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Abstract

Significance: Contamination of diffuse correlation spectroscopy (DCS) measurements of cer-
ebral blood flow (CBF) due to systemic physiology remains a significant challenge in the clinical
translation of DCS for neuromonitoring. Tunable, multi-layer Monte Carlo-based (MC) light
transport models have the potential to remove extracerebral flow cross-talk in cerebral blood
flow index (CBFi) estimates.

Aim: We explore the effectiveness of MC DCS models in recovering accurate CBFi changes in
the presence of strong systemic physiology variations during a hypercapnia maneuver.

Approach: Multi-layer slab and head-like realistic (curved) geometries were used to run MC
simulations of photon propagation through the head. The simulation data were post-processed
into models with variable extracerebral thicknesses and used to fit DCS multi-distance intensity
autocorrelation measurements to estimate CBFi timecourses. The results of the MC CBFi values
from a set of human subject hypercapnia sessions were compared with CBFi values estimated
using a semi-infinite analytical model, as commonly used in the field.

Results: Group averages indicate a gradual systemic increase in blood flow following a different
temporal profile versus the expected rapid CBF response. Optimized MC models, guided by
several intrinsic criteria and a pressure modulation maneuver, were able to more effectively sep-
arate CBFi changes from scalp blood flow influence than the analytical fitting, which assumed
a homogeneous medium. Three-layer models performed better than two-layer ones; slab and
curved models achieved largely similar results, though curved geometries were closer to physio-
logical layer thicknesses.

Conclusion: Three-layer, adjustable MC models can be useful in separating distinct changes
in scalp and brain blood flow. Pressure modulation, along with reasonable estimates of
physiological parameters, can help direct the choice of appropriate layer thicknesses in MC
models.
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1 Introduction

The brain receives 12% to 15% of cardiac output even though it weighs only 2% of the body
weight.1,2 Cerebral blood flow (CBF) is responsible for brain oxygen delivery, and thus accurate,
continuous CBF quantification can provide crucial information for monitoring brain health and
function.3,4 This is particularly important under conditions when cerebral autoregulation may be
impaired, potentially leading to insufficient blood flow to the brain.4,5 CBF can be a useful bio-
marker for both diagnosing and managing patients suffering from stroke, traumatic brain injury,
or other neurological impairments.6 Therefore, a monitoring technique able to continuously mea-
sure CBF non-invasively is highly desirable.

Diffuse correlation spectroscopy (DCS) is becoming increasingly widespread as a non-
invasive optical technology to measure tissue perfusion, particularly in the brain.3,7 A long coher-
ence-length laser emitting light in the near-infrared range is used to illuminate the probed tissue
region, and photon counting detectors are used to detect speckle fluctuations in the light; the
temporal autocorrelation of these fluctuations in the reflected light can then be used to character-
ize the motion of light scatterers in the medium, in this case red blood cells.5,8 DCS takes ad-
vantage of this physical phenomenon to monitor time-varying blood flow non-invasively and is
currently being used in various research applications.5,8–15 A particularly successful application
area is the CBF monitoring of neonates, for whom the relatively thin skull results in high brain
sensitivity.16,17

Extending the application of DCS to bedside brain monitoring of adults, however, requires
accounting for the influence of systemic variations of scalp blood flow (SBF) that have the
potential to strongly contaminate changes in the calculated cerebral blood flow index
(CBFi).

3,18,19 Due to the thicker scalp and skull of an adult head, less photons reach the brain,
which results in decreased cerebral sensitivity. This further increases the contribution of extrac-
erebral hemodynamic changes in the computed CBFi. To extract CBFi measures, most publi-
cations in the field primarily use the analytical solution of the diffusion correlation equation—in
this paper, referred to as the “analytical model” or “analytical fit”—and assume a single-layer,
homogeneous slab medium as the human head.7,15,16,19,20 While scalp influence on brain mea-
surements in other optical neuromonitoring modalities such as near-infrared spectroscopy has
been extensively explored and addressed,21–26 development of robust methodologies of separat-
ing skin from brain blood flow in DCS is still an ongoing investigation.3

Previous works have shown success in using two- and three-layered models to extract CBFi
from SBF contamination.18,27,28 Many of these studies derive a layered adaption of the analytical
model, and subsequently use it to fit for and compare quantities averaged into single values
representing CBFi before and during an intervention or stimulus, such as hypocapnia or a fin-
ger-tapping task. To be used as a potential clinical technology, however, DCS must be able to
continuously quantify accurate CBFi changes such that appropriate and timely treatment can be
administered. In particular, Baker et al.29 have demonstrated the efficacy of a pressure modu-
lation algorithm, where light pressure is applied to occlude SBF for a brief period of time. They
combine this with a two-layer analytical model to separate scalp and CBF during a continuous
timecourse.

