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bstract. Quality metrics, within the field of laser range imaging,
re used to quantify by how much some aspect of a measurement
eviates from a predefined standard. Measurement quality evalua-
ions are becoming increasingly important in laser range imaging for
ange image registration, merging measurements, and planning the
ext best view. Spatial uncertainty and resolution are the primary
etrics of image quality; however, spatial uncertainty is affected by
variety of environmental factors. A review how contemporary re-

earchers have attempted to quantify these environmental factors is
resented, along with spatial uncertainty and resolution, resulting in
wide range of quality metrics. © 2008 SPIE and IS&T.

DOI: 10.1117/1.2955245�

Introduction
ll range images begin with a series of range measure-
ents, and the quality of the range image depends on the

uality of each of those measurements. The quality of a
ange measurement depends on measurement uncertainty
nd measurement resolution; however, spatial uncertainty is
lso strongly affected by environmental factors, such as re-
urn signal intensity and relationship to a measurement’s
mmediate neighbors. One or more of these factors can be
xpressed as a metric representing the deviation of some
uality attribute associated with the measurement from a
redefined standard. Spatial measurement quality repre-
ents the degree of confidence one can place in how accu-
ately a measurement represents the position of a real sur-
ace in the environment. Laser range scanners can also
rovide intensity information that may be used in represent-
ng the surface so quality attributes relating to return signal
ntensity are useful. In this paper, contemporary approaches
o evaluating measurement quality attributes are reviewed,
ncluding measurement uncertainty, return signal intensity,
ange, sampling density, and relationship to neighboring
oints. This review focuses particularly on measurement
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quality metrics for ground-based laser range scanners that
can be adapted for automated systems. Within this context,
measurement quality metrics provide a way to direct and
terminate automated scanning procedures.

Perceptual quality metrics can be either objectively or
subjectively defined;1 however, only objective quality met-
rics are useful for automating data acquisition. For this rea-
son, only objective quality metrics are considered here. Ob-
jective quality metrics can be further classified as
referenced or unreferenced.1 Unreferenced quality metrics
use no benchmark; thus, automated processes can only
evaluate the change in a quality attribute in response to
some action. Referenced quality metrics can be evaluated
in the same manner as unreferenced quality metrics, but the
size of the deviation of an attribute from a reference can be
used to evaluate whether the measurement should be either
retained or ignored. For this reason, referenced quality met-
rics are preferred for automated systems in which thou-
sands, or even millions, of measurements may be obtained.

Referenced range measurement quality metrics quantify
the relationship of a quality attribute to some previously
established benchmark or reference. These metrics can then
be used to either compare methods or systems, or they can
be used in an iterative process to maximize some qualita-
tive attribute of a range image.2 Quality metrics appear
most often in the guise of a weighting parameter when
merging measurements or data sets. Two important compo-
nents of a referenced quality metric are a clearly defined
quality benchmark against which to compare the current
state of the range image, and a quality scale to indicate the
degree to which the range measurement quality attribute
deviates from the benchmark.

In this paper, metrics for quantifying the quality of mea-
surements are reviewed. For purposes of discussion, these
metrics have been classified as measurement uncertainty
based, signal intensity based, range based, and neighbor-
hood based. As will be demonstrated, considerable work
Jul–Sep 2008/Vol. 17(3)1
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emains to ensure that the quality of measurements and
oints used to construct virtual models is effectively and
omprehensively defined.

Spatial Resolution
he spatial resolution of a laser range scanner measurement

s dependant on the size of the laser spot that illuminates
he surface at the point the measurement is obtained. For
ulsed laser systems, the spatial resolution is also depen-
ant on the pulse length of the system. The spatial reso-
ution can be divided into range resolution and angular res-
lution. Angular resolution is the minimum angular
istance between features such that they can be resolved as
eparate features. Range resolution is the minimum dis-
ance between angularly resolved features such that they
an be distinguished as separate features.3 The angular res-
lution of a laser range scanner is defined by the Rayleigh
riterion4 and represents the size of the smallest feature that
an be angularly resolved.3,5

The laser projects a spot into the surface being scanned,
nd the region in which the surface intersects the laser spot
s referred to as the beam footprint. Features within the
ootprint contribute to the return signal intensity, which is
sed to obtain the spatial measurement that approximates
he position of a portion of the surface.6 The area covered
y the beam footprint is generally not measured by laser
ange scanners; thus, it is approximated by a model of the
rea of the laser spot that illuminates the area. Ideally, the
aser spot area should be the same as the beam footprint
rea; however, environmental factors, such as spatial
iscontinuities7 or dense fog,8 can result in the beam foot-
rint deviating from that predicted by the laser spot model.
oreover, if the surface normal is assumed to be oriented

long the line of sight in the laser spot model, then surface
ngulation can result in a discrepancy between actual and
redicted beam footprint areas. Quality metrics provide a
ay to predict by how much the beam footprint of a mea-

urement might deviate from that predicted by the laser
pot model.

The spatial resolution of a measurement can be repre-
ented by the instantaneous resolution, which assumes the
ootprint is stationary at the time the measurement is ac-
uired, or the effective resolution, which takes into account
he procession of the footprint over the surface during the
cquisition process. When the term resolution is used in
his paper, unless otherwise stated, it refers to the instanta-
eous resolution. The term footprint and laser spot are also
sed interchangeably in this paper, although the terms are
trictly equivalent only when the surface is continuous
ithin the laser spot.

Measurement Uncertainty-Based Metrics
easurement uncertainty is the most common attribute

sed to assess measurement quality. Range measurement
ncertainty is generally modeled as an independent zero-
ean Gaussian process added to the quantity returned by

he range sensor; that is,

= x̂ + e �1�

here x is the ground truth position or surface characteris-
ic, x̂ is the quantity returned by the sensor, and e
ournal of Electronic Imaging 033003-
�N�0,�� is the additive zero-mean Gaussian noise process
with measurement covariance �. This may not always be a
valid assumption; environmental effects and nonlinear bias
in the sensors may cause the observed measurement distri-
bution to become distinctly non-Gaussian. In practice,
Gaussian models provide the benefit of simplifying math-
ematical analyses and result in an approximation of how a
system should behave under a broad range of circum-
stances. Non-Gaussian models are highly situation depen-
dant, therefore are rarely used for predicting measurement
uncertainty.

