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Abstract. A three-dimensional (3-D) measurement method for large-scale bending plates is presented. The
proposed method, which combines the advantages of laser and a vision measurement method, makes use
of a 3-D scanner, a texture projector, and a laser total station. The 3-D scanner is used to measure multiple
partial sections of a large-scale bending plate, the texture projector is used to project a textured pattern
onto the bending plate to perform alignment, and the total station is used to correct the aligned result to obtain
more accurate 3-D data. The performance and effectiveness are evaluated by experiments. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.24.1.013001]

Keywords: three-dimensional; measurement; large-scale; texture-less; bending plate.

Paper 14157 received Mar. 28, 2014; accepted for publication Dec. 2, 2014; published online Jan. 5, 2015.

1 Introduction
Three-dimensional (3-D) shape measurement of objects is
very important in numerous applicative fields including
industrial manufacturing, medical science, computer science,
civil engineering, game production, and film-making. In
most cases, the 3-D data of an object is desirable because
it is necessary for its quantitative analysis. However, meas-
uring the 3-D shape of an object, especially a large-scale
object, is a complicated process in which a variety of prob-
lems are simultaneously present.

In recent years, although many 3-D measurement meth-
ods have been proposed, many of them are applied in special
fields and have limitations, and most of the existing methods
are designed to measure small objects.

At present, 3-D measurement techniques can be mainly
divided into two categories: passive and active methods.
Passive methods do not interfere with the measured object
and only use a sensor to measure the radiance reflected or
emitted by the object’s surface to infer its 3-D structure.
So far, many passive methods are presented, and some of
them can acquire the 3-D data of large scenes1–4 using
feature-based alignment strategy. Passive methods require
that the measured object have a rich texture. However, the
measured objects in industrial manufacturing are usually
texture-less. Therefore, passive methods are difficult to
use in industrial manufacturing.

Active methods actively interfere with the measured
object, either mechanically or radiometrically, and current
active methods usually measure the 3-D shape by projecting
special light to the measured object. Compared with passive
methods, active methods are usually used in industrial manu-
facturing because they can acquire dense data in a rapid and
reliable manner. Active methods can be roughly categorized
into two types: time-of-flight (TOF) laser measurement and
structured light measurement.

TOF laser measurement methods acquire the 3-D shape of
an object using TOF based on the known speed of light.
Although traditional TOF laser measurement techniques can
obtain highly accurate 3-D data,5 it is usually very time-con-
suming to perform dense scanning for a large-scale object
because a point-by-point scanning strategy is used. Recently,
a TOF camera which adopts a whole field technique has been
widely used. ATOF camera is a class of scannerless LIDAR
in which the entire scene is captured with each laser or light
pulse by measuring the TOF of a light signal between the
camera and the object for each point, as opposed to point-
by-point scanning with a laser beam.6,7 The methods with
a TOF camera can obtain dense 3-D data in real time.
However, the 3-D data captured with TOF cameras have
very low data quality because the image resolution is rather
limited and the level of random noise contained in the depth
maps is very high.8,9 Thus, it is very difficult to accurately
measure the 3-D shape of a large-scale object with a TOF
camera in industry.

Structured light measurement is a technique which proj-
ects coded light patterns onto the measured object by a pro-
jector and simultaneously captures the projected scene by a
camera. As clearly reported in some review papers,10–13

structured light technique has been extensively studied for
several decades. So far, many structured light techniques
are proposed, such as coded grids projection methods,14

color-coded dots projection method,15 speckle projection
methods,16–19 the combination of speckle projection and dig-
ital image correlation,20,21 and coded fringe projection meth-
ods.10 Color-coded dots and grids cannot be increased as
required, because similar local structures of dense dots
and grids would lead to ambiguous image correspondences,
thus it is difficult to obtain dense measurements by using
these methods. Although random speckles are easy to gen-
erate via diffraction, it is difficult to locate and match accu-
rate speckles in images, thus some noise will be produced.
The combination of speckle projection and digital image cor-
relation is a good technique to obtain dense measurement;
however, it is usually slow since digital image correlation*Address all correspondence to: Jinlong Shi, E-mail: jlshifudan@gmail.com
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is performed for the entire image. Fringe projection methods
can rapidly acquire dense measurement results by switching
projection of the structural light fringes. Therefore, we adopt
a fringe technique in our method. These techniques have
been widely applied in many industrial fields.22–28 However,
only a limited number of investigations deal with large-scale
measurements. If we try to measure a large-scale object, most
of the existing methods will fail. In this paper, our goal is to
deal with the problem of 3-D measurement for large-scale
texture-less bending plates used in industrial manufacturing.