Monte Carlo (MC) fitting methods involve fitting for blood flow with a model based on an
MC forward simulation that is equivalent to modeling photon transport through the more accu-
rate radiative transfer equation as opposed to the diffusion correlation equation, which is based
on diffusion approximations.30 The MC simulations can model light transport in arbitrarily com-
plex 3-D volumes and output photon propagation metrics for every detected photon. For DCS,
photon pathlengths and accumulated momentum transfer can be used to compute the temporal
field autocorrelation function in fitting for blood flow.31 MC fitting methods can be advantageous
compared to analytical methods for several reasons. First, as Li et al.32 have demonstrated, MC
models can accommodate different geometries, allowing surface curvature effects to be inves-
tigated on DCS measurements. Second, MC simulations are more accurate at the short detector
separations needed to get scalp-specific measurements, separations that test the limits of the
diffuse light propagation approximations. Last, MC simulations results are more robust com-
pared to multi-layer analytical models that depend on potentially unstable numerical integra-
tions. Many published DCS works utilize the blood flow index (BFi) calculated from MC
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forward simulations as an in-silico verification or investigation prior to performing phantom or
in-vivo studies.32–35 In contrast, taking advantage of advances in computational power and in
particular GPU acceleration, we use MC simulations directly as the forward component of our
inverse model for estimating BFi in both superficial (scalp) and deep (brain) tissue layers.

This paper aims to evaluate the effectiveness of MC fitting methods in removing extracere-
bral contaminants from DCS CBFi estimates. For the forward simulations, we employ tunable
multi-layer, heterogeneous slab and realistic (head-like) models, the latter of which is derived
from an atlas structural MRI scan of a generic human head.33 We then allow the model param-
eters to be adjusted as needed on a case-by-case basis. Both the analytical and MC-based models
are used to fit DCS data from an in-vivo study on healthy volunteers, during which a pressure
modulation maneuver was first performed on each subject before a CBF increase was induced
with carbon dioxide administration. A subset of the data was also acquired concurrently with
transcranial Doppler ultrasound (TCD) as a validation metric to measure the middle cerebral
artery velocity (MCAV). We apply MC-based models, tuned based on several criteria, to extract
CBFi in subjects where the hypercapnia-induced significant elevations in SBF. Improvements
between the MC CBFi versus the analytical semi-infinite medium solution to the diffusion cor-
relation equation are then evaluated by comparing each timecourse to what we observe with TCD
MCAV. To conclude, we discuss the relative performance and advantages among the various MC
models used, and the limitations of MC-based fitting.

2 Methods

2.1 Hypercapnia Study in Healthy Volunteers

We conducted a human subject study with healthy volunteers to measure cerebral responses to
induce hypercapnia. As part of a larger hypercapnia challenge study that had several goals
beyond the scope of this paper, we enrolled a total of 27 subjects, each of which had either
one or two visits, i.e. sessions. The first visit consisted of either optical-only or joint opti-
cal-TCD measurements, and the second consisted of joint optical-MRI scanning measurements;
in total, 43 measurement sessions were held. Seventeen of the subjects had an MRI scanning
session and 9 of the subjects had joint optical-TCD measurements, where TCD data were
acquired concurrently with the optical recordings. A pressure modulation maneuver was also
performed on each subject before the hypercapnia session. The study was approved by the
Mass General Brigham Institutional Review Board, and all subjects provided informed consent
prior to the measurements. A table of the subject information is shown in Table 1.

2.1.1 Instrumentation

An in-house gas delivery and mixing system comprising of a medical gas mixer in series with a
manifold of flow meters was used to mix and deliver a gas mixture for an exogenous CO2 chal-
lenge. Given that there is significant inter-individual variance in resting end-tidal carbon dioxide
(PETCO2),

36 resting PETCO2 was assessed in subjects via calibrated capnograph before the exog-
enous CO2 challenge. The subject wore a nose-clip and breathed through a mouth-piece on an
MRI-compatible circuit designed to maintain the PETCO2 within �1 to 2 mmHg of target
PETCO2.

37,38 The partial pressures of CO2 and O2 were sampled through the air filter connected
with the mouthpiece, and the sampled gases were measured by CO2 and O2 gas analyzers
(Capstar-100, Oxystar-100, CWE, Inc., Pennsylvania). Both the gas analyzers were again
calibrated to the barometric pressure on the day of the experiment and corrected for vapor
pressure. The respiratory flow was measured with a respiratory flow head (MTL300L,
ADInstruments, Inc., Colorado) on the breathing circuit via a calibrated differential pressure
sensor. Physiological changes including PCO2, PO2, respiration, and ECG were recorded using
AdInstruments Powerlab (AdInstruments, Inc., Colorado).