The uncertainty associated with the range sensor is re-
ferred to here as the radial error and is one attribute that can
be used to evaluate measurement quality. Rotational or
translational position are referred to here generically as po-
sitional error and represent two more attributes which can
be employed to evaluate the quality of a measurement. Fig-
ure 1 shows one example of a triangulation laser range
scanner system in which the angular position of the laser
spot on a surface in the environment is controlled by two
rotating mirrors. Similar dual-axis optical scanning con-
figurations are used in time-of-flight �TOF� systems and
other laser range systems by combining orthogonal galva-
nometers, rotating mirrors, or motors. As a result, the geo-
metrical model and measurement uncertainties can be gen-
eralized to a variety of laser range scanning systems.

3.1 Measurement Uncertainty
Measurement uncertainty is represented by a covariance
matrix, generally based on a model of the root-mean-square
�rms� sensor error along each axis of motion employed by
the scanner and on a model of the error associated with the
range sensor. Sensor variance is often based on a model of
the sensor error, rather than on the spread of repeated mea-
surements acquired in situ, because it is often not practical
to obtain a large enough set of repeated measurements to
derive a situation-specific variance profile. These models

Fig. 1 Example of a fixed-viewpoint laser range scanner employing
dual-axis galvanometer-controlled rotating mirrors �modified from
Fig. 6�b� of Ref. 10�.
Jul–Sep 2008/Vol. 17(3)2
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re generally obtained under ideal conditions for specific
aterials and surface orientations. As a result, there can be
significant discrepancy between the model sensor vari-

nce and what would be observed using a repeated mea-
ures approach in the field. For example, if the variance
odel of a system was based on white cardboard, then the
odel variance would significantly underestimate the vari-

nce resulting from black felt.9 This can be a significant
ssue where the type of material being scanned cannot be
nown a priori or where the object being scanned may
onsist of multiple types of material. In general, measure-
ent uncertainty cannot be considered a sufficient quality
etric on its own because it depends heavily on a variety of

ther attributes. In the following sections, various attributes
hat can result in true measurement uncertainty deviating
rom model-based measurement uncertainty are identified.

.2 Positional Uncertainty

ssuming a fixed-viewpoint scanner, such as the one
hown in Fig. 1, the positional uncertainty is a function of
he mechanisms used to control the orientation of the laser
nd the photosensor.10 These mechanisms are typically pre-
ision galvanometers or rotating motors, and the positional
ncertainty reflects the variation in real laser/sensor orien-
ations when the galvanometer or motor indicate that it has
chieved a given angular position. In the case of fixed pat-
ern projection systems, error positioning is often due to the
tability of the optomechanical system. The acquisition of
ange and angular position measurements are generally
ynchronized, but synchronization errors, or jitter, can re-
ult in the true angular position differing from the angular
osition at the instant the range measurement is acquired.11

Although the laser is often modeled as originating either
rom the scanner viewpoint or from a fixed point near the
iewpoint, its true origin may vary depending on the scan-
er geometry.12 Well-calibrated laser range scanner systems
ccount for this complexity; however, the transformation
etween sensor data and spherical or Cartesian coordinates
an introduce errors.13,14 As a result, rotational uncertainty
ay not be constant, as is often assumed. A similar situa-

ion arises for laser range scanner systems using motor-
ontrolled rotating bases. Thermal effects, wobble and jit-
er, and mirror nonplanarity can also cause the final
eflection point position and output orientation to deviate
rom a Gaussian distribution.

.3 Radial Uncertainty

ange measurement uncertainty depends on how the inter-
ction of the laser with the surface is measured. In TOF
ystems, the range is determined by the time between the
ulse being generated and being detected. In triangulation
ystems, the range measurement depends on the position of
he signal peak on a photodetector array. In both cases, a
ignificant portion of the range measurement uncertainty is
he ambiguity of the location of the signal peak.

Range uncertainty is typically assumed constant for TOF
canners, as shown in Fig. 2. Specifically,
ournal of Electronic Imaging 033003-
�R =
c

2
��, �2�

where �R is the range measurement error, c is the speed of
light, and �� is the time measurement error. The last term
represents the uncertainty in the temporal location of the
signal peak. This is found by

�� =� Tr
2

SNR
, �3�

where Tr is the pulse rise time and SNR is the signal-to-
noise ratio.15,16 The range measurement error is determined
by the signal bandwidth,15 amplitude of the return signal,17

thermal drift,17,18 crosstalk between the transmitter and
receiver,18 timing jitter,19 and nonuniformities and changes
in the returning signal shape.15,18,19 For example, different
surface materials can change the shape of the return signal
resulting in significantly different error distributions.10

Moreover, feedback within the sensor can result in a mea-
surement being affected by the previous measurement, vio-
lating the assumption that there is no correlation among
range measurements.

Laser motion while the signal is being emitted is negli-
gible for pulse TOF systems because the pulse duration is
so short, but it can affect continuously modulated laser sys-
tems. This motion can distort the return signal and intro-
duce ambiguity into the true measurement. Consider, as
well, that the range measurement equation is given by

R =
c�

2
, �4�

where � is the propagation delay.16,20,21 This assumes that
the TOF between the laser and the surface is equal to the
TOF between the surface and the sensor. This may not al-
ways be the case, especially if the true origin of the laser
pulse varies as a function of the mirror angles.

The peak uncertainty of a triangulation scanner is typi-
cally dominated by speckle noise.22 This can be modeled as

Fig. 2 Common range uncertainties for Amplitude-Modulation Con-
tinuous Wave �AM�, Frequency-Modulation Continuous Wave
�FMCW�, Time-of-Flight �TOF� and triangulation scanners up to
100-m effective range �referred to in this figure as volume�. The
range measurement uncertainties of all but the triangulation scan-
ners are considered constant with respect to range. �modified from
Fig. 2�b� of Ref. 16�.
Jul–Sep 2008/Vol. 17(3)3
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a =
�f

