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Abstract

An attempt is made to answer the question of how much mathematics optics
students should know, not only to understand optics, but also to be able to work
with optics in the future. Fundamental optics and also some fields of
application in optics or related disciplines are examined, in order to specify
the mathematics required.

1 . INTRODUCTION

By "optics students" I mean University undergraduates and graduates. Some
of the initial concepts could also be applied to high school students.
Here we are concerned with the mathematics required for the foundations of
classic and modern optics with an occasional look at quantum optics.
Two different levels of learning optics are considered. The first level includes
the fundamental laws of optics and the minimum amount of mathematics needed to
understand them. The second level includes a deeper insight into the laws and a
number of modern applications that require a more profound knowledge of
mathematics. Some applications and the required specialized mathematics are
mentioned as well.

Initially optics meant the visible spectrum, but more recently infrared
and ultra violet frequencies have also been included. We could use the term
"optics" in a broad sense and not set any limitations to the frequencies, by
observing that the laws of optics are applicable to all frequencies, provided
that the appropriate scaling relations are satisfied. It should be remembered
that one can talk of microwave optics and that radio waves are reflected by the
ionosphere and diffracted by mountain tops. However, we prefer here to make
reference to the term "optics" in its commonly accepted meaning.

A list of books on optics, some of which have already become classics, has
been added to the end of this paper. This list is not intended to be exhaustive
but only an indication of some examples. It includes books which require a
considerable knowledge of mathematics on the part of the reader, some that are
less demanding in this field, some which treat specific subjects and others
dealing with modern applications. A good example of this last type is the very
recent ICO volume "International Trends in Optics" where aspiring researchers
can read about modern trends in optics and have an idea of the mathematics
involved.
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2 .GEOMETRICAL OPTICS

2.1. Homogeneous media

Geometrical optics, alternatively referred to as ray optics, represents
the first approximation of wave propagation.

At a very first stage students may not know the conditions under which
geometrical optics is valid, but, as soon as diffraction is introduced, this
point must be clearly stated, by using the appropriate mathematics. Here it
suffices to say that light propagates in free space or homogeneous media and
encounters discontinuities represented by plane surfaces or by curved surfaces
that in the region of interest can be "confused" with their tangent plane.

As the name clearly suggests, geometrical optics requires knowledge of geometry,
more precisely classical elementary geometry. Reflection laws and behaviour of
all instruments that are based on reflecting surfaces (such as mirrors) and also
some simple examples of aberrations in these instruments can be understood by
geometry and algebra. The idea of laser cavity (e.g. confocal) can also be given

through simple reflection.
Trigonometry is required to suitably describe the laws of refraction and

total reflection. Here the distinction between geometry and trigonometry is made
for the purpose of distinguishing their different roles in geometrical optics.
Geometry and trigonometry allow one to understand the fundamentals of systems
employing refracting surfaces (e.g. lenses), image formation in the paraxial
approximation, and simple aberrations including chromatic ones.
The possibility of guiding radiation in plane or cylindrical homogeneous
structures can also be understood by means of total reflection.
At this first level the study of the aberrations in both reflecting and
refracting optical systems requires knowledge of power series expansion of
simple functions, which in turn implies some knowledge of the theory of
functions and of differential calculus.

2.2. Inhomogeneous media
Integral calculus is appropriate for ray propagation in inhomogeneous

media, in particular for writing in explicit form Fermat's principle for
continuous media or for continuous media where some discontinuities are present.
As is well known, according to Fermat's principle, light propagates from a point
A to point B along the curve (or the curves) along which the transit time is an
extremal that is it has a minimum, or a maximum, or a stationary value with
respect to nearby paths. In the path integral