One or two of several available 4-channel continuous-wave DCS instruments built by our
group were used to acquire data for each measurement (as constrained by instrument sharing
logistics and some technical failures). Each instrument contained a long-coherence length laser,
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4 single photon counting avalanche photo diodes (Excelitas SPCM-AQRH or SPCM-AQ4C),
and a custom-designed time-tagging board that was used to stream the photon detection
timestamps to a laptop computer for recording and display. The wavelengths of the lasers dif-
fered across the instruments and were either 767 nm (5 sessions), 785 nm (1 session), or 850 nm
(37 sessions). However, as shown in Table 2, the effective attenuation coefficient varies less
than 10% between these wavelengths, and so the variation in the average photon penetration
and corresponding brain sensitivity was likely small compared to the variation between
subjects.

We used DCS custom optical probes with source–detector (s–d) distances of 5, 25, and
30 mm, which were placed on the subject’s forehead. If a single 4-channel instrument was used,
we recorded using one fiber at 5 mm, and three fibers bundled together at 30 mm. If a second
instrument was available, we also recorded with three bundled fibers at 25-mm separation. In 10
subjects undergoing a total of 16 measurement sessions, a separate probe with a single fiber at a
20-mm s–d distance was attached on the leg of the subject to monitor peripheral blood flow
changes. The goal of using of three single-mode fibers bundled together at the 25- and
30-mm distances was to increase signal-to-noise ratio. Prisms were used to couple light from

Table 1 Subject information. Values for age, baseline PetCO2,
and increase in PetCO2 are given as mean� standard deviation.

Subject information

Total number of subjects 27

Total number of female subjects 19

Total number of male subjects 8

Average age (years) 26� 5

Average baseline PETCO2 (mmHg) 36� 4

Average increase in PETCO2 (mmHg) 11� 1

Subject information

Total number of sessions 43

Total number of optical-only sessions 17

Total number of optical-MRI sessions 17

Total number of optical-TCD sessions 9

Table 2 Optical properties used for each wavelength.

μa (mm−1) μ 0
s (mm−1) μeff (mm−1)

Forehead

767 nm 0.018 0.933 0.224

785 nm 0.016 0.901 0.208

850 nm 0.020 0.800 0.219

Calf

785 nm 0.016 0.570 0.165

850 nm 0.018 0.530 0.169
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the fibers to the tissue, and a diffuser was placed in front of the 400-μm multi-mode source fiber
to ensure ANSI skin laser exposure limits were observed.

In some subjects, a dual probe setting with 2-MHz transducers in conjunction with a TCD
system (Delicate EMS-9U, Shenzhen, China) was used for simultaneous recording of cerebral
blood flow velocity (CBFV) in the middle cerebral artery (MCA) on both left and right sides.
Two transducers were attached to the left and right temporal bone windows by velcro. The depth
of the Doppler samples was confined to the M1 segment, which is at the main stem of the MCA.
In these measurements, we aimed to capture MCAV timecourses for the left and right middle
cerebral arteries (LMCA and RMCA), although in certain cases signal from only one side was
able to be acquired. The CBFV was sampled at the rate of 100 Hz, and a trigger was used to align
the starts of the TCD, DCS, and respiratory measurements.

2.1.2 Pressure modulation and hypercapnia protocol

A session started with each subject positioned either in a reclined sitting posture or lying down in
a supine position. They were asked to bite into the mouthpiece of the breathing circuit for gas
administration and sampling, and the subject’s nose was sealed with a clip or tape to ensure
accurate gas delivery and sampling. The main DCS probe was placed on the right side of the
subject forehead. In a subset of the cases, a probe containing a 20-mm s–d distance was taped to
the subject’s calf to measure any potential systemic response in blood flow during hypercapnia.
For cases where validation data were also acquired, TCD probes were placed on each temple of
the forehead.

Before gas administration, two pressure modulation measurements were taken first. Each
consisted of a 20-s baseline period followed by a 30-s period where light pressure is applied
to the DCS probe by hand, aiming to reduce SBF as calculated from the 5-mm detector by ∼50%
(based on real-time feedback from instrumentation). As there was some delay in the BFi display,
for some cases the 5-mm detector BFi ended up decreasing up to 90%. Pressure is then released
afterward and recording continued for 10 more seconds during recovery, totaling to a minute-
long measurement.

Hypercapnia measurements were then acquired twice per subject. Two gas supply tanks were
used, one with medical air, and the other with a gas mixture of 10% CO2, 21% O2, and balance
N2 to ensure that no more than 10% CO2 could be delivered to the subject. A flow rate of 10 to
15 l∕min was used throughout the entire measurement, and end-tidal PETCO2 was continuously
monitored and recorded simultaneously with the optical and TCD data acquisition (if appli-
cable). Each measurement started with a 1-min medical air baseline period (normocapnia), fol-
lowed by a 2-min hypercapnic period, and finally another 2-min normocapnic period for
recovery, for a total measurement period of 5 min. The fraction of inspired CO2 was adjusted
as needed throughout the 2-min hypercapnia period to obtain a 10� 2 mmHg increase in
PETCO2 from baseline (generally requiring a 5% to 6% inspired CO2 fraction).