D cos����2�
, �5�

here � is the laser wavelength, f is the focal length of the
eceiving lens, D is the diameter of the collecting lens, and

is the Scheimpflugg angle of the photodetector array.23

peckle noise arises when speckle elements on the surface
lluminated by the laser spot are large when compared to
he wavelength of the laser light.22,24 Under this assump-
ion, each speckle element becomes a point emitter with
espect to the photodetector array. Interference patterns are
enerated when each speckle element reflects light from the
aser onto the photodetector array,22,25 as shown in Fig. 3.
here, they constructively and destructively interact to

orm a speckle image on the photodetector array.22,24,25

Speckle noise is generally countered by integrating a
ingle measurement over several intensity samples as the
aser spot is moved over the surface being scanned.26 Fig-
re 4 illustrates the reduction in speckle after integration.
his is complicated by the need to minimize aliasing by
nsuring that the measurements are, where possible, sepa-
ated by a distance less than the radius of the laser spot

Fig. 3 Speckle noise arises from the interferenc
a speckle element. �modified from Fig. 2.11 of R

ig. 4 Speckle noise is reduced by integrating the measurement
ver several sampling intervals. �modified from Fig. 3 of Ref. 23�.
ournal of Electronic Imaging 033003-
�Fig. 4�.7 Similarly, the range uncertainty in an amplitude-
modulation continuous-wave scan can be decreased by in-
creasing the sampling rate.27

3.4 Environmental Effects
The mechanical effects described in Sec. 3.3 can be in-
cluded in a model of expected range and rotational uncer-
tainty; however, many environmental factors, summarized
in Table 1, can cause the true measurement uncertainty to
deviate from the model. For example, measurement uncer-
tainty can increase with increasing incidence angle,28–31 a
reduction in surface reflectivity,10,32 and an increase in am-
bient lighting.6,33

Equation �5� assumes that the size of the spot projected
onto the photodetector array has not been distorted by oc-
clusion, surface orientation, or other environmental effects.
Figure 5 shows the effect of laser spot distortion arising
from a surface discontinuity.7 In this case, the discontinuity
occludes part of the laser spot so that the spot centroid no
longer coincides with the signal peak. This introduces an
error into the horizontal location of the signal peak, denoted

series of diffraction patterns, each generated by
�.

Table 1 Environmental factors affecting measurement uncertainty.

Error Source Effect

Range Range uncertainty generally increases
with range

Angle of Incidence Range uncertainty increases with
increased angle of incidence

Surface Material Translucent non-homogeneous
materials increase range uncertainty

Surface Complexity Surface discontinuities introduce range
errors

Reflectivity Range uncertainty increases with a
decrease in reflectivity

Ambient Lighting Range uncertainty increases with an
increase in ambient lighting
e of a
ef. 25
Jul–Sep 2008/Vol. 17(3)4
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ere as �x. This results in a range error �z, which is com-
ounded by the surface orientation with respect to the di-
ection of the laser. The deviation of the surface normal
rom the laser path is denoted here as �. Sudden changes in
urface height are not uncommon and represent a reduction
n measurement quality that is not captured by model-based

easurement uncertainty.
Different surface materials can also affect the accuracy

f range measurements. Figure 6 demonstrates the effect of
partially translucent material, such as marble, in which

he laser may penetrate part way into the surface before

ig. 5 A range discontinuity results in a shift ��x� in the position of
he centroid in a triangulation laser range scanner. This results in a
ange error �z. �modified from Fig. 7�a� of Ref. 7�.

ig. 6 Range errors can result from the laser penetrating the sur-
ace of the material being scanned. �modified from Fig. 6 of Ref. 7�.
ournal of Electronic Imaging 033003-
sufficient light is reflected to estimate the distance to the
surface.7 In this case, the range measurement does not rep-
resent the surface of the material, and the actual range mea-
surement obtained depends on the reflective and refractive
qualities of the material. According to Beraldin et al.,34

translucent surfaces like marble change the shape of the
laser spot on the photodetector array of a triangulation
scanner, resulting in the range estimate being in error. As
well, the nonhomogeneity of the material increases the
range measurement uncertainty.16 Translucent nonhomoge-
neous materials can also feature a greater measurement un-
certainty as well as a bias that increases with the distance
between the scanner and the surface.35

Surface complexity is not limited to variations in the
height and frequency of surface structures; transitions be-
tween areas of different surface reflectivity can affect the
accuracy of a range measurement,7,36 as illustrated in Fig.
7. Different materials with different reflectivity properties
can also generate very different range measurement
uncertainties.10 The change in reflectivity for different por-
tions of the laser spot results in a shift in the signal peak
that introduces an error into both the range measurement
and return signal intensity, a topic discussed in Sec. 4.
Moreover, a reduction in surface reflectivity can result in an
increase in range measurement uncertainty.33

Increasing the surface orientation with respect to the line
of sight of the scanner can result in an elongation of the
laser spot, which increases peak detection uncertainty.31

This problem is most pronounced when the length of the
baseline is significant with respect to the distance to the
surface, as is the case with triangulation laser range scan-
ners, even when operating in the far field. Moreover, in-
creased surface orientation with respect to the line of pro-
jection of the laser increases the spot size on the surface,
resulting in more speckle elements contributing to the spot
projected onto the photodetector array. Because the range
uncertainty of triangulation laser range scanners is depen-
dant on the surface orientation, model-based range uncer-
tainty is not sufficient to represent the quality of a range
measurement.

3.5 Measurement Uncertainty as a Quality Metric
Measurement spatial uncertainty has often been used as a
way to quantify the quality of the measurement. For ex-

Fig. 7 Transitions between regions of different surface reflectivity
can affect the accuracy of the range measurement �Fig. 1 of Ref.
36�.
Jul–Sep 2008/Vol. 17(3)5
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mple, Sequeira et al.37,38 and Sequeira and Goncalves39

sed range sensor uncertainty as part of a reliability metric
enerated from the weighted sum of measurement at-
ributes. They recognized that spatial uncertainty is not a
ufficient metric and therefore combined it with other mea-
urement quality metrics. The combining of quality metrics
o generate a more holistic view of measurement quality is
iscussed in Sec. 7. Some range sensors, such as the trian-
ulation scanner shown in Fig. 2, have range measurement
ariance that increases with the square of the distance be-
ween the scanner and the surface.16,20,23,40,41 In this case,
sing range sensor uncertainty as a quality metric means
hat measurements closer to the scanner are considered to
e of higher quality.