Currently, there are many large-scale objects to be mea-
sured in manufacturing. For example, both an aircraft skin
and ship shell need to be measured during automatic produc-
tion, and these applications can be considered as the meas-
urement of large-scale bending plates. In these applications,
the measurement speed is an important factor which
will seriously affect the production rate. Furthermore, the
measurement density is also a vital issue which will affect
the manufacturing accuracy. Thus, the two factors must be
well handled for large-scale measurements in practice.
However, the size of objects to be measured in aircraft and
ship building industry is usually very large, which presents a
difficult question.

Recently, several studies of structured light techniques
have been coducted regarding the 3-D measurement of large-
scale objects. The basic idea of these methods is to measure
multiple partial sections of a large-scale object and then align
the different measured sections together. According to align-
ment strategies, the methods can be categorized into three
types: surface geometries-based method,29,30 tracker-based
method,31,32 marker-based method,33 and texture-projection
method.34 The methods in Refs. 29 and 30 use a Kinect sen-
sor, which is a depth camera based on structured light tech-
nique, capture partial sections of a large scene, and then align
different captured sections by using a coarse-to-fine iterative
closest point (ICP) algorithm. These methods require the
measured scene which has complex surface geometries to
use ICP algorithm. Barone et al.31 presents a methodology
which uses a stereo tracker and a 3-D scanner. The 3-D scan-
ner is used to measure multiple partial sections of a large
object, and the stereo tracker is used to remotely track the
scanner within a working volume. The tracker uses stereo
images to detect the 3-D coordinates of retro-reflective infra-
red markers rigidly connected to the 3-D scanner, and then
the alignment for different partial views is performed using
the tracked 3-D coordinates of markers. However, since the
infrared markers cannot be seen clearly by the tracker if the
distance between the tracker and scanner becomes larger, the
measurement range is limited. The methodology of Ref. 32,
which is based on the integration of a robotic system with a
3-D scanner, provides accurate 3-D full-field measurements
of the hull surface. The position of the robotic system around
the hull shape is determined by a laser total station thus
allowing the automatic multiview data registration into a
common reference frame. Although this method can measure
large objects, it is inconvenient for use because some mark-
ers need to be placed on the 3-D scanner and manual tracking
for these markers is time-consuming when using the laser
total station. Barone et al.33 proposes a marker-based method
which needs to put fiducial markers on the measured object
and measure the 3-D coordinates of fiducial markers to be
used as references to align point clouds obtained by the

3-D scanner. Although this method can accurately align
different sections, it is also inconvenient because special
markers are adopted. Hébert34 presents a texture-projection
method, where in order to obtain the pose of the 3-D scanner
in a global coordinate system for partial view alignments, a
set of fixed points are projected on the visible surface using a
projector.

In this paper, our aim is to measure a large-scale texture-
less bending plate. In the proposed method, we also use a
3-D scanner based on a structured light technique to measure
multiple partial sections of a large-scale bending plate. The
bending plate to be measured is texture-less, and there is usu-
ally no enough reliable texture to be used for alignment via
featured-based method. Moreover, the surface geometries of
the bending plate are usually simple, and the curvature of
every point remains almost unchanged. Thus, we cannot
align the different measured sections using an ICP algorithm
which is based on surface geometries or a feature-based
method which requires rich texture on the measured object.
In addition, we also cannot use a marker-based method in
which special markers are required, because markers cannot
be placed on the measured object due to the high temperature
in some industrial production, such as plate bending by line
heating in shipbuilding. Therefore, to align different mea-
sured sections, we, here, present a texture-projection method
which makes use of a texture projector to project a textured
pattern onto the texture-less bending plate, and then adopts a
feature-based method to align the measured sections.

In addition, for large-scale measurement, compared with
point-by-point TOF laser methods, structured light methods
have the advantages of high density and speed, but have
the disadvantage of low accuracy due to image distortions,
camera calibration errors, and partial view alignments.
Conversely, compared with structured light methods,
point-by-point TOF laser methods have the advantage of
high accuracy, but have the disadvantage of low speed.
Therefore, this paper exploits the integration of a 3-D scan-
ner with a point-by-point TOF laser device. Here, we use a
laser total station as a point-by-point TOF laser device, and
the laser total station is used to measure some markers placed
around the bending plate to improve the measurement accu-
racy by performing error compensation.

According to the above analysis, the proposed method has
the following advantages: First, compared with surface
geometries based method, our method can measure large-
scale objects with simple surface geometries. Second, com-
pared with feature-based method, our method can measure
texture-less objects. Third, compared with the marker-based
method, our method is more convenient because we do not
need to manually place a lot of markers on the large object
for alignment. Fourth, we present an error compensation
method by combining laser measurement with a structured
light measurement technique.

