The Abbe sine condition and related imaging conditions in geometrical optics
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ABSTRACT

Abbe’s sine condition or other imaging conditions for the aperture rays of an axial pencil determine how an object
volume is imaged by the optical system in image space. We analytically derive the imaging condition which should
lead to the largest possible volume in image space where the aberration (spherical aberration and coma) stays below
a certain prescribed level.
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1. INTRODUCTION

The aberration theory of images generated by an optical system has been gradually developed from the seventeenth
century on. Early analyses by e.g. Descartes, Roberval and Huygens concern the spherical aberration which arises
when imaging an object point through a single refracting or reflecting surface. From this work we know the perfect
or stigmatic imaging properties of conic sections (quadratic surfaces) and the so-called oval surfaces of Descartes
(quartic surfaces). As a special case, the stigmatic points generated by a spherical surface are obtained (Huygens’
aplanatic points). Further research was oriented towards the spherical aberration generated by a single lens and,
later in the eighteenth century, the comatic aberration of off-axis pencils of rays. As a result, at the beginning of
the nineteenth century, the as-designed quality of telescope objectives by Fraunhofer was very good (well within the
diffraction limit) and the actual optical quality of the instruments was mainly limited by manufacturing imperfections
and material inhomogeneities. However, the numerical aperture and the field angle of these objectives were rather
small.

The need for an aberration theory valid for more complicated optical systems with larger values of numerical aperture
and field angle was felt when photography emerged. The so-called third order aberration theory which, in principle,
covers both larger aperture and field angles was probably first developed by Petzval but his results remained unpub-
lished. A comprehensive third order theory for optical systems with circular symmetry consisting of an arbitrary
sequence of optical elements was published by L. von Seidel in 1856. As a rule of thumb, this approximate theory
yields reliable results for numerical apertures up to 0.10 or even 0.15 while the field angle may amount to some ten
degrees. The Seidel third order theory was of great help for the design of photographic objectives with the specific-
ations of the second half of the past century. For the design of e.g. microscope objectives with a high numerical
aperture (> 0.50) and a small field angle, the Seidel theory is not sufficient although it can produce a good design
starting point.

In 1863, R. Clausius® published a paper in which he shows under what condition an optical system (e.g. a mirror
system) is able to concentrate radiant power in an optimum way even when the aperture of the imaging pencils is
large. In 1874, H. Helmholtz? showed that for correct imaging of a finite size object the so-called sine condition
should be respected because otherwise the optical throughput or etendue of the optical system is not preserved from
object to image space. But it is the name of E. Abbe® which is generally associated with this sine condition because
he was the first to establish the link between this condition and the freedom of comatic aberration of the imaging
system even at large aperture. Apart from the sine condition which is of importance for the sharp imaging of a flat
object, there is the so-called Herschel condition? which guarantees sharp imaging when the magnification is varied,
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i.e. when the object point is shifted along the optical axis.

In this paper we first give, in the second section, a short derivation of the sine condition and the Herschel condition.
In the third section we address the question how to create the largest possible volume in image space where the
aberration does not exceed a certain value.

2. DERIVATION OF THE VARIOUS IMAGING CONDITIONS
2.1. The Abbe and the Herschel condition

In Figure 1 we schematically show an optical system with its entrance and exit pupil located at E and E'. From
a pencil of rays leaving the object point P only a certain ray PDD’ P is shown with direction cosines (0, M, N)
and (0,M ,N') in respectively the object and image space (D and D' are located on the pupil reference spheres)
The plane of the drawing is the yz-plane with z = 0. We suppose that the pencil of rays is exactly focused at P
(stigmatic imaging). We now want to know how a pencil of rays leaving a neighbouring object point Q is focused in
image space. According to paraxial optics, the position of an image point Q' derived from the object point Q, which
has been subjected to infinitesimal shifts §y and 6z with respect to P is found by applying the correct (paraxial)
magnification factors. The lateral magnification factor is denoted by 8 = &y /6y and the axial magnification factor
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Figure 1. Schematic drawing illustrating the directions of two related rays in object and i image space (the unknown

trajectory through the optical system has been indicated by the dotted line). The image P of Pis perfect. A
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second object pomt Q has been shifted over infenitesimal distances 6z and éy with respect to P. Its paraxial image
is denoted by Q'. The refractive indices of object and i image space are denoted by n and n.

isé =6z /6z. It can be shown that the relationship between the lateral and axial magnification is given by®

’ 'nl ;2

where n and n’ are the refractive indices in object and image space.
It now has to be seen under what condition the image quality of Q' can be equal to the (perfect) quality of P'. To
this goal, we take, from the pencil of rays through @, a particular ray (dashed in the figure) which is parallel to the
ray through P shown in the drawing. Physically spoken, we consider this ray to represent a small part of a plane
wave with the direction cosines (0, M, N). If the reference point for measuring pathlength is shifted form P towards
Q, the change AW in path of the propagating wave disturbance along the ray from P to P'is given by the scalar
product of the ray vector § = (0, M, N) and the displacement vector ér = (0, 6y, 6z) multiplied with the refractive
index of the object space: .