= 2 dl (1)

where n(P) denotes refractive index, the unknown quantity is path T. Derivation
of path f for a given function n (P) constitutes a variational problem, that
can be solved with different methods, one of which is that of Lagrange's
invariants.
At the lower level, however, one can skip this mathematics by simply getting the
students to check the property in a number of cases. It is particularly simple
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to check the property in the case of reflection and refraction laws. In
addition, in my opinion, it is very instructive to check that the image (real or
virtual) of a source point, given by a perfect system, is the cross point of
rays whose transit times from source to image are equal. Plane mirror, or lenses
in the paraxial approximation, or parabolic and elliptical mirrors, when the
source is in the focus, are suitable examples for verifying that the transit
time is stationary. This will be useful subsequently for understanding the
process of image formation by means of phase considerations.
As to the higher level, in general students should know how to solve
variational problems, and to derive the corresponding differential Euler
equations: one equation or a system depending on the number of variables. They
should also know the rules for solving differential equations, (if possible) and
at least the solutions of a number of such equations. A simple example to give
the student is that of a path in one plane, where the refractive index is a
function of one variable in the plane. A case of this type arises in the study
of meridional rays in graded index fibers. For those fibers the refractive index
is a function of only the distance from the fiber axis and the plane of the path
is a plane containing the fiber axis.

Clearly for those that will have to work with these types of problems
adequate mathematical preparation is necessary for solving the differential
equations of different types that can occur and sometimes for handling these
equations by computer.
Apart from this last point, the mathematics required up to now is not
considerable and is not different from the basic mathematics that a university
student knows or learns at the very beginning. Therefore we can conclude that
learning ray optics does not require a particular effort with mathematics.
However, use of geometrical optics (ray optics) for modern investigations and
specialized applications, such as propagation in non homogeneous media or in
random media, requires greater mathematical knowledge.

3. WAVE OPTICS - OPTICAL APPROXIMATION

3.1 - Free propagation in vacuum and in homogeneous transparent
media - Interference.

As soon as the wave nature of light is dealt with one is faced with much
greater mathematical requirements.
As a first introductory step, the electromagnetic nature of light is generally
outlined, even at a lower level. Differential and integral calculus, and vector
calculus are necessary in the study of the fundamental laws of electromagnetism
and in the development of Maxwell's equations. Partial derivatives are required
to pass from the integral to the differential forms of Maxwell's equations in
free space or homogeneous media and to obtain the wave equation for vectors.
Although not strictly required at a lower level, at a higher level the student
needs to see the different forms of the wave equations in different reference
systems and theiL solutions, for future handling of waves of different types.
Use of complex vectors to describe the two independent solutions of Maxwell's
equations is appropriate for the higher level case. At the lower level,
introduction of the complex form can be delayed until the optics approximation
is introduced.
The optics approximation, when applicable, allows one to treat many optical
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phenomena without vectors, by considering a Cartesian component v(P,t) of the
field as representative of the entire field. This allows the student to
understand many optics phenomena even at the lower level. At the lower level a
short justification can be given for the introduction of the optics
approximation, while at a higher level some more considerations based on vector
analysis could be useful. At this stage, it is necessary for the students to
know how to write the component v(P,t) in a complex form, and to understand the
meaning of this use that greatly helps the subsequent development of the course.
At the lower level this need not be strictly required, because, as is the case
in some textbooks, trigonometry could be sufficient. In my opinion, however, in
most cases it is unnecessary to burden students with a number of cumbersome
trigonometric formulas, when amplitude and phase helps so much. Complex form
allows one to introduce the time dependence of a monochromatic wave simply by
means of a factor exp(±iWt) that constitutes a first step towards future
wave trains, polychromatic signals and impulses. [Concerning the sign of
imaginary unit "i" in the exponent, the minus sign is the standard recent use
in optics, although some authors use the plus sign. It could also be useful to
tell the students that they can find "-j" used in texts dealing with
electromagnetic waves].
In addition, the complex form permits an easy separation between space and time
variables

v(P,t) = u(P) e1° (2)

leaving a complete generality for the complex amplitude u(P) . In turn u(P) can
be easily specialized to represent the different wave forms; plane, spherical,
cylindrical waves are described by their corresponding geometrical surfaces
having constant phases. Evanescent waves, or leaky or dissociated waves, can be
handled too. Gaussian beams, that derive their name from amplitude, and more
precisely the fundamental modes emitted by lasers, can be easily described in
terms of Gaussian distribution, a generally well known function even at the
lower level. When beams are studied at a higher level, they require some more
mathematics. Description of higher order modes needs Hermite polynomials.
Hermite polynomials are also useful in the study of the behaviour of some basic
laser cavities.