2 Proposed Method
3-D scanners based on structured light techniques are suit-
able for dense and rapid measurement of small objects.
To measure large-scale bending plates using a 3-D scanner,
we, here, present a method that is based on texture projec-
tion, and this method is illustrated in Fig. 1. The measure-
ment system includes three components: a texture projector,
a laser total station, and a 3-D scanner. The system workflow
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is as follows: First, we place some markers around the edge
of the plate to be measured and these markers should be mea-
sured both by the laser total station and by the 3-D scanner
later. Second, the laser total station is used to measure the
markers. Third, the texture projector is fixed and used to
project a rich texture onto the plate. Fourth, the 3-D scanner
is moved to measure multiple partial sections of the plate.
Meanwhile, both the projected texture and markers are
also captured by the 3-D scanner’s cameras. Fifth, feature
extracting and matching are performed for the captured tex-
tured images to compute the 3-D scanner’s pose and register
the measured partial sections into a world reference frame.
Finally, to improve the accuracy of the measured result, the
corresponding 3-D coordinates of markers measured, respec-
tively, by the laser total station and by the 3-D scanner are
used to perform error compensation. Next, we will elaborate
the key problems of the proposed method.

2.1 Single-View Scanning
We use the structured light method similar to that described
in Ref. 31. Two cameras form a stereo vision system and the
projector is uncalibrated and not directly involved in the
measurement process in Ref. 31. Our system also adopts
this architecture. The resolution that can be obtained by
our method is 2200 × 1500, where 2200 and 1500 are the
numbers of the vertical and horizontal lines switched by
the projector, respectively. The accuracy is about 0.3 to
0.5 mm∕m, and the field of view is about 65 deg, which

means that if the work distance is about 4 m, one measure-
ment can range up to 3 m × 4 m.

Since the accuracy of structured light systems is heavily
influenced by the image distortions generated by a camera
lens, we first calibrate the parameters of radial and tangential
distortions,35,36 which are then used to correct the captured
images using Brown’s distortion model.37

2.2 Partial Sections Alignment
Measured partial sections of a large-scale bending plate, cor-
responding to different placements of the 3-D scanner within
a bending plate, must be registered into a common reference
frame to form a complete 3-D mesh.

According to the analysis in Sec. 1, we propose an
alignment method which uses one texture projector to project
a rich texture onto the measured bending plate. The
alignment process can be mainly summarized as three
steps:

Step 1: A rich texture is projected onto the plate using the
texture projector and the stereo cameras of 3-D scanner
are used to capture the images which are called texture
images. While projecting the texture, the projector of the
3-D scanner is turned off (in standby mode) to prevent
mutual interference between the scanner projector and
the texture projector. Figure 2 shows the rich texture
used in our method. We adopt random Chinese charac-
ters as the projected texture. The aim of this step is to
obtain the texture images with a rich texture for
alignment.

Step 2: The texture projector is turned off (in standby
mode), and then the scanner is used to measure the
partial section.

After performing the above two steps, the scanner
is moved forward and repeat step 1 and step 2, then
carry out step 3.

Step 3: Feature points in the texture images are extracted
and matched to register the different point clouds
acquired by the 3-D scanner into a reference frame,
which is the key problem.

The above process will repeat until the measurement of
the whole bending plate is finished. Next, we will elaborate
the key problems in the alignment.

Locomotive 3-D scanner

Fixed texture projector

Fixed laser total station

Markers

Fig. 1 Method illustration.

Fig. 2 Rich texture projected onto the measured object.
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2.2.1 Extracting and matching feature points in
texture images

We need to extract some reliable feature points in texture
images for two adjacent measurements in order to align
the measured partial sections. As Fig. 3 shows, there are
two measurements at adjacent locations, which are denoted
by G1 at time t1 and G2 at time t2, respectively. In this
experiment, we find that the movement between G1 and
G2 cannot be very large, and there is at least a 1 m overlap-
ping area between G1 and G2 to extract enough feature
points for alignment. We extract and match feature points
in four steps: First, feature points are extracted in the texture
images (namely Ip1BG, I

p2
BG, I

c1
BG, and Ic2BG. p1 and p2, respec-

tively, denote the indices of the left and right images in G1,
and c1 and c2, respectively, denote the indices of the left and
right images in G2.) of G1 and G2 using a scale-invariant
feature transform (SIFT) algorithm.38 Second, point match-
ing is performed between Ip1BG and Ip2BG, I

c1
BG and Ic2BG, and I

p2
BG

and Ic1BG by using the SIFT algorithm. Third, according to the
feature point correspondences between Ip1BG and Ip2BG and that
between Ic1BG and Ic2BG, we reconstruct the 3-D points of tex-
ture captured at times t1 and t2. Finally, based on the match-
ing between Ip2BG and Ic1BG, we obtain some matched 3-D
points between G1 and G2, which will be used to compute
the transformation parameters of alignment.