AW = —nér.5. 2)



The minus sign is needed here because a shift of Q) in the positive z-direction leads to shorter optical path for the
ray along the optical axis. .
In the image space, given the image displacement vector 67’ and the ray vector s , we observe a path difference AW’
according to ..

AW =n'6r's . (3)
Equal imaging quality in @ and P (isoplanatism) is obtained when the residual §W of the path differences in object
and image space is zero for arbitrary values of the ray vectors of all rays belonging to the obJect and image space
pencils (W = AW + AW’ =0).
We discern two particular cases:

e 67 =(0,6y,0)
The isoplanatic condition now becomes:

We=n'6y M —néyM =0. (4)
Using the paraxial magnification which exists between 6y  and 6y we obtain for the residual aberration
’ nM v
We = [M "’n"ﬁ] (n6y) . (5)

This condition, which guarantees the absence of aberration if an infinitesimal lateral excursion off-axis is
applied, is generally known as Abbe’s sine condition. We have used the index C for the aberration because
this aberration is called coma.

e 67 =(0,0,62)
The corresponding isoplanatic condition becomes:

Ws=n'6zZN —nézN=0. (6)
Using the paraxial axial magnification 5 existing between 6z and 6z we obtain for the residual aberration:
1 n2N [ ’
6Ws—{N —W}(n6z) . )

This condition, which guarantees an extended axial range over which the object point can be shifted, is known
as Herschel’s condition. The subscript S has been used because the aberration which could appear is circularly
symmetric spherical aberration.

In general, the constant pathlength difference(n'6z — néz) encountered for the axial ray (N =N =1)is
subtracted from the expression above and we obtain:

W = {(N’ —1)- -’i(—];’[;z—l)} (w'ss') =0. (8)

Abbe’s sine condition is a prerequisite for an optical system which needs to image an extended flat object, e.g.
for a photographic camera objective, a reduction objective but also for a microscope objective or an astronomical
telescope. Herschel’s condition is required when a system needs to operate at different magnifications, e.g. a
narrow field telescope for both remote and close observation. Unfortunately, both condxtlons seriously conflict when
the numerical aperture becomes high. A particular case arises when g = :I:n/n a case which reduces to unit
magnification when n = n'; here, both conditions can be satisfied simultaneously. In most applications, it is the sine
condition which will prevml because otherwise the useful lateral or angular image field would become unacceptably
small.

2. Residual aberration

In this subsection we calculate the residual aberration when either the Abbe or the Herschel condition is satisfied
by the optical system. Either in the lateral (Abbe) or in the axial (Herschel) direction, the first derivative of the
aberration with respect to the shift of the image point is zero but in the orthogona.l direction, the residual aberration
will generally increase rapidly.
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2.2.1. Residual spherical aberration when the Abbe condition is satisfied
When the Abbe sine condition is complied with, the relationship between the M-direction cosines is

nM ' :
F = M . (9)
Using the relation

’ 2
N=Vi-MZ=,|1- (%B’M') (10)

and expanding the square root up to the fourth order in M’ one obtains for the spherical aberration (Eq. 7) up to
the fourth order:

2 42
1 n ﬁ 14 I
6Ws_§( — —1>M (n's2') . (11)
Applied to a mlcroscope objective with a numerical aperture of 0.65 (NA = M = maximum value of M’ ) and a

magnification 8 = 0, we obtain a permitted excursion 6z equal to 24.6 ym (n = n' =1 and A=0.55 pm). For the
permitted spherical aberration WZ* we take the value of 1A peak-to-valley, the tolerance limit for an optical system
to be just diffraction-limited.® When the numerical aperture is increased to 0.90, the 2z -excursion reduces to 6.7 um.

