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ABSTRACT 

The historical evolution of the concept of noise-equivalent quanta (NEQ) and its application to task-based assessment of 
image quality is surveyed, with particular emphasis on the seminal contributions of Robert F. Wagner. 
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1. INTRODUCTION 
This paper is about three great melodies that wafted through the halls of optics and imaging during the last half-century    
-- and about one great scientist who danced nimbly to all three. The three great melodies are Fourier optics, statistical 
optics and image quality, and the scientist, whose career  we commemorate in this symposium, is Robert F. Wagner.  It 
is the purpose of this paper to survey that career from the standpoint of a single mathematical concept, noise-equivalent 
quanta or NEQ. 
 
We begin in Sec. 2 with a brief and selective historical overview of Fourier analysis and its evolution as a tool for image 
analysis and evaluation.  We look similarly at statistical optics and how its critical role in image quality emerged, and we 
look at some key mileposts along the path towards a  modern theory of image quality itself. 
 
Sec. 3 traces the origins of NEQ and the related concept of DQE (detective quantum efficiency), discussing explicitly the 
key role played by Bob Wagner in bringing together diverse mathematical viewpoints.  Sec. 4 briefly surveys the many 
generalizations of basic NEQ theory that have emerged since Bob’s seminal contributions in the 1970s, and Sec. 5 lists 
some further opportunities for exploitation of his insights.  An unconventional summary is presented in Sec. 6. 

2. HISTORICAL OVERVIEW 
2.1 Fourier optics 

Fourier analysis was developed, and accepted as a scientific tool,  in the nineteenth century, and before the century was 
out, it was being applied to optics and imaging.    Fraunhofer, Rayleigh and Sommerfeld, among others, applied Fourier 
analysis to diffraction.  Indeed, in the Fraunhofer approximation, a diffraction pattern is a Fourier transform. 
  
The first direct application of Fourier theory to image formation was carried out by Ernst Abbé in 1873, when he 
developed a diffraction-based theory of microscopes [1].  In addition to his scientific contributions, Abbé, who was the 
director of the Carl Zeiss Laboratory, also introduced many important social innovations, including the eight-hour 
workday and profit-sharing with his employees. 
 
The concept of an optical transfer function for incoherent imaging was published in French by Duffieux [2] in1946, but 
it did not receive much attention in the western literature until 1959, when it was discussed in some detail by Born and 
Wolf in Principles of Optics [3].   
 
In 1956, Ronald Bracewell [4] recognized the importance of Fourier theory in radioastronomy, and by extension to all of 
tomography, and in 1962 Emmett Leith and Juris Upatnieks brought a Fourier viewpoint from communications theory 
into optics and in particular to holography [5].  Nevertheless, much of the optics community was slow to adopt Fourier 
methods.  As late as 1968, SPIE held a largely tutorial Seminar-in-Depth on the modulation transfer function and its uses 
[6]. 
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2.2 Statistical optics 

That optics and imaging are inherently statistical derives mainly from the statistical nature of the photoelectric effect, 
recognized by Einstein in 1905.    Later work revealed that photoelectrons are almost always well described by Poisson 
statistics, the Bosonic character of photons not withstanding. 
 
Application of these statistical ideas to imaging originated with the work of Albert Rose [7] and his contemporary and 
colleague, Otto Schade [8].  Rose developed a matched-filter approach, now known as the Rose model,  which explained 
many aspects of signal perceptibility in noisy images.  Schade extended Rose’s work and in 1964 developed a concept 
called the Detail Signal-to-Noise Ratio, which is an important starting point in our NEQ story. 
 
The influence of statistics on imagery was well established by the early sixties, especially with the publication of a book 
chapter by Dennis Gabor (the inventor of holography) on Light and Information [9] and the book by Edward O’Neill, 
Introduction to Statistical Optics [10]. 
 