If the measurements are being merged using a modified
alman minimum variance estimator �MKMV�

pproach,42,43 then the measurement variance becomes a
unction of the number of measurements that are merged to
orm a point in a virtual model. Moreover, the merged mea-
urements could be obtained from different viewpoints;
hus, range measurement uncertainty alone is insufficient as

quality metric. To counter this problem, the covariance
atrix may be used as a multidimensional quality metric.
or example, using the MKMV approach, two measure-
ents x̂i and x̂ j are merged to form a point x in the virtual
odel. The point is generated using the weighted sum

= Wix̂i + Wjx̂ j , �6�

here

i = � j��i + � j�−1 �7�

nd

j = �i��i + � j�−1 �8�

re the weighting factors. As a result, the position of x is
losest to the measurement with the smallest covariance. In
ffect, Wi, for example, becomes a quality metric for mea-
urement x̂i; the location of the point represents the integra-
ion of multiple measurements that maximizes the quality
f the point from the perspective of measurement uncer-
ainty.

One drawback of Sequeira’s weighting method is that it
as only applied to radial uncertainty. Table 1 illustrates

he reasoning behind considering only radial uncertainty: it
s the attribute that is generally affected by environmental
actors. In Sequeira’s case, the metric was only applied to
ange images and not to the merged data; thus, this ap-
roach was sufficient for the purpose for which it was de-
igned. Rotational uncertainty could be assumed constant
nd, thus, ignored. The method, however, is not generaliz-
ble to data merged using the MKMV method. Consider
hat the covariance of x is found by

−1 = �i
−1 + � j

−1; �9�

hus, the radial and rotational uncertainties of � are less
han the radial and rotational uncertainties of either �i or

j. If only the radial uncertainty is considered, then the
eduction in rotational uncertainty is never taken into ac-
ount. Similar issues arise when combining data from mul-
ournal of Electronic Imaging 033003-
tiple types of scanners, each which may have different ra-
dial and rotational uncertainties.

The MKMV weighting factors, although effective qual-
ity metrics for measurement merger, are less effective for
representing the quality of the measurement from the per-
spective of spatial measurement uncertainty. Ideally, an un-
certainty metric should represent the uncertainty of a mea-
surement as a scalar value so that the relative quality of
measurements can be compared along a single vector rather
than within a multidimensional space. On the other hand,
reducing a multidimensional parameter to a single dimen-
sion risks losing potentially important information; there-
fore, the choice of unidimensional representation must be
carefully chosen.

Although the covariance matrix approach addresses the
issue of ignoring potentially valuable information in the
position uncertainty attribute, it does not address the issues
of surface complexity and orientation increasing the effec-
tive measurement uncertainty above the level predicted by
the model. As a quality metric, range uncertainty and even
measurement covariance are useful quality metrics but not
sufficient by themselves. In particular, metrics evaluating
surface spatial complexity, surface orientation, and changes
in surface reflectivity need to be examined to augment mea-
surement spatial uncertainty as a quality metric.

4 Signal Intensity-Based Metrics
It was noted in Sec. 3.4 that a decrease in surface reflectiv-
ity can result in an increase in measurement uncertainty.
Surface reflectivity can be assessed by examining how the
intensity of the received signal varies from what would be
expected for a surface of known reflectivity; however, sig-
nal intensity measurements can vary significantly as a result
of such factors as range,32 high incidence angles,28,31,32 low
reflectivity,10,18 atmospheric attenuation,44 sharp
discontinuities,16,45 and translucency of the material being
scanned.16,40 For example, the return signal intensity de-
creases with an increase in angle of incidence and de-
creases with an increase in distance between the scanner
and the surface when the transmitted signal power remains
constant.32 As a result, quality metrics provide a way to
predict the extent to which the actual reflectivity of a sur-
face might deviate from that predicted from the return sig-
nal intensity.

Figure 5 illustrated that surface discontinuities can result
in range errors; however, a change in the shape of the sig-
nal intensity profile in a triangulation laser range scanner
can also result in a reduction in return signal intensity.
When the shape of the peak is sufficiently distorted, as is
the case with mixed measurements, it becomes difficult to
locate its centroid. Laser spots that cross edges can result in
smeared or multiple return signals that result in ambiguous
range measurements, what is referred to as mixed measure-
ment error.32,46 Mixed measurements are a result of receiv-
ing reflected energy from two surfaces within the laser spot
and are often interpreted as a range measurement some-
where between the two surfaces.6,33,47 Hebert and Krotkov6

referred to the interdependence of measured range with sig-
nal intensity as range/intensity crosstalk. TOF systems cal-
culate range by comparing the return signal to the transmit-
ted signal, thus are more sensitive to signal intensity
changes. Figure 8 shows that a discontinuity in surface re-
Jul–Sep 2008/Vol. 17(3)6
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ectivity can also reduce the return signal intensity.7 As a
esult, quality metrics provide a way to predict the extent to
hich the spatial position of the measurement might be in

rror as a result of the return signal intensity deviating from
hat predicted using a model of the laser range scanner
ptics.

Some surfaces may be difficult, if not impossible, to
can because the return signal is diffusely scattered, what is
eferred to as volumetric scattering.46,48 Surfaces that ex-
ibit this property include glass, hair,46 and grass.48 Figure
illustrates that translucent materials can also reduce the

trength of the return signal.7 Other surfaces are exces-
ively absorbent so the signal is of insufficient intensity to
btain a range measurement, while other surfaces may be
ery highly reflective that the photodetector is saturated.46

he absence of a return signal, referred to as a nonreturn
easurement, can be a valuable piece of information but is

lmost always discarded.
Given a reference material, the change in return signal

ntensity can be modeled as a function of range. A shift in
he return signal intensity from the model value can then be
sed as a metric of the quality of a measurement. Measure-
ent spatial uncertainty is also affected by return signal

ntensity; thus, both, variables are important in assessing
easurement quality, and neither are sufficient by them-

elves. Moreover, signal intensity shifts can indicate the
resence of mixed pixels and surface material transitions,
ither of which may introduce errors into the range mea-
urement. The challenge is in how to determine the cause of
he intensity shift, given that only the spatial position and
eviation in signal intensity from a model value are known.
eviations from model return intensity can arise from sev-

ral different environmental conditions; therefore, return in-
ensity, even when combined with spatial position and
odel spatial uncertainty, is not sufficient to completely

epresent the quality of a measurement. Table 2 summarizes
he factors that affect return signal intensity.