2.2.2. Residual coma when the Herschel condition is satisfied

If the Herschel condition is complied with, Eq. 6 holds and, after the elimination of M, N and N', the expression
for the comatic aberration (Eq. 5) yields up to the fifth order

12 12 %)
_ 1 n ﬂ 13 M )
6Wc_—§<1— - ){M +——2—}(n6y). (12)

Using the same numerical values as above for a microscope objective and applying the just diffraction-limited aber-
ration tolerance W3 for coma of the third order (0.63)), we obtain a maximum lateral excursion 6y;n of 10.0 pm at
an aperture of 0.65 . When the aperture is increased to 0.90, the half field size Jy;n reduces to 3.8um.

A comparison of both imaging conditions shows that, especially at high aperture, the sine condition should be prefer-
ably imposed as the design criterion of the optical system. If the opposite choice (Herschel condition) is made, the
lateral extent of the image field is unacceptably small. Note that the value of B = 0 is the worst regarding the
incompatibility of the Abbe and Herschel condition (we suppose |ﬂ | < n/n’). The residual aberration gradually
diminishes to zero when 8° moves towards the optimum value tn/n’.

3. IMAGING CONDITION FOR MAXIMUM IMAGE VOLUME

In this section we calculate the imaging condition which guarantees the largest possible volume in image space.
The possible aberrations (spherical aberration and coma) should remain below their just diffraction limited values
indicated above. For this maximum image volume to be obtained, we suppose that neither the Herschel nor the
Abbe condition is fully satisfied.

3.1. The axial and lateral extent of the imaging volume

As a starting point, we tolerate an offence against the sine condition of the lowest (third) order according to:
nM "o '3 '

—_ = - <wg

n'ﬂ') (n 6y) eM (n 6'y) <WwWE, (13)
where € is a small factor to be optimized further on.

With this comatic aberration, the maximum image field radius becomes

’ Wm
6y‘"l= ICI3
le] n" M,

We = (M' -

(14)



with M,’n the maximum aperture of the optical system.
The corresponding value of the spherical aberration is given by Eq. (7); the elimination of M, N and N is done
with the aid of the expressions

Nayil-M?=1-— " (15)

After some algebra, the resulting spherical aberration turns out to be given by:

2 42
1 n ﬂ 14 ]

6Ws—[e+§( = —1)]M (naz). (16)

The maximum axial excursion 8z, now becomes

' Wg,"
62171 = B . 4 1 nl2 2 M
n'M,, [e+-§ (—,5——1)]

For the still diffraction-limited image volume with the shape of an ellipsoid we find the expression

HICORS

- 111( we )2 wE (18)
3 \en' M,° n'M,’n4[e+§-(i:;¢—l)] '

The substitution of the values for W3 (0.63)) and WZ* (1)) yields the final expression

5V =167 { X m}.{ !l . (19)
| ()

3.2. The maximum possible image volume

(17)

1%

To maximize the expression for the just diffraction-limited image volume 6V, the denominator of the second term in
Eq. 19 should be minimized. In Figure 2 we have depicted the e-dependent function

fle)= {8 [e+ % (ﬂ'2 - 1)]} (20)

in the denominator of Eq. 19 for several values of the lateral magnification 8' (n =n' =1).

The values € = 0 and ¢ = (1 — ﬂ'z) /8 correspond to respectively the Abbe and Herschel condition. However,
these conditions do not necessarily guarantee a maximum image volume for a real optical system when the linear
approximation for the aberration change is not sufficient.

An interesting point certainly is the extremum found at the value

12 12
1 n B
€extr = D) (1 i ) . (21)

This extremum is gradually shifting to the origin when the magnification approaches the value |n/ n |, corresponding
to the specific case where both the Abbe and Herschel condition can be satisfied simultaneously.
The numerical values associated with the extremum considered above are:
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Figure 2. The beh:?,viour of the function 103.f(¢) to be minimized for maximum image volume. The lateral
magnification factor 8 is the parameter and equals 1 (curve a), 0.5 (curve b) and 0 (curve c).

o g =0, A=0.55pm, n = n' =1, NA=M, =0.65 :
by =15.1uym 82 =73.9um

e idem, NA=0.90
by =5.7um 6z =20.1pm

For the actual volume available at the value €..:» we obtain (n = n = 1)

3
5745 A3 4 11.1A 1
SVertr = (1 _ﬂ,2)3M;n10 - —; { (1 —,3'2) } M (22)

4. CONCLUSION

‘We have studied the different possibilities to design an optical system regarding the directional properties of the rays
of the axial pencil. Apart from the specific cases, known for a long time from the literature, we have analyzed the
imaging condition which should lead to, e.g., a maximum diffraction-limited image volume. The obtained results
should be checked by real-world designs in order to verify the validity of the first order analysis.

The design of an optical system towards maximum imaging volume is of practical importance in, among others, 3D
scanning confocal microscopy.
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