Since it is a time-consuming task to extract and match
feature points, we make use of the SIFT-based method38

in graphic processing unit (GPU) to accelerate the algorithm.

2.2.2 Point cloud alignment

According to Sec. 2.2.1, we can acquire some matched 3-D
points according to texture images between adjacent mea-
surements G1 and G2, and those matched points can be
used to compute the parameters for aligning the point clouds
measured by the scanner. Suppose there are K matched 3-D
points, respectively, denoted by p1

i ¼ ðxp1i ; yp1i ; zp1i Þ in G1
and p2

i ¼ ðxp2i ; yp2i ; zp2i Þ in G2, where i ∈ f1; : : : ; Kg. The
point cloud alignment is the equivalent to locating the rela-
tion between p1

i and p
2
i . Here, the relation between p

1
i and p

2
i

can be represented by a rotation matrix R and a translation
vector T, which can be, respectively, expressed as

R ¼
0
@

R11 R12 R13

R21 R22 R23

R31 R32 R33

1
A ; (1)

T ¼ ðT1; T2; T3ÞT: (2)

If all the matched pairs hp1
i ; p

2
i i, where i ∈ f1; : : : ; Kg,

are correct and accurate, R and T could have been calculated
as follows by considering the fact that the transformation is
rigid. First, T is obtained by Eq. (3):

T ¼ 1

K

X
ðp2

j − p1
jÞ: (3)

Then we estimate the rotation R by Eq. (4):

Rp1
j ¼ p2

j − T; j ∈ f1; : : : ; Kg: (4)

Here, the rotation matrix R may be rewritten to give a new
vector R:

R ¼ ðR11; R12; R13; R21; R22; R23; R31; R32; R33ÞT: (5)

Next, we represent the equations of Eq. (4) as Eq. (6):

AjR ¼ p2
j − T; j ∈ f1; : : : ; Kg; (6)

where we define Aj by Eq. (7),

Aj ¼

0
BB@
xp1j yp1j zp1j 0 0 0 0 0 0

0 0 0 xp1j yp1j zp1j 0 0 0

0 0 0 0 0 0 xp1j yp1j zp1j

1
CCA : (7)

Next, we let

A ¼

0
BB@

A1

A2

: : :
AK

1
CCA; (8)

PT ¼

0
BB@

p2
1 − T

p2
2 − T
: : :

p2
K − T

1
CCA; (9)

and thus derive

AR ¼ PT : (10)

Then we solve for the rotation vector R using linear least
squares method:

R ¼ ðATAÞ−1ATPT : (11)

T and R could have been calculated according to the
above-mentioned method. However, there may exist some
erroneous pairs, also called outliers, which will influence the
estimations of R and T. Therefore, we propose an algorithm

G1: Previous texture Images  G2: Current texture Images  

Matching feature points Matching feature points Matching feature points

(a)

(b)

Reconstruct 3D points Reconstruct 3D points

Matching 3D points

(c)

(d)

BG

p1

BG

p2

BG

c1

BG

c2Extracting 
feature points

Fig. 3 Extracting and matching feature points for alignment. Some
common feature points between adjacent measurements, which
are used to compute the alignment parameters, are matched.
(a) Extracting feature points, (b) matching feature points, (c) recon-
struct 3-D points, and (d) matching 3-D points.
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for computing R and T based on random sample consensus
(RANSAC) to ensure the robustness by removing these out-
liers, with the concrete process is shown in Algorithm 1.

2.3 Error Compensation
Although we can acquire the 3-D shape of a large object by
the presented method, it is hard to ensure the accuracy due to
some errors. Thus, in order to improve the accuracy, we use a
laser total station to correct the result measured by the 3-D
scanner via an error compensation method. The concrete pro-
cedure of error compensation is composed of the following
steps: First, some markers are placed around the edge of the
bending plate. The markers are sparsely distributed near the
edge. These markers are not for alignment. In fact, they can
be placed outside the measured object. Second, a laser total
station is used to measure the 3-D locations of the markers in
the laser coordinates system. Third, the 3-D locations of
markers in the scanner coordinates system are measured by
the stereo cameras of the 3-D scanner. Actually, this step is
performed during the moving of the scanner. Finally, an error
field is created according to the markers’ locations, respec-
tively, measured using laser total station and 3-D scanner,
and the aligned 3-D mesh measured by the 3-D scanner is
corrected using the error field.