The complex form of the field is required for the presentation of the
}iuygens—Fresnel principle, at an elementary level and for describing
interference patterns obtained by different kinds of waves that are produced by
interferometers of different kinds. Describing interference (and later the
interferometers' resolving power) some concepts of the mathematics of coherence
are appropriate. Speaking of coherence some fundamentals of the probability
theory and definitions of quantities like average and variance are important.
Generally the theory of coherence is not known to students and the optics
teacher should introduce the concept of time and space coherence, of partially
coherent (scalar) fields, the definition of correlation and covariance (=
correlation of fluctuations) functions of first order and the degree of
coherence that is related to fringe visibility.Higher order correlations will
be useful for studying the laser, at a higher level.

As the last point about free propagation one generally describes the

SPIE Vol. 1603 Education in Optics (1991)1101



derivation of the ray equation,and the "eiconal" where the students learn when
diffraction can be neglected. By introducing amplitude and phase in the wave
equation much instructive information is found, including that about diffraction
taking place where there is an abrupt discontinuity in amplitude. The required
mathematics involves some differential operators such as gradient, Laplacian

V21 and so on, already encountered before. The key point is that diffraction
i-2 . . . . 22takes place where the term v A is not negligible with respect to An x where

A denotes amplitude, k0 wavenumber in the free space, and n refractive index.

This implies that amplitude variations (second difference) taking place in the
space of a wavelength must be negligible in order to neglect diffraction.

3.2— Effects of boundaries - Diffraction

There are several ways of introducing scalar diffraction to the students,
without entering into the problems and details of a rigorous theory of
electromagnetic fields as solutions of Maxwell's equations with the appropriate
boundary conditions. Let us mention: 1) the Huygens-Fresnel principle, 2) the
Helmholtz—Kirchhoff theory and formula and 3) the principle of inverse
interference (Toraldo) or expansion in plane waves (Duff ieux).
1) — Although in general Fresnel diffraction is described to students, much
more attention is generally paid to Fraunhofer diffraction, because it is the
most typical case in optics. Presentation of the Huygens—Fresnel principle does
not require any additional mathematics and it is generally given in the simplest
mathematical form without taking into account any angular dependence. Sometimes
the angular factor (l+cosO)/2 is used, were 0 denotes the angle with respect
to the direction of the impinging wave, as derived from the Helmholtz-Kirchhoff
formula. Justification of the phase factor exp(i7C/2) for the spherical wavelet,
as well as the presence of wavelength in the amplitude is left to higher level

stages.
2) — Kirchhoff's theory requires knowledge of the method of Green's function for
the solution of differential equations but generally it can also be presented
at the lower level to students who do not know the method. Green's method,
however, will be necessary and very useful in the presence of sources.
Examples of diffraction can be given in a two dimensional space (plane) ; the
typical example is diffraction by a thin slit infinitely extended orthogonally
to the plane. Through the Huygens-Fresnel principle and the Kirchhoff formula,
the Fraunhofer pattern of a plane wave incident normally to the slit is found to
by given by a Sinc(x)= (sin x)/x function, not difficult to be evaluated by
students at all levels. Students should pay attention to the approximations
involved. Diffraction at the infinity of a circular aperture gives rise to the
Bessel function J1(x)/x, a well known pattern, whose square is known as Airy

pattern. In case the students are not already acquainted with Bessel functions,
here it is necessary for them to learn them and their properties including their
asymptotic behaviour, also because of the importance of the above function in
the concept of resolving power of optical systems. Some considerations on the
energy contained in the central disc (Airy disc, or main lobe) with respect to
the total power can be made by integrating this function. By the way, let us
also note that knowledge of the Bessel function of zero order can also allow one
to introduce the so called "non—diffracting beams".