2.2 PETCO2 Processing Methods

Raw data for PETCO2 consist of an exported CO2 partial pressure timecourse from LabChart at a
sampling rate of 1 kHz. To obtain the increase in PETCO2 throughout the 5-min breathing pro-
tocol and filter out respiratory oscillations, we obtained the upper envelope of each measurement
and subtracted the average value of this envelope during the baseline from the entire timecourse.

2.3 TCD Processing Methods

Raw data from the TCD instrument consist of two timecourses of MCAV in cm/s, one each for
the LMCA and RMCA at a sampling rate of 1 kHz. Heart rate and/or respiratory oscillations
must be filtered out to obtain a clean MCAV timecourse usable for comparison to DCS data. We
first obtained the upper and lower envelopes of each timecourse. Then, a lowpass filter of
0.01 Hz was used on all envelopes; measurements were normalized by dividing the entire time-
course by the average baseline MCAVand converting all values to percent change from baseline.
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Finally, the upper and lower envelopes from both (if available) L/RMCAwere averaged together
to produce a single TCD timecourse for each subject.

For subjects who did not have TCD measurements, we computed the expected change in
MCAV by calibrating a group average of our existing TCD measurements with a group average
of their corresponding PETCO2 timecourses. The travel time of the exhaled gas through the sam-
pling tube results in a slight time lag of the PETCO2 timecourse with respect to the TCD curve.
This was compounded by a physiological delay in reacting to the hypercapnia. We correct for
this by calculating the r2 statistic for linear regression between the TCD timecourse and multiple
time-shifted PETCO2 timecourses whose delay time ranged from 1 to 10 s in 1-s increments. The
offset time that resulted in the highest r2 statistic between the two timecourses was chosen, and
the corresponding linear regression model was then used to calibrate the TCD and shifted
PETCO2 data for the 60- to 250-s time interval of the measurement. All subjects chosen with
MC fitting based on systemic physiological drift and signal quality criteria (as described below
in Sec. 2.4.2) did not have TCD recordings, so expected MCAV values were calculated from the
PETCO2 timecourses.

2.4 DCS Processing Methods

The DCS measurements were processed in two primary ways: first, fitting the data using the
analytical solution to the semi-infinite diffusion correlation equation, which employs a single-
layer, homogeneous model; and second, fitting against a multi-layered MC model of DCS mea-
surements generated by a simulation of photon propagation through tissue. For both methods,
experimentally acquired autocorrelation curves from fibers at equal s–d distances were averaged
together to make a single autocorrelation at the corresponding s–d separation. Hypercapnia mea-
surements were processed with a 10-s integration time for each data point (autocorrelation
curve), and pressure modulation measurements were processed with a 3-s integration time for
each data point.

2.4.1 Analytical fitting solution

Autocorrelation curves for each timepoint and each detector distance were fitted for BFi and the
coherence factor β using the analytical solution to the semi-infinite diffusion correlation
equation:30

EQ-TARGET;temp:intralink-;e001;116;336G1ðρ; τÞ ¼
3μ 0

s

4π

�
expð−Kr1Þ

r1
−
expð−Kr2Þ

r2

�
(1)

with

EQ-TARGET;temp:intralink-;e002;116;279K2 ¼ 3μaμ
0
s þ μ 02

s k20αhΔr2ðτÞi; (2)

whereG1ðρ; τÞ is the electric field autocorrelation function at a s–d separation ρ and delay time τ,
μ 0
s is the reduced scattering coefficient, μa is the absorption coefficient, k0 is the wavenumber

of light in the medium, α is the probability of scattering from a moving scatterer, ρ is the
s–d separation, r1 ¼ ðρ2 þ z20Þ1∕2, and r2 ¼ ðρ2 þ ðz0 þ 2zbÞ2Þ1∕2, with z0 ¼ μ 0−1

s , and zb ¼
1.76∕μ 0

s for a tissue index of refraction of 1.37. The expression hΔr2ðτÞi is the mean square
displacement of the scattering particles—in this case equivalent to red blood cells (RBCs)—
at time delay τ, given by

EQ-TARGET;temp:intralink-;e003;116;161hΔr2ðτÞi ¼ 6BFiτ; (3)

where BFi is the blood flow index (modeled as a diffusion coefficient as used in the field).30

Finally, the normalized intensity temporal autocorrelation function g2 is given by

EQ-TARGET;temp:intralink-;e004;116;106g2ðτ; ρÞ ¼ 1þ βðg1ðτ; ρÞÞ2; g1ðτÞ ¼
G1ðτ; ρÞ
IðρÞ ; (4)

Wu et al.: Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology. . .