Since the two previous steps are much easier, they are not
discussed in this paper. The third step will be elaborated in
Sec. 2.3.1, and the final step will be described in Sec. 2.3.2.

2.3.1 Locating markers using cameras

Here, a rectangular marker specially designed for the laser
total station is shown as Fig. 4(a).

As mentioned before, after finishing the 3-D measure-
ment of a partial section, the projector of the scanner is
turned off and the stereo cameras of the scanner are used
to capture the markers around the measured plate without
projecting a structured light and special texture, where the
captured image is denoted by IO. Thus, there remains a key
problem during the process of correction, namely how to
accurately detect and locate the markers in image IO.
Because the measured scene may be complex, it is difficult
to obtain the accurate locations of the markers in images. We,
therefore, present a coarse-to-fine method for marker center
extraction, which can be decomposed into two crucial sub-
problems: detecting the approximate initial locations of
markers and then locating the accurate positions according
to the initial values. On one hand, with the recent rapid devel-
opment of machine learning techniques, objects can be
detected in images.39 Thus, the machine learning methods
can be adopted to solve the subproblem of marker detection.
On the other hand, the techniques of corner and blob features
detection, by which we can even find the subpixel location of
a feature point, have been widely applied in the field of com-
puter vision. Therefore, we can use the techniques of locat-
ing corner and blob features to obtain accurate positions
based on the approximate initial locations of markers.

We present a machine learning method to locate the mark-
ers, and the steps are as follows: First, we collect some pos-
itive sample images which include markers and negative
sample images which do not include markers. Second, histo-
grams of oriented gradients features40 for these samples are
extracted. Finally, a support vector machine (SVM)41 classi-
fier and detector are trained to locate the markers in
one image.

In our experiment, we collected about 200 positive sam-
ples captured from different angles by cameras and 1000
negative samples. The marker is a silver-gray square label
in which there are two cross lines, where the cross point
is the marker center. Both the laser total station and 3-D scan-
ner should accurately locate the cross point to perform error
compensation. Because the measured scene is complex, we
collected more negative samples in which all the circumstan-
ces were considered as much as possible. All of the positive
and negative samples are fed to SVM to train a detector.
After an SVM detector is trained, we use it to detect the
markers in image IO using GPU.

However, SVM detector can only detect the approximate
locations of markers. Figure 4(a) is a detected image patch
with a marker using the SVM detector, and the image patch
is denoted as Im. Next, we need to obtain the accurate marker
center (namely the cross point) to ensure the accuracy of the
correction. Here, we propose a novel method to solve this
problem. First, adaptive binarization is used on Im [Fig. 4(a)]
to generate a binary image patch [Fig. 4(b)]. Second, we cal-
culate the center of the connected region for the binary image
patch [Fig. 4(c)]. Here, the center of the connected region,
which is denoted by Li ¼ ðxli; yliÞT, is the estimation of
the marker center. However, this estimation may be inaccu-
rate. Thus, the accurate cross point of the marker should be
extracted based on the initial value Li. The Harris corner
algorithm42 and its homologous algorithm43 would have
been good methods to detect corners if the cameras could
clearly capture the corners. However, the cross in the marker
captured by cameras is usually indistinct due to the small size

Algorithm 1 Computing the translation vector T and rotation matrix
R based on RANSAC.

Input: Matched point pairs hp1
i ; p

2
i i, i ∈ f1; : : : ; Kg

Output: The translation vector T and rotation matrix R

1. Three matched point pairs are selected randomly, and T and R are
calculated using Eqs. (3) and (11), respectively.

2. For other K -3 matched point pairs, compute the transformed point
p1 0
i for p1

i according to T and R.

3. Compute the Euclidean distance d12
i between p1 0

i and p2
i

4. If d12
i ≤ δ, where δ is a threshold, the matching is an inlier, otherwise

it is a outlier and should be removed.

5. Calculate and record the number of inliers computed using T and
R.

6. Go to step 1, repeat the first step to the fifth step M times, and
generate M sets.

7. Select the one with the most inliers as the best match from the M
sets, and obtain the new matched point pairs hp1

j ; p
2
j i in which the

outliers are removed, where j ∈ f1; : : : ; Ng and N is the number of
inliers.

8. Recompute R and T according to the new matching pairs hp1
j ; p

2
j i

using Eqs. (3) and (11), respectively.
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of the marker. Therefore, corner detection algorithms are not
good methods by which locate the marker center.

From Fig. 4(a), we can observe that the cross point is
more like a blob than a corner because the cross lines are
very unsharp. Thus, it is better to adopt the method of
blob feature detection. According to the above analysis,
we use the difference of the Gaussian44 method to detect
the accurate cross point around the initial estimation Li
[Fig. 4(d)].

