical 
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power to optical output conversion efficiency.  For many 
applications such as aircraft mounted directional infrared 
countermeasure systems, this is not seen to be a problem.  
However, there are other classes of operations where 
electrical power is supplied form batteries and the 
additional power consumed by the TECs is not 
acceptable.  These applications include portable infrared 
target illuminators and designators and identify-friend-or-
foe (IFF) beacons both for security as well as rescue 
missions.  Here high average power laser sources are 
required in the MWIR and LWIR spectral regions that 
have high overall power conversion efficiency, which 
negates the use of TECs. 

 

Fig. 8.  Average output power as a function of duty cycle 
for uncooled (no TEC) operation of a 4.6 μm QCL (Ref. 

9) 

 The high inherent power conversion efficiency of the 
QCLs, developed by us, can be advantageously used for 
producing high powers from these devices without the use 
of TECs for thermal management.  As mentioned above, 
true CW operation is often not required as long as high 
duty cycle pulsed operation produces the required level of 
average power output.  We have found (9) that we can 
operate the high performance QCLs in such a mode, ~ 
200 ns pulses with a duty cycle of 50% to produce of >2 
W of average power output at 4.6 μm and >1.5Wof 
average power output at 4.0 μm.  Figure 8 shows the 
power output as a function of duty cycle for the 4.6 μm 
QCL, from where we see that >2W of average power is 
available for the single emitter QCL at 4.6 μm.  Because 
no TEC is utilized, the overall efficiency of the QCL 
system is very close to the power conversion efficiency of 
the QCL chip itself.  The overall efficiency as a function 
of the average power output is shown in Figure 9.  We see 
that a system efficiency of >10% is achieved for average 
power output of 1 W and >9% is achieved for an average 
power output of 2 W. 

Fig. 8.  Overall efficiency of the uncooled QCL system at 
4.6 μm as a function of the average power output (Ref. 9). 

We have also found that in the QCL, producing 
high average power output of 2 W at room temperature in 
high duty cycle pulsed operation mode, continues to 
provide high power output even when then QCL ambient 
temperature (i.e. heat sink temperature) rises to 340 K as 
shown in Figure 9, where average power output in excess 
of 1W is available at 4.6 μm.  Similar results have been 
obtained at 4.0 μm as seen from Figure 10, where we 
note that an uncooled QCL operating at 4.0 μm at 
room temperature and providing >1.5W of average power 
will still provide >0.8 W of average power output at heat 
sink temperature of  340K (67ºC). 

 

 

Fig. 9.  Average power output vs. duty cycle for three 
different heat sink temperatures for QCL at λ ∼ 4.6 μm 

(Ref. 9). 
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Fig. 10.  Average output power as a function of duty cycle 
for uncooled (no TEC) operation of a 4.0 μm QCL (Ref. 

9). 

The uncooled non-TEC operation of high 
average power QCL simplifies the QCL system 
significantly.  The entire package become smaller and 
lighter as would be needed for portable applications 
including target illuminators and designators and IFF 
beacons.  Figure 11 shows a photograph of an OEM laser 
package including electronics driver that occupies a 
volume of ~5 cm x 12.5 cm x 2.5 cm.  The system is 
powered form a very simple computer grade 12-24V DC 
power supply and produces > 2W at 4.6 μm and >1.5W at 
4.0 μm. 

 

Fig. 11.  An OEM uncooled (no TEC) QCL package that 
produces >2W at 4.6 μm and >1.5W at 4.0 μm and 

operates from a standard 12-24V DC computer grade 
power supply. 

 Because of the simplicity of the QCLs operating in 
the high average power high duty cycle pulsed mode, they 
can be packaged into very simple and user friendly 
tabletop configurations for the ease of use as shown in 
Figure 12. 

 

Fig. 12.  An tabletop  version of uncooled (no TEC) QCL 
package that produces >2W at 4.6 μm and >1.5W at 4.0 
μm and operates from a standard 12-24V DC computer 

grade power supply. 

V.  Ruggedization of the QCL and Electronics Drivers 

 For almost all of the defense and security related 
applications of QCLs, the laser must be able to withstand 
significant vibration and shock as well as survive 
extended storage at very low and very high temperatures.  
Pranalytica has, through careful engineering, ruggedized 
the QCL butterfly package shown in Figure 1 as well as 
the total pulsed high average power OEM system shown 
in Figure 11 to comply with relevant MIL-STD 
specifications.  An example of the vibration tests to which 
we subject the butterfly package and OEM butterfly 
package/electronics board is shown in Figure 12 where 
the acceleration spectral density is plotted as a function of 
frequency. 

 

Fig. 12.  Typical vibration test (derived from MIL-STD-
810G Method 514.6) that the QCL package is designed to 

withstand. 

 Similarly, Pranalytica’s QCLs are subjected the MIL-
STD shock tests to assure survivability in actual field 
deployed systems. Figure 13 shows the g-value of the 

4
6

0.001

2

4
6

0.01

2

4
6

0.1

2

Ac
ce

le
ra

tio
n 

sp
ec

tra
l d

en
si

ty
 [g

2 /H
z]

3 4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

2 3 4 5 6 7

Frequency [Hz]

EnduranceTest
Y-axis 
Test duration 4 hrs

shock to which the Pranalytica’s QCL packages are 
exposed. 

Proc. of SPIE Vol. 8031  803126-5



 

 

 

Fig. 12.  Typical shock test (derived from MIL-STD-
810G Method 516.6) that the Pranalytica’s QCL package 

is designed to withstand 

 Finally, in actual field deployment, the QCLs must 
also be able to survive extended storage at temperatures 
of -40ºC to +68ºC and temperature shock cycle as 
required by MIL-STD-810G Method 503.5 specifications.  
A typical environmental test thermal cycling is sown in 
Figure 14.  

 

Fig. 14.  Typical thermal endurance test (MIL-STD-810G 
Method 503.5) that the QCL package is designed to 

withstand. 

 Figure 15 shows performance data (power output vs. 
drive current) for a 4.0 μm QCL system that was 
subjected to the vibration/shock and temperature 
endurance tests.  The data indicate that Pranalytica’s QCL 
systems satisfy the MIL-STD described above and are 
ready for field deployment in very stressing 
environments. 

 

Fig. 15.  An example of performance of Pranalytica’s 
QCL system at 4.0 μm before and after various 

environmental stress tests. 

VI.  QCL Reliability 

We have spent considerable effort in understanding the 
various failure modes of high power QCLs and as a result 
we have now the best data on the long term reliability of 
these lasers.  Figure 16 shows the results of long term 
measurements on a 2 W QCL operating in a CW/RT 
mode at 4.6 μm. 

Fig. 16.  Long term reliability test of a 4.6 μm QCL.   

 The laser is turned on full power for 57 minutes and 
then turned off for 3 minutes to subject the QCL to 
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