Neurophotonics 015001-6 Jan–Mar 2021 • Vol. 8(1)



where g1 is the normalized electric field temporal autocorrelation, β is the coherence factor de-
pendent on the system characteristics, and I is the photon fluence.

In this study, we assume μa ¼ 0.015 mm−1 and μ 0
s ¼ 0.85 mm−1 for the 850-nm forehead

measurements, based on a group average of optical property measurements on several adult
foreheads obtained by our group using a frequency-domain NIRS instrument (unpublished data).
We then calculated the corresponding hemoglobin concentration (HbT), assuming a 20% volume
fraction of fat, 75% volume fraction of water, and a 62.5% oxygen saturation (SO2), taking the
values for each component absorption coefficient from data compiled by Prahl et al.39 The cal-
culated HbTand SO2 were then used to derive the forehead absorption values for the other wave-
lengths used. Scattering values for the other wavelengths were derived from the 850-nm μ 0

s using
a power law dependence on wavelength, with a scattering power coefficient of −1.5. For the calf
measurements, only the 785- and 850-nm instruments were used to collect the data, and the
optical properties were taken from Warren et al.40 Table 2 shows the optical properties used
for each wavelength.

Each curve was fit over a delay time range of approximately 10−6 to 10−2 s (covering the
entire decay region). The use of only the upper part of the autocorrelation curves as done in
previous studies33,41–43 was considered but appeared to result in excessive fit variation (shown
in the Supplementary Material). We obtain timecourses of BFi and β for each detector distance.
We have observed β changes during the applied pressure period with pressure modulation,
whereas it remains stable during hypercapnia measurements. Therefore, when processing hyper-
capnia data, to improve BFi fitting stability, we subsequently re-fit the timecourse for BFi values
for each detector distance while holding the β value for each distance constant to the median β of
the timecourse obtained from the first fit.

2.4.2 Measurement selection

We focused our analysis on several cases that met a number of criteria. To choose measurements
with sufficient SNR and data quality, we selected those with a minimum adequate photon count,
at least 5k per second per fiber at 30 mm. From there we looked at measurements with two
distinct features in the observed responses to the hypercapnia administration: first, a significant
(>20%) and persistent increase in superficial BFi (derived from the 5-mm separation measure-
ments), lasting well beyond the end of CO2 administration; and second, a long separation
response showing a different temporal profile to what was observed in the 5-mm detector, such
as an earlier/higher peak, or a decrease during recovery not observed in the short separation
detector (measurements in which the long separation timecourse showed the same response
as the short separation, or no response at all, likely implied little brain sensitivity even in the
long separation channel). Last, in order to potentially benefit from MC-based processing, the
long separation response additionally needed to show clear evidence of scalp physiology con-
tamination—this screens out favorable cases in which the long separation timecourse decreased
fully despite the persistent increase in 5 mm response, demonstrating good ability to differentiate
between the scalp and brain hemodynamics.

2.4.3 Monte Carlo-based fitting

MC forward simulations of light propagation through tissue were performed using the MCX
software package developed by Fang et al.44 One billion photons were launched per simulation,
and relevant data saved from the software simulation included the path length and momentum
transfer for each photon for each tissue layer.

Two primary volumetric geometries were used for the forward model, both with
1 mm × 1 mm × 1 mm resolution. The first volume was a 21-layer slab volume, with each layer
1-mm thick. After running the forward simulation, the photon path length and momentum trans-
fer data from 21 layers were then concatenated during post-processing into either two, three, or
four total layers, depending on the model tested. Two-layer models represented the extracerebral
layers and the brain. Three-layer models replicated the scalp, skull, and the brain; four-layer
models denoted the scalp, skull, cerebrospinal fluid (CSF), and the brain. Thicknesses of each
layer were adjustable as needed for processing a given measurement. The second volume used
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for fitting encoded a realistic, head-like model—hereon referred to as the curved model—
initially taken directly from a subject’s MRI head scan,45 and further iteratively image-eroded
to create a final 22-layer head volume, with each layer 1-mm thick (covering the full range of
physiologically realistic cortical depths). As with the multi-layer slab volume, the 22 layers were
concatenated into two, three, or four total layers as needed. A diagram showing how the slab and
curved head models were generated is displayed in Fig. 1.