2.3 Image quality 

The beginnings of a modern theory of image quality can be traced to an often-cited 1956 paper by Fellgett and Linfoot 
on the assessment of optical images [11].  In one sense, however, this paper may have delayed the development of a 
rigorous theory of image quality because it subscribed to the notion that the purpose of imaging was to reproduce the 
object as faithfully as possible.  Whether fidelity is defined in terms of mean-square error or by various information 
measures, however, we now realize that faithful reproduction is a fundamental impossibility.  A real-world object (as 
opposed to a computer simulation) is a function, described by an infinite set of parameters, and real-world imaging 
systems (as opposed to mathematical idealizations) collect only a finite set of measurements, so any image conveys only 
an infinitesimal fraction of the information about the object, even in the absence of noise.  Stated differently, all real 
systems have null functions, so many different objects can produce exactly the same mean image.  To which should we 
be faithful? 
 
An important break with the fidelity paradigm was made by Horace Barlow in 1962 [12].  His introduction of the 
concept of an ideal observer in vision research not only acknowledged that the purpose of an image is to help the 
observer make decisions about the object, rather than reproducing it in its entirety, but it also proposed the optimum way 
of making these decisions.  When the images are noisy, as all are, this leads us into the realm of statistical decision 
theory. 
 
In 1964, J. L. Harris considered the problem of distinguishing between two known objects, for example one consisting of 
a single point source and the other consisting of two closely spaced, mutually incoherent point sources, each of half the 
intensity of the single source [13].  This discrimination problem is known in the literature as the Rayleigh task because it 
was suggested by Lord Rayleigh as a way of defining the resolution of an imaging system.  Rather than appealing to the 
familiar Rayleigh criterion for this task, however, Harris consider the fundamental limits on the problem arising from 
system transfer characteristics and the noise in the image.  With this step, therefore, Harris connected image quality with 
a specific task and with statistical decision theory. 
 
Bob Wagner was greatly influenced by the work of Barlow and Harris, and in a 1972 paper [14] entitled “An assortment 
of image quality indices-- Can they be resolved?”, he wrote “The question of image quality has been an elusive one to 
define.  One thing , however,  is certain -- that it must be defined in terms of the task the image is destined to perform” 
[emphasis added]. 
 
Wagner’s certitude, that image quality is defined fundamentally in terms of task performance, has been accepted in some 
branches of imaging but widely ignored in others.  In radiology and nuclear medicine, there is a long history of research 
in task-based assessment, beginning with the pioneering work of Russell Morgan, Kurt Rossman and Bob Beck, 
followed soon by important contributions from Ben Tsui, Kunio Doi, Charles Metz and many others.  In other areas of 
imaging, however, Wagner’s strong assertion is scarcely acknowledged, and workers in these fields cling to 
fundamentally flawed metrics such as pixel signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), which have 
no clear relation to the purpose for which the image was produced.  
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3. ORIGINS AND THEORY OF DQE AND NEQ 
The immediate progenitor of the NEQ concept was the detective quantum efficiency (DQE), first proposed for a 
nonimaging optical detector and then for photographic film.   For a single-element optical or infrared detector viewing 
either some background illumination or the background plus a signal,  one can define a simple SNR by the difference in 
the mean detector outputs with and without the source divided by the square root of the average variance of the noise on 
the detector output.  Denoting this ratio as outSNR , we can define the DQE as 

(1) 
2

2
out

in

SNRDQE
SNR

= , 

where inSNR  is the input SNR, that which would be achieved by an ideal, photon-counting detector. 
 
Similar definitions of DQE in the context of photography were proposed in the late 1950s by Fellgett [15] and Jones 
[16], but the work that had considerable influence on Bob Wagner was the 1963 paper by Rodney Shaw, The Equivalent 
Quantum Efficiency of the Photographic Process [17].  The ideas in that paper were further expounded by Chris Dainty 
and Shaw in the landmark book, Principles of Image Science, published in 1974 [18]. 
 
By 1978, Wagner had achieved a full synthesis of the ideas of Schade, Harris and Shaw, and he presented them in a 
paper entitled Decision Theory and the Detail SNR of Otto Schade [19].  In it, he definitively answered his own 1972 
question: the myriad metrics of image quality could indeed be resolved into a unified and practical theory. 
 
Key to the resolution was a Fourier-domain expression for NEQ, which we can best appreciate by considering the task of 
discriminating between two known signals in stationary, Gaussian noise.  This task is often referred to as signal known 
exactly (SKE) because the two signals are always of the same, nonrandom form and always known to the observer; the 
only randomness is which one is present. 
 
