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ABSTRACT

I espouse an approach to optimizing filters on arbitrary SLMs that is different from some
approaches to be found in the current literature. The method begins with selecting a
metric by which to judge the operation of the correlator. The metric is to be based on
observable features, not on inaccessible internal states of the correlator. That metric is
optimized by choice of the implemented filter - significantly, the optimization is done
under restriction to realizable filter values, not under other restrictions such as to unit
filter energy or matching phase inappropriately. A necessary condition of optimality is
that the partial derivative of the metric with respect to allowed changes in the realizable
filter value is zero. The ramifications of these precepts are examined and examples are
shown.
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1. INTRODUCTION
A great deal of work for the optimization of optical correlation filters is done without, in
my opinion, two important considerations. One is that a filter should be optimized in
terms of only such things we are able to observe physically about the performance of the
correlator with the filter mounted in it. The second is that the resulting filter will perforce
be implemented on the coding domain of the filter spatial light modulator. In these
substandard approaches, a filter ordinarily complex and having no particular limitation
on its values is often computed that, if it were realizable, would in some fashion be
optimal for the problem it is directed towards. Then one mapping method or another is
used to stick the computed fully complex filter onto the coding domain. A sterling
example is that the complex matched filter (CMF) optimizes signal to noise ratio in the
presence of additive noise whose power spectral density is known, and then one may
cause the phase of the resulting signal to be maintained in realizing the filter. There
might be some justification for any step in that process, but the combined effect is not the
best that can be obtained with a more global view. Ordinarily we are not working in an
environment in which the filter SLM permits access to an area of the unit disk, but
instead with a discrete -set or curvilinear subset of the unit disk. So even by scaling and
phasing the CMF, we are not able to realize it fully by jamming it, shape unaltered, into
the coding domain. (We refer to that quality that is unaltered by multiplication by a
complex scalar as the filter's "shape ".)

In the second step of the traditional approach the computed complex filter is converted to
coding domain values by some method or other. For a good while the watchword was to
maintain the phase of the computed ideal complex filter', perhaps adding a constant
phase offset or a spectral region in which the filter was set to zero2. The result of
maintaining phase during this step, called a phase -only filter (POP), has enjoyed
considerable success, and there are circumstances of metric objective and available filter
values in which it is demonstrably optimal to maintain the phase while setting the
magnitude to its passive maximum of unity. I must add, however, that I am frankly
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puzzled as to exactly what a "phase -only filter" actually is. Any filter that is built on a
modulator whose only variation is phase is, one would suppose, a POF, and yet the
literature is not refulgent with POFs computed except by matching the filter's phase to
that of a single reference object. Consider for a moment how to build a filter on an SLM
that has coupled phase and amplitude behavior. I acknowledge here the argument that a
matched -phase filter guarantees that the maximum of the correlation intensity is exactly
centered in the correlation plane. For complicated reference objects, however, the
decentration produced by maximizing intensity rather than matching phase is very sma113.

In a move away from simply matching phase, Juday4'5, then Farn and Goodman6,
introduced maximum projection onto a realizable region as a way of maximizing
correlation intensity for coupled modulators, as the shape of an ideal filter is converted to
the realizable domain. Juday7 generalized that projection for single reference images and
advanced metrics to include the minimum Euclidean distance (MED) projection for ideal
filter values that were not "at infinity ", as the maximum -projection algorithm can be
described. Laude and Réfrégier8 used the MED process as part of a realizable filter
optimization that used a Lagrangian step in optimizing among multiple competing
objectives for a metric. That is, they inserted a step into the process in which they
compute an optimal filter [shape] that is constrained to unit energy while optimizing the
tradeoff between differing metric goals. The unit -energy constrained filter is then
mapped by MED onto the realizable domain. I contend that such a constraint to unit
energy is at best unnecessary in achieving the optimal tradeoff. At worst it could deliver
a sub -optimal filter by not delivering, as does my philosophical method, a confirmation
that each frequency has its locally optimal value chosen in view of the combined effect of
all other frequencies. Nowadays one finds a good deal of work in the literature in which
filters are computed that are optimal in some sense, but the necessity of optical
realizability is not taken into account. To cite some examples, a recent issue of Optical
Engineering contains several papers 9''o,iaza3aa,ls,16 on correlation pattern recognition in
which there is a great deal of mathematics expended on filter computation without a word on
optical realization of the filters. The one paper' in the same issue that does take realizability
into account assumes a phase -only constraint in projection onto a convex set - and its phase -
only SLM with unit magnitude and 27c phase range is at least somewhat idealistic. More
recently one finds the idea18 that a correlation filter (CF) is known, having originated in a
tradeoff of noise robustness against sharpness of the correlation peak, without
consideration given at that stage to correlation intensity. Then its values are mapped to
the SLM's available values in order to achieve the maximum intensity of the output
correlation peak. I aver without detailed proof that this sequential approach will not
generally achieve the optimal tradeoff between noise robustness and peak sharpness,
since the shape of the filter that did best achieve that tradeoff is destroyed in the
projection onto realizable values, and there is no analytical justification presented that the
projection in any way maintains the optimality of that tradeoff. Nor, of course, will that
approach achieve largest correlation intensity for the object, since we have inserted the
tradeoff into the process sequence. Further, and again without detailed proof, I aver that
the process, although it may well produce acceptable results, will not generally produce
as satisfying a tradeoff among all three metric elements - sharpness, robustness, and
intensity - as if they were simultaneously considered while choosing among realizable
filter values. This simultaneity is addressed with the philosophical approach described
here and justified in greater detail elsewhere7,19,20,21