Some further comment based on the considerations made at the end of sect.
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2, and also on the approximate evaluation of some integrals (see below) can help
the student to realize that diffraction is present every time light suffers an
abrupt discontinuity of amplitude. This takes place at the border of any
aperture and not only when light crosses an aperture smaller or of the same
order as the wavelength, (this error is present in many textbooks).
The above considerations are the basis of the ray theory of diffraction,
developed by Keller et alii. The required mathematics, in the scalar case, is
not different from the mathematics required up to now.
3) — The inverse interference principle allows one to present diffraction in a
way that immediately visualizes the Fourier transform properties of diffraction
and introduces students to Fourier optics. The inverse interference rule
consists of developing the field diffracted by an aperture in an ensemble
(complete including evanescent ones) of plane waves propagating away from the
aperture in different directions and requiring that a) they reproduce the field
over the aperture and b) the field vanishes at infinity according to
Sommerfeld's condition of radiation. The validity of this procedure is
guaranteed by the uniqueness of the solution.
For a periodic plane aperture the system reproduces the Fourier expansion of the
field on the aperture and the space frequencies are related to the directions of
the diffracted plane waves (orders), including evanescent waves. Students are
required to know the development of periodic functions in Fourier series
(bidimensional) . This mathematics allows one to describe diffraction from
gratings of any type including those on non planar surfaces.
For a non—periodic aperture the system obtained by using the interference rule
consists of a continuum of plane waves (with respect to direction) that
represents the decomposition of the field in a continuum of Fourier terms. The
amplitude of the field diffracted at infinity is the Fourier transform of the
field on the aperture. The above results of course can also be obtained by
using the Kirchhoff theorem as it can be checked by the Fraunhofer diffraction
pattern of slit and circular aperture.
By the way, we also note that this method allows one to easily explain the
holographic procedure of wavefront reconstruction. The diffraction from
apertures illuminated by partially coherent light can also be easily derived.

Some additional comments on the diffraction for students who will go on to
research. It is important that they know that diffraction results are only
approximate, that complete description is a problem solved only in a very few
cases e.g diffraction by an infinite half plane (Sommerfeld) . They should also
know that the different approximate formulas, that have been almost always found
to work very well, can sometimes fail when they are used at the limits of their
validity. This happened to me in the investigation of open cavities having a low
Fresnel number, for laser applications, that required a numerical iterative
solution of an integral equation. I found that different forms of the Huygens-
Fresnel principle, that differ in angular dependence, can give rise to different
results some of which were unacceptable. For instance in very low—loss cavities
"negative losses" were the results if the angular dependence was not taken into
account, or if the dependence given by the Helmholtz-Kirchhoff formula [1+
cosø]/2 was used. Only the dependence cosO as given by the Rayleigh-Luneberg
formula did not give negative losses.
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3.3 - Images and aberrations

The theory of image formation can be given in terms of diffraction (by
apertures) and interference of the waves emitted from the source after crossing
an optical system, say a lens. The first step is the Abbe theory of image
formation in the microscope, where no additional mathematics is required. By
using diffraction it is possible to write the image of an object, given by a
perfect system, as a product (convolution) of the "spread function" or image of
a source point and of the distribution of complex amplitude on the object for
the coherent case (intensity for the incoherent case) . At this point it is not
indispensable for students to know convolution. However, if they already know
it, it is appropriate that the relative terminology be used.
A diffraction theory of aberrations has also been developed. To describe
aberrations, knowledge of the circle polynomials of Zernike is required.

4 - FOURIER OPTICS - IMAGES - HOLOGRAPHY - IMAGE PROCESSING

As is clear from the name, Fourier optics requires an adequate knowledge of
Fourier Transforms, a subject that can be easy handled in the case of
Engineering and Physics students and is less easy for students of other
faculties (e.g. medicine, biology and so on) . By adequate knowledge we mean that
students need not only to know the definitions, but to become familiar with a
number of properties and theorems (such as sampling theorem, convolution etc..)
that are the basis for many practical applications. The ideal preparation on
this subject should include the theory of complex variable functions and the
theory of distributions (or generalized functions) that allow the student to
handle any type of mathematical description of optical signals without trouble
about or doubts on the validity of the results. Terms like "spread function"
"optical transfer function" "modulation transfer function" simultaneously
correspond to precise mathematical operations and optical entities. It is hard
to exaggerate the importance for students to have a clear mathematical
understanding of them in order to be able to handle optics in the laboratory. A
number of typical Fourier transforms that are commonly used can be derived and
understood by the students. In addition, they are required to know a number of
related theorems and to be able to see their practical application. Convolution,
and the relation between the spectra in a convolution are basic for
understanding the image formation process, the limits in the resolving power of
optical systems, the holography and the methods of optical information
processing, such as filtering or image enhancement.

