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ABSTRACT   

Image mean and covariance required for a model observer are usually calculated by the statistical method using image 

samples, which is hard to acquire in reality. Although some analytical methods are proposed to estimate image 

covariance from a single projection, these methods are of high computational cost for large-dimensional images (e.g., 

512×512), and images of large dimension are commonly required. Considering the covariance used for a model observer 

is the covariance of the channel response, whose dimension is much smaller than the image covariance, we aim to obtain 

the covariance of small-dimensional channel response directly from its projection. Channel filters are applied to the 

analytical projection to image (Prj2Img) covariance estimation method to derive the analytical projection to channel 

response (Prj2CR) covariance estimation method, which successfully reduces the computational cost and connects the 

covariance of projection and channel response. In addition, a transition matrix is introduced in Prj2CR method to 

stabilize the connections. The transition matrix mainly depends on channel filters, not the system, phantom, and 

reconstruction algorithm, which means it can be calibrated by small-dimensional reconstructions and then applied to any 

situation with a same channel filter. We validate the feasibility and utility of the proposed Prj2CR method by simulations. 

128×128 reconstructions from qGGMRF-WLS are adopted for calibration, while 512×512 reconstructions are used for 

validation. SNR of CHO is chosen as the figure of merit for performance evaluation, and the covariance estimated by 

290 image samples are used as the reference. Results show that the SNR by the Prj2CR method is within 95% 

confidence interval of the SNR* by 290 image samples, indicating that the proposed method accords with statistical 

method. The Prj2CR method may be beneficial for subjective image quality assessment since it only needs a single 

sample of projection and has low computational cost. 
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1. INTRODUCTION  

Model observers are used to mimic human observers. However, they require the knowledge of image mean and 

covariance, which is difficult to achieve in reality. Analytical projection to image (Prj2Img) covariance estimation 

methods are proposed to estimate image covariance from a single projection for commonly used iterative CT 

reconstruction algorithms. Iteration-based and fixed-point methods are two ways to analytically estimate covariance from 

projection to image. For iteration-based methods, the covariance estimation is updated with iteration formula1. For fixed-

point methods, the covariance estimation is derived from the converged point of an objective function2. Li3 et.al. study 

the difference and consistence of these two methods. Meanwhile, analytical Prj2Img methods for iterative reconstruction 

with a quadratic regularization is studied by Schmitt4 et.al., while that with a non-quadratic regularization is studied by 

Sánchez5. Although analytical Prj2Img methods can yield reasonable covariance estimations, they are computationally 

expensive for large-dimensional images (pixels > 128×128). Usually, images with larger size, e.g., 512×512, are required 

for practical use. Fessler6 et.al. give a fast variance estimation method for the quadratic penalized weighted least square 

(WLS) algorithm. Fast covariance estimation methods have not been studied yet. 

In fact, the covariance used for model observers is the covariance of the channel response7 that has a much smaller 

dimension than its image covariance matrix. Therefore, we target on estimating the covariance of low-dimensional 

channel response from high-dimensional projection. The proposed projection to channel response (Prj2CR) covariance 

estimation method is derived from the Prj2Img method. We apply the proposed method to a widely used channelized 

Hotelling observer (CHO) with large-dimensional image inputs for validation. 
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2. METHODS 

In this section, we briefly introduce the analytical Prj2Img covariance estimation method for non-quadratic penalized 

WLS studied in our previous work8, then describe the CHO, and finally deduce the proposed analytical Prj2CR 

covariance estimation method in detail. 

2.1 Analytical Prj2Img covariance estimation method 

The cost function ( )   of a penalized WLS reconstruction can be expressed as: 
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where 1ˆ Nμ  is the linear attenuation image reconstructed from its projection 1M p . 
M NH  denotes the 

system matrix and M MW  the noise model with exp( )mm mp= −W . ( )R   is the penalty function and   the penalty 

parameter. The fixed-point method makes use of convergence condition: 
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Plugging Eq. (1) into Eq. (2) and finding its covariance, we have: 

 ˆ( + )Cov( )( + ) Cov( )T T T T H WH A μ H WH A H W p WH  (3) 

where 
N NA  is a coefficient matrix approximates ˆ( )R μ : 

 ˆ ˆ( )R +μ Aμ c  (4) 

Our previous work proposed the linear based method (LAM) with ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )R =μ L μ μ L μ μ , thereby estimates the 

covariance as: 

 ( ) ( )ˆ ˆ ˆ+ ( ) Cov( ) + ( ) Cov( )T T T H WH L μ μ H WH L μ H W p WH  (5) 

here, μ̂  is the expectation of μ̂ . We adopt the WLS penalized with the total variance (TV-WLS) as well as qth 

generalized Gaussian Markov random field (qGGMRF-WLS) as two representatives in this work. 

2.2 Channelized Hotelling observer (CHO) 

A CHO is calculated as: 

 
1 ˆ ˆ ˆ ˆ[ ( )]T T

c sc bc c c −= − S μ μ μ ω μ  (6) 

where   denotes the decision variable and ω the template of CHO. The image of channel response is denoted by a 

subscript c : 

 ˆ ˆ
c =μ Vμ  (7) 

with C NV  being the channel matrix consists of C  channel profiles and C N . Meanwhile, the ˆ scμ  and ˆ bcμ  in 

template ω  represent the mean of signal present and signal absent images respectively. The intra-class channel scatter 

matrix ( ) / 2c sc bc= +S K K , where the channel covariance T

sc s=K VK V  and T

bc b=K VK V  with ˆcov( )=K μ  being 

the image covariance. For a given threshold t , if the decision variable satisfies t  , we consider the target image to 

contain the signal; otherwise, we consider it not. Meanwhile, signal-to-noise ratio9 (SNR) is adopted to measure the 

performance of a CHO: 
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 1SNR ( ) ( )T

sc bc c sc bc

−= − −μ μ S μ μ  (8) 