Let me expand on the issue of metric observability in the philosophy I espouse, and
contrast it against some other precepts. This is a philosophical and ruminative paper, so I
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do not present laboratory results to back up each claim and statement I make. If you
think the arguments might make sense, feel free to try them out; if not, then don't.

It makes no difference what happens inside a correlator if I am not observing it - and
ordinarily I am not. Instead I observe only what is detected at the end of the process. An
optical correlator is a quantum mechanical implement, and it is only after the energy has
propagated through it and been detected that I have the information processed and ready
to do further work with. Hence, I claim, it makes little sense to optimize such an internal
state as the so- called optical efficiency (the fraction having as its denominator the light
energy originating in the reference signal that has made it through the filter, and as its
numerator the amount of that light that is directed into the central correlation spot). If I
want a bright correlation spot in response to a given reference image, I should optimize
exactly the correlation response. I have the tools to do that, under the philosophy
described here. I admit the charm of the idea that optimizing the optical efficiency
should produce spike -like correlations, but in laboratory practice22 I observe that a filter
intended to optimize this version of optical efficiency (an inverse filter, if implemented in
fully complex fashion) is very susceptible to noise. I observe further that correlations
that have been optimized for their observable character such as intensity or signal to noise
ration are, in any practical sense, as narrow as those produced by a filter intended to
optimize the optical efficiency. So, consonant with the philosophy and bolstered by my
laboratory experience, I eschew filters designed to optimize the optical efficiency as
defined above.

To be sure, often the general algorithm I discuss here will come down to computing a
fully complex filter and then converting its values algorithmically into the coding
domain. The philosophy I describe here, however, analytically develops very specific
guidelines for choosing the shape of the ideal complex filter that is then represented in
the coding domain by a projection process. In current literature those guidelines are not
always followed in either the computation of the ideal complex filter or its conversion to
realizable values. The shape is determined by the necessary condition of optimality to be
described in the next Section, as it sets conditions on the values of search parameters and
specifies the connection between the optimal realizable filter and the search parameters.
The general algorithm is efficient in that it reduces the set of search parameters to a
minimal set, and it is complete in that it provides confirmation that the result of the
search is consistent with the necessary statement of optimality. Following the philosophy
described here, our laboratory has been able to optimize some meaningful and
complicated correlation pattern recognition metrics on arbitrary SLMs, and I shall show
those results.

As a final introductory remark, I sometimes hear statements like "It is too complicated to
do all these computations to optimize a filter, compared with just taking a signal,
transforming it, extracting the phase, and matching it on my SLM." I agree it is certainly
more work to think about what observable metrics you would wish to optimize, to
characterize your SLM carefully, and to do the fully optimizing computations. So we
come down to a comparison of philosophies, and only you can judge what is correct for
you: the ease and convenience of a rough demonstration, or having your system perform
as well as it can.

2. A NECESSARY CONDITION OF OPTIMALITY
Regard the correlation process as producing an observable output that we shall adjudge
according to some metric J. We carefully mark the distinction between a filter, a filter
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drive, and a filter SLM. A filter drive is the set of controls (e.g. an array of bytes or array
of voltages) that is applied to the filter SLM. The filter is the array of complex action
(absorption and retardation expressed as a complex number) that the filter SLM wreaks
on the transformed input image. Our control of the filter SLM is typically through a
voltage (usually a physical continuum, even if addressed with one to eight bits) for each
pixel. An SLM's operating curve is the range of complex values traced out as the control
voltage runs through its own domain. (We often speak of a filter encoding domain, but at
this stage the control is the domain, and the range is the set of filter values resulting from
the drive values.) In terms of an input/output relationship, the metric is a function of the
drive, and what happens within the correlator is largely unobservable. With this
viewpoint, we can regard our problem as this: Optimize the metric by adjustment of the
drive values. We can observe various things about the correlation intensity; we measure
its two -dimensional values, and by feeding the correlator several instantiations of noise in
the input - and several instantiations of the input object, too - we can get an idea of the
variance of correlation intensity from those sources. Ideally we would optimize the ratio
of correlation value at the location corresponding to the reference object to the largest
correlation value appearing anywhere else in the plane. Unfortunately we can not (yet)
handle that magnificent metric; we do not have an analytic expression for the value of
such a secondary peak. Focusing attention onto the central correlation value has worked
well, however, and all the work described here is done on that basis.