2.3.2 Correction using an error field

In order to correct the measured result by combining the laser
total station and 3-D scanner, an error field is constructed by
the difference of the markers’ locations, respectively, as

measured by the scanner and the laser total station. We
will elaborate the compensation method as follows.

We let pV
i [Fig. 5(b)] and pO

i [Fig. 5(a)], where
i ∈ f1; : : : ;Mg, denote the markers’ 3-D coordinates mea-
sured by the 3-D scanner and total station, respectively. If we
want to refine the result measured by the scanner using the
laser total station, pV

i and pO
i should be placed in the same

coordinates system. In order to put pV
i and pO

i in the same
coordinates system, we need to obtain the relation of the two
coordinates systems. Suppose Rvo and Tvo are the rotation
matrix and translation vector from the scanner coordinates
system to the total station coordinates system, we can esti-
mate Rvo and Tvo by the correspondences between pV

i and
pO
i . If M is bigger than 3, an over-constrained system about

Fig. 4 Locate markers in image IO . (a) is an image patch with a marker, (b) is the binary image of (a),
(c) is the connected region center of the binary image, and (d) is the accurate cross point.

(a) (b)

(c) (d)

(e) (f)

(g)

(i) (j)

(h)

Fig. 5 Correction using an error field, for details see text. (a) pO
i , (b) p

V
i , (c) p

O
i and pVO

i , (d) triangulation
of pO

i , (e) E
VO
i , (f) construct error field by triangulating pO

i and pVO
i , (g) P is a point on PCa to be refined,

(h) construct a perpendicular line from P, (i) acquire the value used to correct P, and (j) generate refined
point cloud using error field.
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Rvo and Tvo can be constructed, which is shown in Eq. (12).
Thus, we can obtain Rvo and Tvo by solving the over-
constrained system using the least square method:

pV
i Rvo þ Tvo ¼ pO

i ; i ∈ f0; : : : ;Mg: (12)

After Rvo and Tvo are estimated according to the corre-
spondences between pV

i and pO
i , pV

i can be converted
into the coordinates system of the total station. We let
pVO
i denote the converted coordinates of point pV

i from
the 3-D scanner to the laser total station by Rvo and Tvo.
In theory, pVO

i [the circles in Fig. 5(c)] and pO
i [the dots

in Fig. 5(c)] should be the same points in the coordinates
system of the laser total station. However, because pV

i is
inaccurately measured due to the errors of camera calibration
and point clouds alignment, Rvo and Tvo cannot be accu-
rately estimated, which results in the errors between pVO

i
and pO

i [see Fig. 5(c)].
To correct the inaccurate result measured by the scanner,

we first compute the errors EVO
i [see Fig. 5(e)] between pVO

i
and pO

i , and then construct an error field [see Fig. 5(f)]. If
there is an appropriate function which can be estimated by
EVO
i to fit the error field, we can solve the easily problem of

correction. However, because the appropriate function of the
fitting cannot be found, it becomes a difficult issue to per-
form error compensation.

We, therefore, present a method to solve the problem of
error compensation. In our method, the markers are evenly
distributed around the measured bending plate (these mark-
ers are used for error field construction and can be placed
outside the measured object), and we place the markers
near the edge of the bending plate. The points pO

i , where
i ∈ f0; : : : ;Mg, are then triangulated to obtain some trian-
gles [see Figs. 5(d), 5(e), and 5(f)]. An error field is con-
structed for every triangle. Let us take one triangle as an
example to illustrate the procedure of constructing the
error field. Supposing the three vertices of one triangle
are pO

n , where n ∈ fi; j; kg, the corresponding points con-
verted from scanner are pVO

n , and the corresponding errors
between pO

n and pVO
n are EVO

n which can be considered as
three vectors in a 3-D space, we construct an error field

by performing linear interpolation based on EVO
n in the tri-

angle. At present, the error field can be considered as the
space surrounded by the triangle plane through pVO

n and
that through pO

n [see Fig. 5(f)]. We can construct the error
field for every triangle according to this method.