Measurements were fitted using both the slab and curved models. Two-layer volumes were
concatenated such that the extracerebral layer ranged from 1 to 18 mm in 1-mm increments,
totaling 18 different MC model versions. Seventy different model versions were used for the
three-layer volumes, with scalp thicknesses ranging from 1 to 7 mm and skull thicknesses rang-
ing from 4 to 13 mm in 1-mm increments each; the 70 different models consist of all possible
combinations of scalp and skull thicknesses throughout those ranges. Last, thickness combina-
tions for four-layer models were taken from optimal thickness combinations chosen from the
three-layer model (selection process is described in depth in Sec. 3.3), with a 1- or 2-mm-thick
region removed from the skull layer to create a CSF layer.

For the vast majority of the MC models fittings, scattering was set to 0.85 mm−1 for each
layer. As an exploration, the impact of using distinct scattering coefficients for each layer was
also tested—values used for the scalp, skull, and brain (used with our 850-nm source and taken
from Gagnon et al.18 as reduced scattering coefficients) were 0.74, 0.81, and 1.16 mm−1, respec-
tively. For absorption coefficients, multiple literature reports using our wavelength range of inter-
est for each of the four layers were averaged,33,46–48 and the values 0.01, 0.033, 0.004, and
0.023 mm−1 were used for all MC models. Of note, MC simulation photon history files can
simply be reprocessed to take into account changes in absorption, but the MC simulation needs
to be re-run to account for changes in scattering as shown below.

Using the photon path lengths and momentum transfer obtained by the MC models, the tem-
poral field autocorrelation function for each tissue layer was calculated as:30,32

EQ-TARGET;temp:intralink-;e005;116;188G1ðτÞ ¼
1

Np

XNp

n¼1

exp

�
−
1

3
k20

XNt

i¼1

Yn;ihΔr2ðτÞii
�
exp

�
−
XNt

i¼1

μa;iLn;i

�
; (5)

where k0 is the wavenumber of the light in the medium, Np is the number of photons detected,Nt

is the number of tissue layers, Yn;i is the total momentum transfer of photon n in layer i, Ln;i is
the total path length of photon n in layer i, μa;i is the absorption coefficient in layer i, and
hΔr2ðτÞii is the mean square displacement of the scattering particles in layer i, as defined in
Sec. 2.4.1. Likewise, the normalized temporal autocorrelation function, g2ðτÞ, remains the same
as in Eq. (4). However, SBF (BFi in the topmost layer) was held to the value calculated from the

Fig. 1 Top row: the 21-layer slab is concatenated into a 2-, 3-, or 4-layer volume in post-process-
ing (3 layer is shown). Bottom row: the segmented MRI is iteratively image-eroded to make a 22-
layer head volume and is analogously post-processed into a 2-, 3-, or 4-layer volume.
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5-mm detector analytical fit for a given timepoint, and skull blood flow was held to
2 × 10−8 mm2∕s (assumed to be 1% of typical head measurement values). As explained in
Sec. 2.4.1, β was fitted for at each timepoint, but a second pass fit was done for hypercapnia
measurements in which β was held constant for hypercapnia timecourses to the median values
for the first pass at each detector.

2.5 Estimating Probe-to-Brain Distance

As part of the larger study, some DCS measurements during hypercapnia were acquired in an
MRI scanner, where both structural and concurrent functional scans were taken on the subject as
validation. While we are not reporting the functional MRI data in this paper, we use the structural
MRI scan to estimate extracerebral thickness and compare it to the value predicted by the opti-
mized model in our MC processing.

Multi-echo MPRAGE T1-weighted scans were obtained on the subjects with vitamin E tabs
placed on top of the DCS probe as fiducial markers to indicate the optical probe locations. From
here, two methods were used to measure extracerebral thickness. The first consisted of loading
the MRI DICOMs into the MicroDICOM software package and using the built-in distance tool
as a ruler. In the second method, the structural DICOMs were processed into a volumetric seg-
mentation using the MRI Freesurfer image analysis suite.49 These volumes were then segmented
into four layers—the scalp, skull, CSF, and brain—using methodology presented by Perdue and
Diamond.50 Finally, the four-layer segmented volume is converted into a mesh-based volume,51

with the fiducial marker location preserved throughout the entire process.
The node closest to the fiducial marker location was chosen on the surface of the head, and a

normal vector was calculated by averaging the surface normals of all faces containing the node.
From there, a line was drawn inward toward the brain along the averaged normal and was incre-
mentally increased in length until the gray matter tissue is reached. This was done for a patch of
nodes on the surface surrounding the initial chosen node, up to approximately a 1.5-mm radius,
to create a final distribution of calculated probe-to-brain distances.