ig. 8 Discontinuity in surface reflectivity results in a shift ��x� in the
osition of the centroid in a triangulation laser range scanner. This
esults in a change in return signal intensity. �modified from Fig. 7�b�
f Ref. 7�.
ournal of Electronic Imaging 033003-
4.1 Intensity as a Quality Attribute

Signal intensity is rarely used as a quality metric; it is more
often used as a weighting factor for combining measure-
ments. For example, Godin et al.49 used the compatibility
of signal intensities between correspondence pairs of mea-
surements prior to iterative closest point �ICP� registration.
Given two intensity measurements hi and hj, the compat-
ibility C�hi ,hj� is found by

C�hi,hj� = exp�−
�hi − hj�2

�c
2 � , �10�

where �c
2 is an estimate of the reliability of the intensity

measurements. In Eq. �10�, hi and hj are quality attributes
associated with measurements x̂i and x̂ j respectively; how-
ever, this metric only assessed the quality of association
between two measurements, not the quality of each mea-
surement. Fiocco et al.50 defined a reflectivity quality met-
ric for each measurement. It took the form

	 = �1 	min 
 	i 
 	max

0 otherwise,
� �11�

where 	min and 	max defined the minimum and maximum
acceptable reflectivity of the surface, and 	i was the ob-
served surface reflectivity. Sequeira et al.37,38 simply ap-
plied a weighting factor to the detected signal intensity.

One drawback of Fiocco et al.’s method is that it em-
ploys a binary scale, which, while useful for the application
for which it was designed, lacks the generalizability of a
sliding scale. Sequeira’s approach of using a weighting fac-
tor avoids this problem, but does not address the issue of
the ideal reflectivity changing with an increase in range. As
with Fiocco’s method, the weighted intensity approach used
by Sequeira was sufficient for the application for which it
was designed but is not applicable to medium-range scan-
ning without some modifications to take into account the
relationship between range and return signal intensity. Fio-
cco et al. avoids this problem by using reflectivity, which is
independent of range.

Table 2 Environmental factors affecting return signal intensity.

Error Source Effect

Range Return signal intensity decreases with
an increase in range

Angle of incidence Return signal intensity decreases with
increased angle of incidence

Surface material Translucent non-homogeneous
materials can reduce return signal
intensity

Surface complexity Surface discontinuities can reduce
return signal intensity

Reflectivity changes Return signal intensity decreases with
a decrease in reflectivity
Jul–Sep 2008/Vol. 17(3)7
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Range-Based Metrics
t was noted in Sec. 3.3 that measurement spatial uncer-
ainty generally increases with increased range and, in Sec.
, that return signal intensity generally decreases with in-
reased range. The range measurement itself can be used to
epresent the quality of a measurement. For example, Se-
ueira et al.37,38 and Fiocco et al.50 each used the range
ortion of the measurement as part of their reliability met-
ics. Figure 9 graphically demonstrates how the quality of a
easurement decreases as the distance between the scanner

nd the surface that generated the measurement increases.
In general, the farther a surface is from the scanner, the

arger the area encompassed within the laser spot. The size
f the spot projected onto a surface is represented by the
eam width at the point of intersection. The beam width
epends on the distribution of irradiance, which is often
ssumed to follow a Gaussian distribution. Specifically,

�r,�� = Ic exp�−
2r2

w���2� , �12�

here Ic is the is irradiance of the beam along the central
xis, r is the radial distance perpendicular to the central
xis, and w��� is the spot radius a distance � from the beam
aist.51,52 Figure 10 shows the irradiance profile centered

Laser

Vertical Surface

Laser Spot Width

ig. 9 Assuming the scanner position is limited to within a metre or
wo of ground level, the lateral measurement uncertainty increases
s the height of the structure increases due to the increase in the
istance between the scanner and the surface.

Central Axis
ζ

r

w(ζ)
Laser

Lens

Beam Waist

1/e2 Boundary
Irradiance Profile

f

D

Far field
2ζ0

ζ � ζ0

ig. 10 Laser beam 1/e2 boundary. The far field is the region in
hich ��� .
0

ournal of Electronic Imaging 033003-
on the central axis and the spot size w��� as a function of
distance from the beam waist.

The surface formed by w��� represents the distance r
from the central axis at which the beam irradiance falls to
1 /e2=0.135. As a result, the volume bounded by w��� rep-
resents the region within which 86.5% of the beam irradi-
ance is contained.51–53 The laser spot defined in this way
represents the portion of the surface being scanned from
which most of the laser irradiance is being reflected. As a
result, the laser spot represents the smallest region that can
be resolved by the laser range scanner.

The boundary of w��� can be approximated by the hy-
perbolic equation,

�w���
w�0��

2

− � �

�0
�2

= 1, �13�

where w��� /w�0� is the beam radius as a function of the
radius of the beam waist w�0� and � /�0 is the ratio of the
beam waist to the depth of focus of the beam �0. The depth
of focus, illustrated in Fig. 10, is defined by

�0 =
�w2�0�

�
�14�

where � is the laser wavelength. Meanwhile, the beam
waist for an aberration-free optical system using a circular
lens can be approximated by the Rayleigh diffraction equa-
tion,

w�0� 	
1.22�f

D
, �15�

where D is the lens diameter and f is the focal length of the
lens.52 The focal length also represents the distance from
the lens to the beam waist.

Range can act as a proxy for the resolution of a mea-
surement under the assumption that the focal length re-
mains fixed and the surface is farther from the scanner than
the beam waist. Under these conditions, measurements
closer to the scanner can be considered to be of higher
quality than those farther from the scanner. Although range
is generally not referred to as an indicator of the quality of
a measurement, this relationship is implied when the more
distant of a pair of measurements is dropped as part of the
registration process.

Fiocco et al.50 defined a distance quality metric based on
the minimum and maximum range limits. In practice, a
scanner is bounded by the minimum and maximum effec-
tive range, defined by a variety of factors, including the
laser power, beam spread, and photodetector sensitivity. Se-
queira et al.37,38 simply applied a weighting factor to the
range measurement to obtain a quality metric.