Next, we correct the result measured by the scanner using
the constructed error field; the concrete process of the cor-
rection is shown in Figs. 5(g)–5(j). Suppose there is an
aligned point cloud, denoted by Qa, measured by the scan-
ner, and P is a point on Qa [see Fig. 5(g)]. We explain the
process of the correction for P. Our basic idea is to deform
the point cloud Qa according to the error field, which will let
Qa be nearer to the laser’s result, which is considered as the
accurate data. We first construct two perpendicular lines
from P to its nearest triangle plane formed by pVO

n and
pO
n , n ∈ fi; j; kg, respectively [see Fig. 5(h)], where the

feet of the two perpendicular lines are denoted as Cp and
Fp [see Fig. 5(i)]. Finally, the vector FC formed by points
Cp and Fp is considered as the error used to refine the point
P [see Fig. 5(i)], and we move P according to FC to generate
a new location of P. Similarly, the other points on Qa can be
refined by using the error compensation method. Thus, the
aligned point cloud Qa is deformed in the direction of the
result measured by the laser total station [see Fig. 5(j)],
which makes the deformed result more accurate.

The above-mentioned method of error compensation can
greatly decrease the errors, though it cannot completely
eliminate the errors.

3 Results and Evaluations

3.1 Experimental Results
An experimental system is designed to validate the perfor-
mance and effectiveness of the proposed method. The exper-
imental system is shown in Fig. 6. Figure 6(a) shows the
system composition which includes a laser total station, a
3-D scanner based on the structured light technique, two tex-
ture projectors (Here, because the measured object is very
large, two projectors are used.), and a server. The data gen-
erated by the scanner and laser total station are automatically
fed into the server. During measurement, the 3-D scanner is

Fig. 6 (a) The experimental system including a laser total station, a three-dimensional (3-D) scanner
based on structured light technique, two texture projectors, and a server. (b) The bending place to
be measured.
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moved by a locomotive system that facilitates the sliding of
the scanner in front of the measured object over the floor.
The sliding may take some time (about a minute and a
half in our experiment). Here, the measured object is a
large iron sheet which is convenient for testing and can
be easily deformed. Due to the limitation of the laboratory
field, the bending plate is erected using a bracket, as Fig. 6(b)
shows. In our experimental system, the 3-D scanner is based
on a structured light method and uses the stereo vision prin-
ciple in order to capture the 3-D shape with high resolution
and accuracy. The configuration is composed of one Epson
EB-C1020XN video projector to generate vertical and hori-
zontal black and white striped light patterns and two Cannon
600d single lens reflex (SLR) cameras to capture the images
of the surface under structured lighting. The cameras have a
resolution of 4512 × 3000 pixels, and are equipped with
lenses having a focal length of 35 mm.

Here, two Epson EB-C1020XN video projectors are
used to project rich texture onto the measured object, and
one Leica FlexLine TS09 total station is used for error
compensation.

In addition, we process the algorithm by a server which
has one dual core 3.0G Hz CPU, 8G RAM and two GeForce
GTX 690 NVIDIA graphics cards with 4096 MB GDDR5
memory.

We use SLR cameras instead of high speed video cameras
in this experimental system, because SLR cameras have the
advantages of high resolution and low price. It is vitally
important to adopt high resolution cameras for measurement
accuracy, and the price is low enough to be acceptable for an
experimental system. We obtain the SDK, which is used for
controlling the cameras to capture images automatically,
from Cannon. Thus, the cameras can be considered as
common video cameras except for a lower frame rate.

Fig. 7 Aligned point clouds and different colors mean different sections measured at different times. (b),
(c), and (d) illustrate the 3-D meshes viewed from different angles for (a). (f), (g), and (h) illustrate the 3-D
meshes viewed from different angles for (e). (j), (k), and (l) illustrate the 3-Dmeshes viewed from different
angles for (i).
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In this experiment, we validate the effectiveness of the
method. Figure 7 shows the measurement results. Three
tests are performed here, and the meshes in Fig. 7 are
sampled from the dense point clouds. First, we let the central
section of the iron sheet sunken, as Fig. 7(a) shows, where
the measured area is about 7.5 m × 3 m which is bigger than
the size of a commonly used ship plate. Then, we measure
the 3-D shape of the iron sheet by moving the scanner.
Around the measured region, we placed markers at intervals
of about 0.5 m. Figures 7(b)–7(d) illustrate the measured
results viewed from different angles. The different color
means the different sections measured at different times.
Second, we deform the iron sheet, as Fig. 7(e) shows.
Figures 7(f)–7(h) are the measured results of Fig. 7(e)
seen from different angles. Third, ba ig deformation is per-
formed on the iron sheet, as Fig. 7(i) shows. Figures 7(j)–7(l)
are the measured results of Fig. 7(i) seen from different
angles.