We suppose that there exists an optimal filter. Then the following must be true (if the
derivative of filter value as a function of drive exists)... infinitesimal readjustments of
any of the drive values produce zero change in the metric, to first order. (For suppose to
the contrary that we could change a drive value and produce a change in the metric. Then
one direction or the other of change in the real scalar drive value would increase the
metric, and the filter we posited as optimal did not actually produce the highest value of
the metric.) (This general argument applies except where the derivative of complex filter
value as a function of drive does not exist, including end points of the operating curve.
These conditions are taken care of in the discussion of metric gradient in Sect. 13 of
Ref. 20.) That is, the partial derivative of the metric with respect to the drive is zero at all
frequencies. From this simple statement that is a necessary condition of optimality we
can infer the whole nature of a filter and optimize a widely ranging set of metrics on
arbitrary SLMs.

We adopt the following nomenclature. The m -th frequency's value of the transformed
signal is S = Am exp(jo ,) and of the filter, H = M, exp(jOm) . The filter is a function

of applied drive, v. The central correlation field is D = Bexp(j/3) _ HkSk where the

indicated sum is over all frequencies (we use the one- dimensional notation), and the
correlation intensity is I = B2 . The power spectral density of the input noise is Pm at
the m -th frequency, and the input noise's contribution to variance is

ßñ = E I Hk 12 P, = y mk Pk . The metric, J, is some function of input object S, filter H,
k k

noise 6, , and possibly other quantities.

In addition to basing metrics on only those things that one can observe physically, my
philosophy for filter optimization is summarized in the necessary condition for optimality
of the filter. For each frequency (indexed by m),
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The philosophy: av = 0 (1)
m

From this simple -looking equation we derive a rich set of specifications for optimizing
the filter. We can show how a frequency in the filter operates in conjunction with the
filter values at all the other frequencies, and while doing that we can devise a reduced -
dimensionality set of parameters to search for the optimal filter. Additionally, we have
confirmation when finished with the search that the metric -optimizing parameter set
causes Eq. (1) to hold. Although strictly speaking the process can be caught by local
maxima in the function of metric vs. parameter set, we note that the process works well in
practice, and we do not seem to get snarled in local maxima.

3. OPTIMIZATION OF SOME EXAMPLE METRICS
I shall now show three examples of metric optimization according to this philosophy.
The first is signal to noise ratio when the noise is modeled as additive at the input plane
and the noise is known only to its power spectral density. It optimizes the detection of a
single reference object in a noisy background. The second is the Rayleigh quotient that
optimizes the ratio of correlation values for two (possibly quite similar) objects at the
center of the correlation plane. The third is the Fisher ratio for a group of training objects
to be divided by correlation intensity into the "accept" and "reject" classes.

3.1 Signal to noise ratio
The signal to noise ratio is formulated as follows.

SNR =
6d +Mk Pk

k

2

Hk`Sk
(2)

in which we see a term in the denominator, o , that represents noise in the correlation
process that is irreducible by action of the filter. It is an experimentally derived term, and
it has a profound effect on what the optimal filter is. In essence, its presence in the
optimization process prevents one from building a very clean correlation signal that
might come through the correlator with only microvolt correlation values, when one is
dealing, say, with some millivolts of noise. If there is millivolt noise, then optimizing
SNR will tend to produce correlation signals that dominate the noise of millivolts but at
the expense of altering the shape of the realized filter.23 Applying the necessary
condition, Eq. (1), to the formula for SNR, one finds' that the optimization comprises
specifically and analytically the following steps.

1. Compute the ideal filter value at the m -th frequency,

H =
Q¡+MkPk

ArgHkSk
Jl J

S_, (3)
Pm

1 Hk Sk

exp(j

2. Use the realizable value that is closest (by Euclidean geometry in the complex plane)
to Hm.
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2. Use the realizable value that is closest (by Euclidean geometry in the complex plane)
to HL-
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3. When we have computed all the filter values, verify that each meets the condition
specified in Steps 1 and 2.