2.3 Analytical Prj2CR covariance estimation method 

Note that the analytical Prj2Img method in Eq. (5) involves a matrix inverse operation, which leads to high 

computational cost when the dimension of the reconstructed image is high. As described in section 2.2, the CHO only 

requires a small-dimensional covariance of channel response, where C N . Therefore, we construct a relationship 

between the covariance of channel response T

c =K VKV  and the covariance of corresponding projection Cov( )p : 

 * *
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where the transition matrix * 1 1( ) ( )T T T− −=X V V V V V V . Note that matrix T
V V  is not full rank, and hence it is 

irreversible. Hypothesis there exists an invertible transition matrix 
C CX  that satisfies Eq.(9): 

 ˆ ˆ( + ( )) ( + ( ) ) Cov( )T T T T T T T T

c V H WH L μ V XK X V H WH L μ V VH W p WHV  (10) 

Both covariance of channel response 
cK  and transition matrix X  are unknown. In theory, X  only depends on channels, 

not systems, phantoms, and reconstruction algorithms. Thus, we can calibrate X  using known 
cK  of low dimension. X  

calibration is expressed as an optimization problem: 
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where ˆ[ ( + ( )) ]T T=Q V H WH L μ V X . We split Eq. (11) into two sub-problems to make it easier to get a reasonable 

solution: 
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1 ˆˆ ˆ[ ( + ( )) ]T T −=X V H WH L μ V Q  (12.2) 

Since X  is an underdetermined matrix, the optimization problem in Eq. (12) is locally convergent. Thus, we choose 

starting points as: 

 (0) ? † (0)[ ( + ) ][( ) ],T T T= =Q V H WH A V V V X I   

with †( ) being the Moore-Penrose generalized inverse operation. Plugging the calibrated X̂  into Eq. (10), we can finally 

obtain the covariance estimation ˆ cK  under arbitrary conditions: 

 
1 1ˆ ˆ ˆˆ ˆ( ( + ( )) ) Cov( ) [( ( + ( )) ) ]T T T T T T T

c  − −
K V H WH L μ V X VH W p WHV V H WH L μ V X  (13) 

3. EXPERIMENTS 

Gabor function is used for CHO in this work: 

 2 2 2

0 0 0 0( , ) exp[ 4ln 2(( ) ( ) ) / ] cos[2 (( )cos ( )sin ) ]s cv x y x x y y f x x y y    = − − + −  − + − +  (14) 

here the parameter configuration of Gabor channels is similar to that used in Leng’s work10, where the channel width 

56.48,28.24,14.12,7.06s = , the channel frequency 
3 3 3 3

, , ,
128 64 32 16

cf = , the orientation 
2 4 6 8

0, , , ,
5 5 5 5

   
 = , and 

the phase 0, / 2 = . 
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Table 1.  Reconstruction parameters for calibration and validation of Prj2CR covariance estimation method. 

Reconstruction Parameters Calibration Validation 

Source to origin distance (mm) 200 595 

Origin to detector distance (mm) 200 490.6 

Size of detector bins (mm) 0.5 1.2858 

Projection dimension 240×360 736×360 

Size of image dimension 0.3 0.7422 

Image dimension 128×128 512×512 

Incident photons 107/105/5×103 106/5×105/3×105 

Reconstruction algorithms qGGMRF-WLS TV-WLS/qGGMRF-WLS 

Image covariance estimation method Prj2Img / 

Covariance of channel response estimation method / Prj2CR 

Phantoms for calibration and validation are generated from the Grand challenge dataset of Mayo clinic respectively. For 

calibration, images of size 128×128 are reconstructed by qGGMRF-WLS with system defined in Table 1. Since X  is 

underdetermined, transition matrix X of various noise levels are averaged for stability. For validation, large-dimensional 

images are reconstructed by both TV-WLS and qGGMRF-WLS with three noise levels as is shown in Table 1. 

Covariance estimated by numerous image samples is used as reference: 
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with K  being number of image samples. To better evaluate the performance of proposed Prj2CR method, we choose 

SNR of CHO as the figure of merit according to Eq. (8): 
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where SNR is calculated from the covariance estimated by Prj2CR method, while SNR* is calculated from the 

covariance estimated by 290 image samples. Besides, we take the ground-truth as the image mean to minimize other 

influence factors, i.e., groundtruth

sc sc=μ μ  and groundtruth

bc bc=μ μ . 

4. RESULTS 

SNR performances are displayed in Figure 1. The SNR calculated by the proposed Prj2CR method is basically within the 

95% confidence interval of the SNR* calculated by image samples. For qGGMRF-WLS reconstructions in case of 3×105 

incident photons, the SNR by the Prj2CR method underestimates SNR* by image samples. 

5. DISCUSSION AND CONCLUSION 

We proposed an analytical Prj2CR covariance method in this work, which can estimate the covariance of channel 

response directly from a single projection. The proposed method solves the problem of high-computational cost of 

Prj2Img method, and enables the covariance estimation of high-dimensional reconstructions. In this work, we introduce 

an invertible transition matrix to connect covariance of low-dimensional channel response and high-dimensional 

projection. Meanwhile, we calibrate the transition matrix to make the proposed method works for different systems, 

phantoms and reconstruction algorithms. The covariance of channel response estimated by Prj2CR method is comparable 

to that by 290 image samples. 
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Figure 1. CHO performance of Prj2CR method and image samples. 
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