3 Results

3.1 PETCO2 and TCD

Figure 2(a) shows the PETCO2 group average of the 9 subjects totaling 18 measurements for
whom TCD measurements taken concurrently alongside optical acquisitions. Ten measurements
had both left and right MCAV timecourses; four had only the left and another four had only the
right. Taking the upper and lower envelopes of the total available timecourses resulted in 56

(a) (b)

Fig. 2 Group averaged PETCO2 timecourse for all subjects with concurrent TCD measurements,
with standard errors in light blue and the quartiles plotted in dotted lines (a), and the corresponding
averaged TCD timecourse for the same subjects (b).
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timecourses used for the group average. To remove spikes in the individual timecourses that were
otherwise valid, we excluded the highest and lowest data points on a timepoint-by-timepoint
basis. An increase of ∼11.5� 0.6 mmHg (mean� standard error), a value slightly above our
protocol target of 10� 2 mmHg, is reached before the sharp decrease starting at 189 s.
Accordingly, Fig. 2(b) shows the group average (outliers trimmed) for the TCD measurements
corresponding to the PETCO2 timecourses in Fig. 2(a). The ΔMCAV reaches approximately
39% �2% above baseline before a sharp drop starting at about 194 s.

We regressed the individual TCD responses from their respective changes in PETCO2 for each
of the nine subjects. The average slope across the nine subjects was 3.2� 0.9 (given as mean and
standard deviation); the average intercept was −0.4� 4.0; and the average r2 value was
0.92� 0.07. Figure 3 shows an example plot of the linear relationship between PETCO2 and
MCAV in one subject and shows the relationship between the curves in Fig. 2 for the interval
from 60 to 250 s as described in Sec. 2.3. The average PETCO2 timecourse in this particular case
was offset with a time lag of 5 s. Estimation of the TCD timecourses from the etCO2 data for the
remainder of this study was fitted with the following model: ΔeTCD ¼ 3.2 · ΔPETCO2 − 0.4,
where eTCD is the estimated TCD MCAV derived from the PETCO2 change.

3.2 Observed Group-Averaged BFi Changes due to Hypercapnia Using
Semi-Infinite Analytical Model

Figures 4(a)–4(d) show group averages of the 5-, 25-, and 30-mm s–d separation for measurements
during the hypercapnia challenge from subjects for whom data were acquired at all three distances
and the baseline BFi (consisting of the 1-min prior to CO2 administration) had a coefficient of
variation (CoV) of less than 25%. Thirteen out of 59 measurements were excluded due to the CoV
criteria. Outliers were excluded at the 5% level on a timepoint-by-timepoint basis again to remove
spikes in individual timecourses that were otherwise clean. This resulted in two data points, the
highest and the lowest, removed per timepoint for the 5-, 25-, and 30-mm distances, and no data
points for the 20-mm distance. Figure 4(d) shows a group average of the subset of these measure-
ments that contained a 20-mm separation probe attached to the subject calf (total of 28 measure-
ments across 10 subjects). We define ΔrBFið%Þ as ðrBFi − 1Þ × 100, where rBFi is the BFi
timecourse divided by the average value at baseline. The timecourses peak at 220, 190, 180, and
270 s, respectively, reaching increases of 20%� 3%, 18%� 2%, 20%� 2%, and 15%� 4%, at
5-, 25-, 30-mm forehead, and 20-mm peripheral s–d separations, respectively. Recovery at 300 s
reaches 11%� 2%, 8%� 1%, 8%� 1%, and 10%� 2% of baseline.

Fig. 3 Example ΔTCD timecourse plotted against its corresponding ΔPETCO2 timecourse. The
linear regression fit is overlaid in blue.
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We consider significant systemic drift to be an observed BFi increase in the 5-mm s–d chan-
nel that reached at least 20% during or after hypercapnia. Among the sessions containing all
three s–d distances shown in Fig. 4 (where each session for a subject consisted of two hyper-
capnia measurements), 63% of sessions contained at least one measurement with significant
systemic drift. We note that across the larger hypercapnia challenge study, which included sub-
jects with only 5- and 30-mm s–d distances used, a 61% ratio was observed for the same
phenomenon.

We extracted the peak times for each individual timecourse used in Fig. 4 and plotted the
spread of the peak times for each individual detector distance (see the Supplementary Material).
The spreads showed a similar result to the group averages, in that the median of the peak times
was earliest for 30 mm, followed by 25, 5, and 20 mm.

3.3 Subject 1: Exploration of Various Multi-Layer Monte Carlo DCS Models
to Reduce Systemic Physiology Cross-Talk in a Sample Case

Based on the criteria outlined in Sec. 2.4.2, seven total measurements, each from a different
subject, were found containing both significant systemic (scalp) BFi change and an observed,
distinct long separation increase during hypercapnia that was discernable from the 5-mm
response. Four of those measurements had long separation responses returning to within
10% of baseline at the end of the measurement, indicating limited impact of systemic physiology
cross-talk. Thus, we performed multi-layer, MC-based fitting on a total of other three
measurements.