Well, we see that we have a problem. It seems that in order to compute the filter we have
to know the filter first. We don't know the elements of the term in braces in Eq. (3)
before computing the ideal filter value - and they are functions of the realized filter!

The saving circumstance is that the term in braces is not a function of m. The same
complex value applies to all m. If there is an optimal filter that meets Eq. (1), then there
exists such a complex factor as that in the braces, and all we have to do it find it. A
major fact to notice is that the factor includes the effects of all frequencies as they
influence what is optimal at the m -th frequency. Although the filter typically comprises
tens of thousands of frequencies, their effects are coordinated through a single complex
factor. The dimensionality of an optimizing search has been reduced by examining the
consequence of the philosophy. This approach obviates such methods as annealing24
where all frequencies are treated as independent. Instead we treat all frequencies alike
that have the same spectral signal to noise ratio, St /Pnm . The algorithm, as a practical
implication of Eq. (1), then becomes:

1) Choose a complex factor k

S2) For all m, compute H' = k ' , then choose the closest realizable value for the m -thP
element of H.

3) Compute J(k)=J(H(k)); vary k to obtain H% that maximizes J.

4) Perhaps optionally: Verify closure - that k(H %) is the value of k that maximized J,
when the complex number in the braces in Eq. 3 is computed.

An interesting situation arises when P , is not zero. We consider how much each
frequency can contribute to the metric. If realizable, H;, would contribute the maximum
possible, and other values of H contribute less. Noting that H,=0 contributes nothing to
the metric, the interesting thing is that realizing 2Hm would also contribute nothing to the
metric! Here's why... See Figure 1. There is a circularly symmetric falloff in the
contribution that any frequency's filter value can make to the overall metric. If zero filter
value contributes zero to the metric, then so also does twice the filter value, since it is at
the same distance from the ideal value as is the origin. In Figure 2 we have laboratory
results22 that show an improvement in useable correlation quality as one begins with the
matched -phase filter having largest intensity; proceeds to the filter producing largest
intensity; and finishes with the filter having the largest signal to noise ratio. See the
reference for the 1/f noise added to the signal, the coupling between amplitude and phase
of the filter SLM, and other information.

3.2 Rayleigh quotient
Now for the Rayleigh quotient. Suppose that we know we have one of two possibly very
similar objects, that we know its centration, and that we wish to build a filter that will
give a large correlation response to one of the objects but a comparatively small response
to the other. Compared with the SNR case, this time we know more than the power
spectral density of the object we wish to reject - we know its entire structure, including
phase - and we can take advantage of that when computing the filter. Let S1 and S2 be
the two signals. We slightly redefine the conventional Rayleigh quotient to include the
physically observed, instrumentally introduced, but ineluctable and irreducible, noise.
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RQ =

2

HkSlk

cr + Hk`S2k

Analytically following the consequences of applying Eq. (1) to Eq. (4), we find20 that we
must take a pair of complex constants k1 and k2, then form the vector V in the complex
plane of values for Hm ,

2
(4)

V =k,S, -k2S2 (5)

and choose the realizable filter value that has the largest component in the direction of V.
Again we search over the complex parameter values (this time k1 and k2) to optimize RQ.
The closure values for k, and k2 are multiples, by a common real scalar, of

k, =B,exp(j(3,)

B; (6)
k2 = B2 exp(02)

2 2B2 +sjd

according to the terms developed for Eq. (11) of Ref.[20]. (We have subscripted the
terms defined just above Eq. (1) to accommodate there being more than one reference
object.) In Figure 3 we have laboratory results25 showing that the Rayleigh quotient
improves the discrimination between a pair of very similar images, compared with the
poor discrimination resulting from building filters that just produce large correlation
intensities. Optimizing the Rayleigh quotient causes a filter to reject the parts of the
"accept" image that look like the "reject" image, whereas that same mutual character
produces a substantial response when the filter is asked to produce as large a correlation
intensity as possible, without regard to discrimination.

3.3 Fisher ratio
Optimizing the Fisher ratio (FR) is one step further along toward a truly "discriminant"
filter. Such a filter would have a guaranteed minimal classification error. The FR is a
long- standing metric in linear decision rules for pattern recognition. The FR measures
the degree to which classes separate under the filter, normalized to the average variance
within the classes. (See any text on statistical pattern recognition for more details.) I am
unaware of any previous optimization of the Fisher ratio, based on observable optical
quantities, restriction to realizable filter values, and incorporating scene noise and
detection noise into the correlation intensity variance. I have optimized the FR as a
function of the correlation filter, when the values of the filter are restricted to an arbitrary
subset of the complex plane. I build the FR from optically observable quantities, in
consonance with the philosophy's dicta.