For the SKE discrimination task in Gaussian noise, the ideal observer is a prewhitening matched filter, which computes a 
test statistic t(g), expressed in the 2D Fourier domain as 
 
 (2)         ,    
            
 
where ρ is the 2D spatial frequency vector, G(ρ) is the 2D Fourier transform of the noisy image, ΔS(ρ) is the difference 
between the transforms of the two signals to be discriminated (asterisk denoting complex conjugate), and NPS(ρ) is the 
noise power spectrum.  Making the decision by comparing the test statistic of (2) to a varying threshold generates the 
well-known ROC (receiver operating characteristic) curve, and the ideal observer is the one that maximizes the area 
under the ROC curve or AUC, a well-established metric of image quality. 
 
The performance of the ideal observer on this SKE task can also be specified rigorously by a new kind of signal-to-noise  
ratio, often referred to as  or .  This quantity is defined analogously to the SNR used for DQE in (1) but instead of 
involving the signal means and variances,  it is the difference between the mean values of the test statistic divided by the 
square root of its average variance.  It can be shown that this SNR is sufficient to determine the AUC if t(g) is a 
Gaussian random variable, as it will be for Gaussian noise. 
 
The ideal-observer SNR for an SKE task can be expressed in the Fourier domain as 
 
(3)                            . 
 
 
For a linear, shift-invariant imaging system, the Fourier transform of the difference between the two image signals is 
related to the Fourier transform of the difference between the two objects to be discriminated by 
 
(4)           , 
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where TF(ρ) is the system transfer function.  Thus the ideal-observer SNR for this problem is given by 
 
(5) 
 
 
            , 
 
 
where MTF(ρ) is the modulation transfer function, defined as |TF(ρ)|/|TF(0)|. 
 
In summary, the performance of the ideal observer for discriminating between two known signals in stationary Gaussian 
noise with a linear, shift-invariant imaging system is given by 
 
(6)          , 
 
where 
 
(7)               . 
 
 
Thus, NEQ provides the ideal-observer figure of merit  (FOM) for discrimination between two known signals in 
Gaussian noise.  This FOM is in the form of an easily evaluated 2D integral.  Moreover, the NEQ formalism for this 
specific case leads to a neat factorization of the integrand, into one factor, NEQ(ρ), describing the system properties and 
another factor, |ΔF(ρ)|2, describing the task; the system can be optimized simultaneously for all tasks by maximizing the 
NEQ, though only for SKE detection with linear, shift-invariant systems and stationary Gaussian noise. 
 
Curiously, even though the very term noise-equivalent quanta implies a connection with Poisson counting statistics, the 
NEQ expression for SNR is rigorously related to the ideal-observer performance only for Gaussian noise.  The 
corresponding SNR expression for Poisson noise was formulated by Cunningham et al. [20] and applied to radiological 
problems in a 1981 paper by Wagner, Brown and Metz [21].  In practice, however, the expressions in this section are 
usually excellent approximations for Poisson or mixed Poisson/Gaussian noise. 

4. GENERALIZATIONS 
As noted, the theory in the last section is limited to a certain task and certain assumptions about the imaging system and 
the noise.  Generalizations of the theory are needed because the image noise is never strictly stationary and the noise 
processes are more complicated than the additive, Gaussian model.  Moreover, digital images are discrete sets of 
numbers rather than functions of continuous variables, so the Fourier integral is not strictly applicable.  In addition, 
interesting imaging systems are never strictly shift-invariant, and in fact they may not even conserve spatial 
dimensionality; for example, they may map a 3D object to a 2D image.  The systems may not be linear, even 
approximately, and the task may not be one that is performed optimally by linear observers like the prewhitening 
matched filter.   
 