5 - OPTICAL FIELDS - BOUNDARIES - ANYSOTROPIC MEDIA - GUIDED
PROPAGATION - SCATTERING

Scalar approximation does not always work in optics. There are a number of
important cases where the vector nature of the field in optics needs to be taken
into account.

One case is the interaction of light with boundaries between two conducting
or nonconducting media where polarization plays an important role. Another case
is propagation in anysotropic media. These two subjects involve many important
physical properties that give rise to important results and applications. We
will not enter into details because, apart from the difficulty of dealing with
vectors and the use of matrix or tensor formalism, no special mathematics is
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required.
As to guided propagation, that in planar step index guides does not involve

special mathematical difficulties, however it requires knowledge of the concept
of modes. For graded index planar guides one useful mathematical method is WKB.
Guided propagation in dielectric fibers requires additional mathematics.
Propagation in dielectric fibers is generally treated by writing Maxwell
equations in a cylindrical system of coordinates. Even in the simple case of a
step index guide the radius dependent factors of the solutions (modes) are found
in terms of Bessel or Hankel functions of both real and imaginary argument, and
the conditions at the boundaries involve these functions. Knowledge of these
functions and their recurrence formulas, their series development, as well as
their asymptotic behaviour and the relationship between different independent
couples of them is necessary.
In the case of graded index fibers the WKB method can be used with careful
attention to be paid to turning points where the Airy function formalism is
involved.

The vectorial nature of the field cannot be neglected in scattering from
particles, either small or large non absorbing ones. For small spherical
particles there are no special mathematical requirements, but as soon as
scattering from larger particles is considered (Mie scattering) one has to deal
with vectors and with Legendre polynomials, associated Legendre functions and
spherical Bessel functions.
Propagation through scattering media is a problem of a statistical nature (see
statistical optics) . The case of very low density media can be treated by
considering single scattering, while for more dense media one has to deal with
problems of multiple scattering.

Another subject where polarization must be taken into account is scattering
from rough surfaces, that is now a subject of active research, with particular
interest in enhanced back scattering.

6 - NON MONOCHROMATIC SIGNALS - COHERENCE

Knowledge of Fourier transforms also allows one to account for non
monochromatic signals by simply expressing a signal as the addition (integral)
of elementary components. Handling non monochromatic signals can be then reduced
to the study of their Fourier components.
No particular new mathematical requirement is necessary to find, for instance,
the group velocity in a dispersive medium. Foundations of Laplace transforms
could help in finding the velocity of an optical signal.
Dealing with non monochromatic optical radiation, foundations of time coherence
theory are required, as already mentioned. The concept of analytic signal, of
correlation function and spectral density as well as the Wiener—Khintchine
theorem are necessary.
The coherence matrix is also useful for describing Stokes parameters.

7 - STATISTICAL OPTICS - COHERENCE - PROPAGATION AND SCATTERING IN
RANDOM MEDIA.

As is clear form the name, statistical optics involves all those topics,
including noise, that require a statistical approach. Without entering into the
details of this large field, here we will limit ourselves to mentioning some
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subjects and the mathematics they require. A common basis is, of course,
knowledge of fundamental statistics: a number of different probability
distributions, definition of averages, of moments centered or not and some
useful parameters, like skewness or excess, and so on. The theory of coherence,
(time and space coherence) is required as well as correlation or covariance
functions of first and higher orders, and power spectral densities. The
description of light emission by incoherent (e.g.thermal) and coherent (laser)
sources can be made in terms of the probability distribution of intensity and
photon counting statistics, respectively. The effect of noise in receiving
systems as well as in the photographic process involves statistics. Speckle
patterns produced by laser light follows a negative exponential probability
density function for intensity. A number of probability density functions (pdf)
have been used for describing intensity fluctuations of coherent light
propagated through random media. A typical example is turbulence in clear
atmosphere where a number of different distributions can be found, depending on
the strength of the turbulence and evolving from the lognormal pdf for small
fluctuations to the negative exponential in the limit of very strong
fluctuations.
The study of propagation in random media gives rise to a parabolic equation for
the correlation functions of the complex amplitude or the moments of the scalar
field. That equation has been solved only for the second order moment, while the
fourth order moment equation, of interest for intensity fluctuations, has been
treated approximately.
Another way of treating statistical problems of propagation is numerically,
through Monte Carlo methods of simulation. The methods are useful for both
propagation through clear atmosphere and for scattering, in particular multiple
scattering in dense media.
A description of the average behaviour of optical systems in random media, for
instance the locally stationary atmosphere, can be given in terms of MTF of the
atmosphere. This in turn requires knowledge of the so—called wave structure
function, which can be obtained from the equation of the second order
correlation of amplitude. For a reasonable model of atmospheric turbulence
(based on the Kolmogorov spectrum), the solution is found in terms of
hypergeometric functions. Knowledge of these functions and of a number of their
properties is required. Integrals involving these functions are sometimes
necessary.
It is to be noted that hypergeometric functions are found very often in solving
problems of propagation in random media.