J=((I) n-(I)r)2
6A2 +6ÿ,

(7)

in which the "accept" class is designated by A and the "reject" class by `I' , the central
correlation intensity is I , and the variances for the intensities of the classes are in the
denominator. Optimizing the FR proceeds from the philosophy. The journal paper
detailing the optimization of the FR is currently in peer review, so the details are not
given here. However, I include initial simulation results from filter code that is in an
incomplete stage of development. In Figure 4 we see eight images out of the sixteen that
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the degree to which classes separate under the filter, normalized to the average variance 
within the classes. (See any text on statistical pattern recognition for more details.) I am 
unaware of any previous optimization of the Fisher ratio, based on observable optical 
quantities, restriction to realizable filter values, and incorporating scene noise and 
detection noise into the correlation intensity variance. I have optimized the FR as a 
function of the correlation filter, when the values of the filter are restricted to an arbitrary 
subset of the complex plane. I build the FR from optically observable quantities, in 
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((')x-(')»)*

C72+C72 (7)

in which the “accept” class is designated by A and the “reject” class by 'F , the central 
correlation intensity is I, and the variances for the intensities of the classes are in the 
denominator. Optimizing the FR proceeds from the philosophy. The journal paper 
detailing the optimization of the FR is currently in peer review, so the details are not 
given here. However, I include initial simulation results from filter code that is in an 
incomplete stage of development. In Figure 4 we see eight images out of the sixteen that
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the Fisher ratio optimizing filter has been trained to accept. (These are simulation data;
all other data shown in this paper are taken in the optical laboratory.) The background is
a difficult one for a correlator to reject, since it is highly structured and quite bright.

4. SOME GENERAL REMARKS
Coupling is your friend. This is true particularly in noisy situations. When noise is
present, a great number of frequencies can have the spectral energy of the signal
swamped by the noise power spectral energy. Ideal filter values at those frequencies
would ideally have very small amplitude. The farther a realizable spectral filter value is
from its ideal value, the more poorly the whole filter performs. Thus we often find that
there is a cluster of ideal filter values near zero, and it behooves the operating curve of
the filter to pass near zero to accommodate them. For a considerable while in the filter
optimization industry it seemed as though coupled amplitude and phase behavior was the
mark of a deficient modulator. Indeed there are a number of circumstances in which
optimizing a filter calls for large amplitude and large phase range (the noiseless Rayleigh
quotient comes to mind). But when we are attempting to defeat spectrally varying noise
that can be modeled as additive in the input plane, we need amplitude control of the filter.
We have the tools to use coupling to our advantage now, and we should use it.
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Figure 1. The ideal filter value contributes the most
possible to the metric. All filter values on the circle passing
through the origin, and centered on the ideal value,
contribute zero to the metric. That includes, of course,
twice the ideal value. Outside the "zero contribution"
circle. all contributions are negative.
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Figure 2. Sections and images of optical lab results for filters that match phase
(with greatest intensity under that restriction), maximize intensity, and
maximize SNR on a highly coupled SLM (see references for fuller description
including noise environment). The intensity filter creates by far the brightest
image, the SNR filter the cleanest. The filter optimizing PCE (not shown) was
essentially as noisy as the matched -phase filter. These are laboratory data.
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Figure 2. Sections and images of optical lab results for filters that match phase 
(with greatest intensity under that restriction), maximize intensity, and 
maximize SNR on a highly coupled SLM (see references for fuller description 
including noise environment). The intensity filter creates by far the brightest 
image, the SNR filter the cleanest. The filter optimizing PCE (not shown) was 
essentially as noisy as the matched-phase filter. These are laboratory data.
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Figure 3. A tank; the tank with a portion of its structure inverted; the difference
between the two tanks.
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between the two tanks.
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Figure 4. A single Fisher ratio optimizing
filter (left), exercised on a bipolar real
SLM, in simulation recognizes 16
appearances (8 are shown) of an airplane
against a difficult background. Mid -grey is
zero, white is +1, black is -1. In these
preliminary results, the correlation is
brighter than the processed background.
Input imagery courtesy of JPL/T. -H. Chao.
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Figure 4. A single Fisher ratio optimizing 
filter (left), exercised on a bipolar real 
SLM, in simulation recognizes 16 
appearances (8 are shown) of an airplane 
against a difficult background. Mid-grey is 
zero, white is +1, black is -1. In these 
preliminary results, the correlation is 
brighter than the processed background. 
Input imagery courtesy of JPL/T.-H. Chao.
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