3.2 Assessment of Alignment Errors
The alignment heavily influences the measurement accuracy,
thus the alignment error should be assessed. Here, the align-
ment error is defined by the average distances between cor-
responding points of different point clouds, and the bigger
the average distance, the larger the alignment error. As
Fig. 8 shows, given two different point clouds Q1 and
Q2, suppose Ci

1 is a point on Q1, C
j
2 and Ck

2 are the two
points on Q2, we define the distances between two point
clouds using the following steps: First, in Q1 we locate
the closet point, denoted as Ci

1, to Cj
2, and compute the dis-

tance Dij between Ci
1 and C

j
2. Second, inQ2 we compute the

closet point, denoted as Ck
2, to Ci

1, and calculate the distance
Dik between Ck

2 and Ci
1, Finally, the distance from Ci

1 to Q2

is defined as ðDij þDikÞ∕2. Similarly, the distance between

each point C ∈ Q1 and Q2 can be acquired, and then the
average distances can be computed in the overlapping
region.

Table 1 shows the average distances between adjacent
scans and the corresponding standard deviation for the
three tests shown in Fig. 7. From Table 1, we can see that
all the absolute average accumulated errors for the three
tests are less than 2 mm.

3.3 Evaluation of Accuracy
The measurement accuracy is very critical for methods used
in industry. Thus, in order to evaluate the accuracy, we car-
ried out an experiment in which we attached two markers on
the iron sheet and then measured the distance between the
two markers. First, the distance between the two markers
is measured by the laser total station. Because the measured
distance measured by the laser total station is accurate
enough for applications in industry, the distance is consid-
ered as the ground truth with which to evaluate the accuracy.
Second, we measured the distance by scanner without error
compensation. Third, we measured the distance by scanner
with correction by the laser total station. We tested this 13
times by attaching two markers in different places.

Figure 9(a) shows that the error will increase when the
measured distance increases. Figure 9(b) illustrates the
error per meter, from which we can see that the error per
meter is similar for all measurements. As can be seen
from Figs. 9(a) and 9(b), the error after correction by
error compensation is smaller than that before correction.
In some industries, such as producing shell plates in ship-
building, the accuracy demand is about 10 mm for a mea-
sured plate with a length of 5 m. Thus, our method,
which can obtain very dense and more accurate measured
results of a large bending plate, is valuable in some manu-
facturing fields.

3.4 Evaluation of Speed
The speed of execution is also very important for a method
used in industry. Because some algorithms in our method can
be performed concurrently, a GPU technique is used to
improve the computational speed. GPU is specialized for
compute-intensive and highly parallel computations.45 The
GPU architecture used in our method is shown in Fig. 10,
where two GPUs are used, and each one performs the cal-
culation for one image by decomposing the image into a grid

Fig. 8 Assess the point cloud alignment. Q1 and Q2 are the different
point clouds.

Table 1 The average distances between adjacent scans (mm).

Overlapping
region

Average distance
for the first test
(absolute value)

Standard
deviation

Average distance
for the second test
(absolute value)

Standard
deviation

Average distance
for the third test
(absolute value)

Standard
deviation

Q1, Q2 0.46 0.2336 0.48 0.2566 0.53 0.2437

Q2, Q3 0.59 0.3159 0.52 0.2871 0.57 0.3013

Q3, Q4 0.38 0.2017 0.43 0.2602 0.43 0.2155

Q4, Q5 0.54 0.2974 0.49 0.2653 0.46 0.2778

Accumulated
error

1.97 1.92 1.99
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of 8 × 8 thread blocks, with each thread computing one com-
pute unified device architecture C function dealing with one
image pixel. We use the same GPU architecture for all the
algorithms except that the kernel function in the thread is
replaced by different algorithms.

We tested the execution speed by implementing a CPU
version and GPU version, respectively, and Table 2 shows
the comparison. In this experiment, we give the execution
time of one measurement using optical scanner, the time
of aligning two point clouds and the time of compensation
using laser total station. The time of capturing images and
moving the scanner is not considered here. From Table 2,
we can see the proposed method is fast enough for

manufacturing from the perspective of the algorithm’s exe-
cution speed.

4 Conclusions
We presents a 3-D measurement method for large-scale
bending plates used in manufacturing, which combines
the advantages of laser measurement and vision measure-
ment. This method realizes the measurement of large-scale
marker-less bending plates. Certainly, there exist some
limitations for the current method: First, though our algo-
rithm is fast enough, it takes a long time (about a minute
and a half in our experiment) to move the scanner and
take pictures by SLR cameras for measuring a large bending
plate (about 7.5 m long in our experiment), which may be an
impediment in practice. Second, the location of a current
measurement cannot be far from the previous measurement
using the scanner, and there is at least a 1 m overlapping area
between two measurements in order extract enough feature
points for alignment. However, we think that although there
are some limitations, this will depend on the type of appli-
cation. In the future, we will solve the above-mentioned
problems by using better cameras, projectors, and control
devices.
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