Numerous refinements and generalizations of the NEQ concept have appeared in the three decades since Wagner’s 1978 
paper.  The first, a joint effort [22] between Bob and the author of this paper, was to break away from the paradigm of 
known, nonrandom objects by supposing that a signal, if present was superimposed on a random background 
representing structure or clutter in the object.  If the background was modeled as a stationary  random process, the 
resulting SNR was still factorizable as in (6), but with an NEQ given by  
 
(8)           , 
 
 
where NPSobj(ρ) is the noise power spectrum of the background object.  Note that the power spectrum for the object is 
filtered by the square of the transfer function. 
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Another generalization, by Don Wilson [23, 24], was to break away from the requirements of stationarity and shift-
invariance by considering detection of a known signal at a specific location r0 in the image.  If it could be assumed that 
the system point-spread function and the noise statistics were slowly varying in the vicinity of the signal location, it was 
possible to define local MTfs and local power spectra specific to the signal location r0, and the resulting SNR expression 
was in the form of (6) but with a local NEQ given by 
 
(9)           , 
 
 
with the prefix L denoting local quantities.   
 
The prewhitening matched filter with which we began this discussion is a linear filter that implements the ideal test 
statistic for SKE detection in stationary, Gaussian noise.  Further elaborations of the theory led to the formulation of a 
ideal linear observer, called the Hotelling observer, which maximizes an SNR defined generally as the difference 
between the mean values of the test statistic divided by the square root of its average variance.  For a discrete random 
image described by a vector g, the resulting optimized SNR has the form [24], 
 
(10)        , 
 
where Δg  is the difference in mean vectors for the two hypotheses to be discriminated (e.g., signal present and signal 
absent) and K is the average covariance matrix of g. This formula makes no assumptions of statistical stationarity or 
shift invariance, and therefore it is more difficult to compute than the NEQ expression in (6), but it covers a much wider 
range of problems.  For example, it can incorporate random signals, random backgrounds and arbitrary noise covariance.  
An explicit analogy with (9) is obtained by decomposing the image covariance matrix into components arising from 
measurement noise and object variability, with the result in the form [24, 25] 
 
(11)            , 
 
where H  is an operator describing the system and the dagger denotes its adjoint. 
 
Many further generalizations of the NEQ concept have also been developed, all inspired by Bob Wagner’s 1978 paper 
and many with his direct involvement.  One such is the Fourier crosstalk matrix [26], which is an exact description of 
any linear system that produces discrete images from an object of bounded support.  Relying on Fourier series 
expansions  rather than Fourier integrals, the Fourier-crosstalk approach produces NEQ-like SNR expressions even for 
systems with no semblance of shift-invariance.  In one paper, it was described as “Fourier analysis where you would 
least expect to find it” [27]. 
 
The extension of NEQ to a nonlinear system was achieved by Zemp and Abbey [28] with their generalized NEQ for 
ultrasound, and the extension of nonlinear observers and nonlinear tasks was begun in an early Wagner SPIE paper [29].  
The extension to radiographic systems that count photons and provide energy information was by Tapiovaara and 
Wagner [30]. 

5. OPPORTUNITIES 
 
In spite of all of these extensions and elaborations of the basic NEQ concept, many opportunities for further research 
remain.  Any of the NEQ-based FOMs can be used to optimize imaging systems for best task performance.  It is even 
possible to adapt a system in real time to optimize its performance for a specific patient rather than for a class or 
ensemble of patients [31]. 
 
Further research is needed to account for randomness in the imaging systems itself and to allow both object and system 
to vary with time [32].  The most general problem is to optimize a random, dynamic imaging system for imaging 
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random, dynamic object, with the optimization to be based, of course on task performance.  New statistical models will 
be required for this enterprise. 
 
An important goal, enunciated often by Bob Wagner, is to “impact the culture”, to spread the message of task-based 
assessment and optimization throughout the medical imaging community and to the broader world of imaging.  Doing so 
will require standardized methodologies and software. 

6. SUMMARY AND CONCLUSIONS 
We can summarize the impact of Bob Wagner’s NEQ studies with an ancient Chinese poem: 

 
All that is spatial has a sound. 
Tone emerges from harmony. 
Harmony emerges from concord. 
Harmony and concord are the roots 
from which music, laid down by the ancient kings, emerged. 
 
   Spring and Autumn by Lü Pu Wei,  
   3rd century B.C., vol. III/5 

 
Achieving concord -- harmonization of scientific ideas and consensus among scientists -- was a major objective of Bob 
Wagner’s career.  This paper has illustrated the enormous progress towards this goal in the realm of image quality that 
was achieved during his lifetime, and through his guidance and inspiration.  We can all honor his work and his memory 
by striving ever more for concord. 
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