Only long range scans �those for which ���0, referred
to as far-field measurements51� are guaranteed to have a
measurement resolution decrease with range. Medium
range scanners may be used for surfaces that are at, or even
less than, the distance to the beam waist. Surfaces that are
closer than the beam waist have an inverse relationship
between resolution and range, as shown in Fig. 10. In this
case, measurement quality decreases with distance. As a
result, Fiocco et al.’s and Sequeira et al.’s methods are only
Jul–Sep 2008/Vol. 17(3)8
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pplicable to the situation for which they were designed;
aser range scanners in which the surface is farther from the
canner than the beam waist. For medium-range scanning,
he surface may be placed such that it coincides as much as
ossible with the beam waist. A more general-purpose
esolution-based quality metric should be applicable to both
ong and medium range scanner data, as well as data from
canners with multiple focal lengths. The use of laser spot
ize in assessing measurement quality will be addressed in
ec. 6.

Neighborhood-Based Metrics
ttributes such as surface orientation, or spatial or reflec-

ivity discontinuities, cannot be determined from single
easurements; they can only be inferred from groups of
easurements located in close spatial proximity to each

ther. Spatially related measurements are referred to here as
neighborhood and are used to model a small portion of

he surface being scanned to predict some aspect of that
urface, such as its orientation. The class of neighborhood-
ased metrics encompasses all quality metrics defined by
he neighborhood of a measurement.

Neighborhood-based quality metrics attempt to infer
ome aspect of a measurement by its relationship to its
mmediate neighbors. For purposes of discussion, a neigh-
orhood is defined as a point p̂ and the set of all points P

p̂0 , . . . p̂K� considered to be the immediate neighbors of p̂
y some commonly accepted criteria. It is assumed that this
riterion is either the Euclidean or the rotational distance,
lthough the discussion could apply to other distance met-
ics.

Two neighborhood-based quality metrics are considered:
hose based on interpoint distance and those based on ver-
ex orientation with respect to the line of sight. The former
s a measure of the density of the measurements in a neigh-
orhood, which, in turn, indicates how finely the surface
as been sampled. The latter is used to estimate the orien-
ation of the surface at a spatial location of the measure-

ent and is the most commonly used quality metric after
easurement uncertainty.
Surface complexity can also be evaluated using edge-

etection techniques. Specifically, spatial �illustrated in Fig.
� and intensity �illustrated in Figs. 7 and 8� discontinuities
esult in range measurement errors so the quality of mea-
urements corresponding to discontinuities are of lower
uality than measurements arising from surfaces without
iscontinuities. Edge detection, applied to either spatial
ata, intensity data, or both, can be used to detect the pres-
nce of discontinuities, which are one type of surface com-
lexity. A complete review of edge-detection techniques is,
owever, beyond the scope of this paper. For surveys on
dge-detection techniques, see Argyle,54 Davis,55 Peli and
alah,56 Ziou and Tabone,57 Trichili et al.,58 Xiao et al.,59

nd Basu.60

.1 Distance Metrics
istance metrics are typically used to evaluate two at-

ributes: distance to neighboring points and the density of
oints in the neighborhoods. The latter is referred to as
ampling density, which is the number of measurements per
nit area of the surface being modeled. Densely sampled
urfaces have the greatest possibility of detecting important
ournal of Electronic Imaging 033003-
surface features that might be missed by more sparse sam-
pling methods. On the other hand, dense scanning tech-
niques generate a large number of points, many of which
may be redundant if the surface being scanned lacks sig-
nificant surface features. With respect to quality, densely
sampled surfaces, to within certain limits, have the greatest
probability of generating high-quality models; thus, sam-
pling density is a measure of the potential quality of the
final model.

According to Shannon sampling theory, given a band-
limited signal, the sampled signal will contain all the infor-
mation in the band-limited signal only if the sampling fre-
quency is more than twice the signal bandwidth.61 This is
also known as the Shannon-Nyquist sampling theorem62 or
simply the Nyquist sampling theorem.63 This means that
the distance between samples must be less than half the
smallest feature size resolvable to the scanner;64 that is,

d 

�x

2
, �16�

where d is the distance between samples and the smallest
feature size resolvable is given by �x. The signal band-
width is referred to as the Nyquist frequency, and the Ny-
quist rate, equal to twice the Nyquist frequency, defines the
frequency that must be exceeded by the sampling fre-
quency. If the sampling frequency is less than or equal to
the Nyquist rate, then aliasing, or aliasing distortion,
occurs.63 On the other hand, measurement quality does not
improve in proportion to the amount by which the sampling
rate exceeds the Nyquist rate;65 thus, the sampling rate is
often defined to be only slightly higher than the Nyquist
rate. The Nyquist rate, therefore, represents a quality break-
point.

Shannon sampling requires a band-limited signal, and
diffraction in the optical system ensures this by imposing a
limit on the size of features that can be resolved. The Ray-
leigh criteria represents the resolution limit of the scanning
system even if measurement noise were negligible.3,4 In the
case of a perfectly focused, diffraction-limited optical sys-
tem, laser physics still imposes a limit on the size of the
feature that can be resolved, given by the Rayleigh criteria.
If �d represents the minimum distance between beam foot-
print peaks at which they can be separately resolved, then
the Nyquist rate is given by

fR =
1

�d
�17�

and the Nyquist frequency becomes fN= fR /2. The smallest
feature that can be resolved is given by the beam width
2�d.

If 2�d is large with respect to d, then fine details are
blurred;3 however, if the d is too large, then fine details are
missed. It is convenient, in the absence of other information
about the system, to choose a sampling density slightly less
than the smallest angular beamwidth such that d

min
w���� within the volume of interest. The goal of
scanning a surface is to achieve an intersample surface dis-
tance 
�x, given that the laser scanner is, under ideal con-
Jul–Sep 2008/Vol. 17(3)9
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itions, unable to resolve features at 
2�d. Sampling den-
ity and intersample distance, therefore, are useful in
ssessing model quality.

Klein and Sequeira66 and Klein and Zachmann67 com-
ared the actual sample density ��p� to the expected sam-
ling density F�x ,V ,m�. The expected sampling density
as found using

�x,V,m� = m
n · �x − V�
R3Apatch

, �18�

here V is the position of the scanner in the world, m is the
esolution, Apatch is the solid angle of the patch covered by
single pixel, n is the normal of the surface at x, and x is
point in the global coordinate system. If x is part of an

nscanned surface, then F�x ,V ,m�=0. These quality met-
ics were then used to perform a cost-benefit analysis of
otential viewpoints. Specifically, they calculated the reso-
ution quality of point x in the surface as seen from view-
oint V using

�x,V,m� = min��max�x�,F�x,V,m�
 − min��max�x�,��x�
 ,

�19�

here �max�x� is the maximum sampling density of x, and
�x� is the observed sampling density of x. In this case, the
enchmark is �max�x�. The benefit of this approach is that it
ombined measurement resolution, surface orientation, and
ampling density into quality metric for each point on a
urface.