8 - SPECIAL MATHEMATICS FOR OPTICS

There are a number of functions, of integrals or of methods to evaluate
integrals, that are typical of optics and that are important for both learning
and doing research. Some examples follow.
1 — The stationary phase method permits the evaluation of integrals where, in
addition to a slowly varying function, there is a rapidly varying function that
depends on a parameter whose value is high. A typical example is a phase factor
like exp(iks) where wavenurnber k=27C/A has a large value. The stationary phase
method allows one to recognize the point from where the maximum contribution to
the integral arises and to give a series development in powers of 1/k rapidly
decreasing. By applying this method one can evaluate the group velocity in a
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dispersive medium and derive the theorem of the total elastic scattering cross—
section, well known as "optical theorem" in quantum mechanics.
2 — The residuals theorem belongs to the theory of complex variable functions
and allows one to easily evaluate a number of integrals of interest in optics
such as the "complete Fresnel integral", the integral of (exp(ix))/x and the
Fourier transform of a Gaussian function.
3 — The steepest descent path method also belongs to the theory of complex
variable functions and, as an alternative to the stationary phase method,
permits the asymptotic evaluation of integrals and is here of particular
interest because by using it one can evaluate the asymptotic development of the
Airy functions Ai(z) and Bi(z)

9 - CONCLUSIONS

For those who plan to do research in optics there are many specialized
fields where additional mathematics is required.
In some cases the same mathematics can be applied to different problems. For
example being able to handle problems of eigenvalues and eigenfunctions is
necessary in the study of modes and losses of laser cavities, and in propagation
through fibers, as already mentioned. In addition, it is necessary in describing
the degrees of freedom of images, a more modern measure of the resolving power
and a basic quantity in optical information theory, basic to understand the
practical limit set by noise to superresolution. Eigenfunctions can also be
important for a number of applications including adaptive optical systems.
Working with instability and chaos problems as well as in non linear optics
involves the solution of non linear differential equations and so on.

As appears from this short and inevitably incomplete analysis, much mathematics
is required even for the low level learning of optics. However this mathematics
is not more than that an ordinary student in scientific faculties learns. Much
more knowledge of mathematics is required at the higher level, especially for
those who wish to work with optics in specialized fields.

However, it is to be pointed out that it is not absolutely necessary that the
students remember the demonstrations of all theorems, for example those of
existence and uniqueness. However they need to know the necessary and sufficient
conditions under which certain operations are valid. They need to know very
well how to use them and within what limits. They need to know a number of
special functions, and also the behaviour of these functions in limiting cases,
such as series power development for small values of the variable, asymptotic
series, relations between functions of different order, integrals involving
functions and so on. Fundamental at this point is that they become acquainted
with some basic books of tables and functions, where most definitions can be
found together with limits and conditions of validity and so on. And mostly they
need practice to remove mistaken ideas about the difficulty of using
mathematics. Of course a good computer software, if available, can be of great
help for numerical evaluations in particular cases.

Those that are going to work in optics research do not need more or less
mathematics than researchers in other fields. May be in optics, like
electromagnetism in general and more than in some other fields,
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experimentalists also need to know mathematics, because very often an experiment
or an experimental step corresponds to a precise mathematical operation.
At this point another question arises: how much mathematics and at what level
should optics teachers know?
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