Fiocco et al.50 used a less complicated method for de-
ning the density of a set of measurements than proposed
y Klein and Sequeira66 and Klein and Zachmann.67 They
efined the density quality metric as

= � smax − si

smax
si 
 smax

0 otherwise,
� �20�

here si is the distance to the closest neighbor and smax is
he maximum acceptable distance. Meanwhile, Sequeira et
l.37,38 used the weighted average-distance between neigh-
oring points as a quality metric.

One drawback of the quality metrics employed by Refs.
7, 38, 50, 66, and 67 is that they ignore measurement
patial uncertainty, which also affects the resolution of the
ystem.3,68 In particular, spatial uncertainty makes it diffi-
ult to know, precisely, the extent of the region covered by
ach laser spot. Another drawback of these metrics is that
hey do not make clear whether quality is being assessed
elative to the desired resolution �x or the attainable reso-
ution 2�d. The former is generally constant while the lat-
er depends on surface orientation, the presence of spatial
r reflectivity discontinuities, and the size of the laser spot
lluminating the surface. In some cases, �x may not even
e attainable for certain combinations of range and surface
rientation.

.2 Orientation Metrics
typical approach to generating the orientation of a mea-

urement is to obtain a mesh model of the surface and use
ournal of Electronic Imaging 033003-1
the normals of each of the mesh elements to estimate the
normal of the surface at the measurement.22,42,69–71 Orien-
tation is often represented by the surface normal, which is
generally found by taking the average of the normals of all
Delaunay facets that have this measurement as a vertex.42,70

The exception is Hoppe et al.,72 who preferred to use the
normal of a plane fit to the neighborhood of the measure-
ment. The benchmark for the grazing angle attribute is the
angle that generates the most accurate range measurement;
that is, when the surface normal is oriented along the line
between the surface and the scanner. Assuming the maxi-
mum grazing angle is one in which the surface normal is
perpendicular to the line between the surface and the scan-
ner, the scale of the grazing angle attribute is from 0 �best
quality� to � /2 �worst quality� radians. This is often repre-
sented as the cosine of the grazing angle,30,70 which has a
range of 1 �best quality� to 0 �worst quality�.

Often the deviation of the return signal intensity from
the ideal Lambertian model is represented by the surface
normal25,42,69,70 or grazing angle.73 The reasoning is that the
signal intensity decreases with increasing surface orienta-
tion; thus, surface orientation can be used as a proxy for
signal intensity. However, return signal intensity is affected
by all the factors summarized in Table 2. Therefore, this
assumption is true only in the absence of other factors, such
as surface spatial complexity and changes in surface reflec-
tivity. Surface orientation also affects the uncertainty of
range measurements,74 particularly for triangulation laser
range scanners; thus, surface orientation as a metric can
affect quality metrics for both spatial uncertainty and return
signal intensity.

Fiocco et al.50 used the deviation of the line of sight to
the scanner from the surface normal as a quality metric.
This metric took the form

� = 1 −
�i

90
, �21�

where �i is the surface orientation deviation in units of
degrees. Turk and Levoy70 used the cosine of the grazing
angle to weight measurements prior to ICP registration.
Soucy and Laurendeau30 showed that the squared cosine of
the grazing angle corresponds to the relative illuminance
received by the photodetector. They used this metric to per-
form a weighted merge of measurements from different
viewpoints such that

x = �
i=1

N

Wix̂i, �22�

where

Wi =
cos2��i�

� j=1
N cos2�� j�

�23�

is the weighting factor associated with measurement x̂i. The
cosine of the grazing angle can be found using
Jul–Sep 2008/Vol. 17(3)0
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os��i� =
n� i

Tx̂i

R̂i

, �24�

here x̂i is a measurement located R̂i units from the view-
oint, and ni is the normal to the surface at x̂i. In this case,
he coordinate system is assumed centered on the scanner
iewpoint. Curless22 employed a similar approach to merg-
ng measurements that co-occupied the same voxel. Soucy
nd Laurendeau30 demonstrated that the reflectivity of the
urface was directly proportional to the square of Eq. �24�.
ecause measurement quality was expected to be directly
roportional to the amount of light returned to the sensor,
os2��� would better represent measurement quality than
os���; however, this was based on the assumption that the
eflectivity change was primarily caused by high surface
rientation. The relationship is less clear when the surface
eflectivity is more complex.

Scott et al.73 suggested that basing quality solely on the
razing angle of a measurement ignores the objective ef-
ects of high grazing angle in favor of a more subjective
etric. Surface orientation, in particular, ignores factors

hat affect the shape and peak height of the intensity profile,
uch as surface reflectivity changes. Moreover, the surface
ormal is the average of the orientations along each De-
aunay edge extending from a point. As a result, it is pos-
ible to have a wide range of vertex normals but a surface
ormal oriented along the line of sight. Finally, for systems
n which the baseline is not insignificant with respect to
ange, the line of sight could be defined with respect to the
hotodetector, the laser, or the scanner origin, each yielding
different result. As a result, surface orientation is impor-

ant but insufficient as a quality metric.
An alternative to grazing angle for representing surface

rientation of a range image obtained using a raster scan
attern is the facet edge length ratio. In this case, the ratio
f longest to shortest edge of a Delaunay facet is used to
ssess the quality of the facet and, by extension, its mea-
urements. Sequeira et al. used this approach to discard the
acet if the ratio was too large.37 Consider the image on the
eft in Fig. 11, which represents a two-dimensional De-
aunay triangulation of a range image; when seen in three
imensions, facets on a discontinuity are elongated with
espect to their neighbors. The ratio between the longest
nd shortest edge should ideally be 1:1; that is, the triangles
hould be equilateral. As the surface orientation increases
ith respect to the line of sight from the scanner, the ratio

ig. 11 Range discontinuities result in elongation of Delaunay fac-
ts when viewed in three dimensions �Modified from Fig. 4 of Ref.
8�.
ournal of Electronic Imaging 033003-1
between the longest and shortest edges increases. Specifi-
cally, given a facet Fi with edges Ei= 
ei,1 ,ei,2 ,ei,3�, the
facet edge ratio wi can be found by

wi =
min Ei

max Ei
� �0,1
 . �25�

The weighting factor wi decreases toward zero as the dis-
parity between the longest and shortest edges increases.

The facet ratio represents a quality metric in which the
neighborhood is limited to the three measurements bound-
ing the Delaunay facet. High-quality measurements would
be those in which the facet ratio was close to 1, whereas
those in which wi was very small would be considered to be
low-quality measurements. Low-quality measurements
would have elongated facets indicating steep surface
slopes. A drawback of this method is that it is specifically
designed to assess the quality of facets and can only be
applied to measurements as a side benefit. Moreover, it is
specifically designed to work with regularly spaced raster
patterns. Nonraster patterns can feature large edge ratios,
even if the surface is relatively flat, as illustrated in Fig. 12.
Arrangements in Figs. 12�d�–12�f� contain facets with large
facet ratios regardless of the range value associated with
them. Although well suited to the purpose for which it was
designed, facet ratio is not easily adapted to use as a
general-purpose quality metric representing surface orien-
tation. Fiocco’s method as well as the more popular grazing
angle metric described by Eq. �24� are better suited as
general-purpose surface orientation quality metrics.

7 Total Quality Metric

Quality metrics are generally combined to generate an
overall measure of quality, referred to here as a total quality
metric. Scott et al.2 cited two common examples of how
quality metrics could be combined: weighted summation
and composite binary pass/fail. The weighted summation
approach takes the form

(a) (b)

(c) (d)

(e) (f)

Fig. 12 Facet ratio is most effective for regularly-spaced data, such
as �a� and �b�. As measurement distribution becomes less regular,
facets with large facet ratios can emerge regardless of their relative
range measurements.
Jul–Sep 2008/Vol. 17(3)1
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i = �
j=1

NC

wjCi,j , �26�

here Ci,j � �0,1
 represents the j’th quality metric. An ex-
mple of this approach is the weighted average model used
y Sequeira et al.37 to determine the total quality of each
easurement in a range image. To ensure that Qi� �0,1
,

he weight values can be restricted such that � j=1
NC wj =1.

eanwhile, the binary product approach has the form

i = �
j=1

NC

�Ci,j � CT,j� , �27�

here CT,j is a threshold quality limit for the j’th quality
etric. In this case, �Ci,j �CT,j�=1 when the quality metric

quals or exceeds the threshold value, and �Ci,j �CT,j�=0
therwise.

The choice of how quality metrics are combined de-
ends on the application and the relative weight placed on
ach of the quality metrics. The weighted summation ap-
roach allows the researcher to tailor the contribution of
ach of the quality metrics to the overall measurement
uality without any one metric dominating the result. For
xample, Fiocco et al.50 experimentally derived the weights
or each sensor used in the experiment. They also standard-
zed the weighting factors such that each sensor technology
ould be represented by a single weighting factor that
odified each of the metric weights. Sequeira et al.37,38

lso used the weighted-sum approach but did not indicate
ow the weights were derived. The binary product ap-
roach is effective if the goal is to simply exceed some
reset quality level.

Unresolved Quality Issues
everal quality attributes are notably absent from contem-
orary, and even emerging, quality metrics. In particular, no
uality metric has been developed to address the motion of
he laser spot during the acquisition process. This is of par-
icular interest in triangulation scanners where multiple
ample intervals may be integrated to combat speckle
oise. No quality metric has been defined to quantify the
ffect of measurement resolution. Even using range as a
uality metric only addresses measurement resolution by
roxy. In fact, neighborhood-based metrics do not consider
he issue of measurement density or proximity that is less
han the measurement resolution of the system. No metric
as addressed the problem of measurement repeatability,
ost likely because it requires multiple range images of the

ame surface, which substantially increases scanning time.
inally, surface complexity is only imperfectly evaluated
sing surface orientation.

Measurement quality metrics are rarely combined into a
otal quality metric. As a result, operations such as mea-
urement merge, range image registration, and deciding
hether or not to delete a measurement are often based on

nadequate information. For example, although a maximum
ikelihood merge of two measurements is statistically valid,
he covariance matrix only partially describes the quality of
he measurement. In fact, a measurement with relatively
arge covariance may be of substantially lower quality than
measurement with relatively small covariance when other
ournal of Electronic Imaging 033003-1
factors, such as distortion of the signal peak and surface
orientation, are taken into account. A more comprehensive
approach to applying measurement quality to manipulating
measurements is required.

Finally, nonreturn measurements are generally treated as
having no qualitative value, thus are often ignored during
data collection. This means that information about regions
of the environment that cannot be scanned is lost. Future
research should examine what can be learned about the
environment being scanned from the absence of a return
signal.

9 Conclusions
Quality metrics have featured significantly in contemporary
research; however, most quality metrics have been de-
signed for specific application or specific algorithms, and
are often used independently. Measurement uncertainty has
been used extensively to represent measurement quality,
but many environmental factors affect measurement uncer-
tainty, making it insufficient as an independent quality
metric.

The relationship of range and resolution to measurement
quality depends on the beam width. Additional work is re-
quired to better define the relationship between measure-
ment quality and resolution for midfield measurements,
where parallax must be taken into account. Sampling den-
sity has also been featured in various forms as a quality
metric, although most approaches are highly application
specific. Absent from the literature is a more detailed analy-
sis of how sampling density is related to measurement qual-
ity and how to quantify sampling density as a quality metric
in a generalized fashion. Surface orientation has also been
used extensively as a quality metric, although it is also
insufficient as an independent quality metric. Reflectivity is
affected by surface materials, orientation, and surface com-
plexity; thus, this factor has been used to represent mea-
surement quality. Given, however, that reflectivity is af-
fected by multiple factors, it, too, is insufficient as an
independent quality metric.

The current state of the art in quality metrics performs
adequately in assessing the quality of measurements within
the context of specific applications, but are often not readily
generalizable. Few researchers combine quality metrics so
that the strengths of one may offset the weakness of the
other. This paper was a first step in assessing the relation-
ship among the various quality metrics currently in use.
More work is needed to develop a more comprehensive
approach to measurement quality assessment.
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