Since no concurrent TCD data were collected for these measurements, hypercapnia time-
courses for all three measurements are shown up to the 250-s mark, as the expected TCD
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Fig. 4 Group average of (a) 5-mm detector, (b) 25-mm detector, and (c) 30 mm detector, totaling
46 measurements. (d) A 28-measurement subset of those that contained a 20-mm probe on the
subject calf. The error bars represent standard error, and the dotted timecourses above and below
the group average represent the 25th and 75th quartiles, respectively.
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timecourse synthesized from PETCO2 change using the calibration curve discussed in Sec. 3.1
does not include data past 250 s. In sections below, we first explore several different MC mod-
eling approaches on the first subject measurement: two-layer, three-layer with uniform scattering
across layers, three-layer with variable scattering, and four-layer using a range of diffusion coef-
ficients for the CSF. Finally, based on the results from the first subject using the various
approaches listed above, we report on the use of the most successful MC model approach for
the other two subject measurements presented.

3.3.1 Subject 1: reference analytical fit

Figure 5 shows the analytical fitting-based timecourse for both the pressure modulation and
hypercapnia measurements on subject 1 with expected TCD changes (eTCD) overlaid.

In the pressure modulation timecourse, we observe a 30% to 40% reduction in BFi in the long
s–d separations and 85% to 90% decrease in the short separation measurement during the period
where light pressure is applied on the probe to reduce SBF. For the hypercapnia measurement,
we observe a continuous increase in BFi measured from the 5-mm detector, reaching 33%
increase from baseline at 250 s. We note a 23% and 31% increase in the 25- and 30-mm detector
timecourses, respectively, both peaking at approximately 190 s; they additionally remain
elevated at slightly above 10% at 250 s. The expected TCD timecourse, estimated from the
PETCO2 data, is overlaid; a 32% peak increase at approximately 180 s is reached before a return
to baseline around 220 s.

3.3.2 Subject 1: Monte Carlo two-layer (MC-2L) models

As MC methods fit for BFi values for the deep tissue layer as opposed to the analytical method,
which fits BFi per detector (described in Sec. 2.4.3), we use the term CBFi for MC-based blood
flow approximations. While minimal differences in CBFi timecourse were observed in using just
the 5- and 30-mm separation data versus the 5-, 25-, and 30- mm separation data in the MC-based
processing algorithm, the pressure modulation timecourse for subject 1 was less noisy with the
former option. We therefore show MC-based fits for this subject that were processed using input
from just the 5- and 30-mm separations, whereas the MC fitting for the other subjects used inputs
from all three s–d distances. Thus, we proceed with MC-based two-layer (MC-2L) slab and
curved models to fit the subject 1 hypercapnia timecourse, as shown in Fig. 6. Models with
extracerebral thicknesses up to 18 mm were used to fit, but only a subset of them is shown.
While a complete return to baseline by 250 s is reached at an unrealistic 1 mm (or 2 mm, for
the curved model) extracerebral thickness, the overall response profile does not align well with
eTCD. Increasing the extracerebral thickness only pulls the CBFi down to further unrealistic

Fig. 5 Analytical fitting-based timecourses of ΔrBFi of subject 1 during (a) pressure modulation
with light pressure applied approximately between 20 and 50 s from the start, and (b) hypercapnia
in terms of the percentage change in the baseline normalized ΔrBFi. Shading indicates the pres-
sure period for (a) and the CO2 enriched breathing gas delivery period for (b).

Wu et al.: Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology. . .

Neurophotonics 015001-12 Jan–Mar 2021 • Vol. 8(1)



values during the recovery session (shown up to 6 mm, CBFi changes for thicknesses beyond
6 mm become increasingly disproportionate to what is expected). Response differences in the
same extracerebral thicknesses between the slab and the curved model are observed. For in-
stance, a 5-mm extracerebral thickness in the slab model decreases to about 80% under baseline
by 250 s, whereas the same extracerebral thickness in the curved model only decreases to about
15% under baseline at the same time. In general, for the same extracerebral thickness, the curved
model timecourse produces less relative drop in CBFi during recovery than the slab model.

3.3.3 Subject 1: Monte Carlo three-layer (MC-3L) models with uniform
scattering across layers

Monte Carlo three-layer (MC-3L) fitting results in many more models to select from. To choose
the optimal combinations of scalp and skull thickness, we refer to both the ΔrCBFi timecourses
for the pressure modulation measurement and the absolute CBFi timecourses for the hypercapnia
measurement. We narrow our selection range to models containing scalp and skull thickness
combinations for which CBFi stayed the most constant before, during, and after the pressure
modulation period, and also to models for which the brain-to-scalp BFi ratio at baseline was
at physiologically relevant levels, between 3 and 8. The final model is chosen where these two
criteria converge. Figure 7 shows MC-3L CBFi timecourses for both the pressure modulation

Fig. 6 Subject 1 hypercapnia timecourse fitted with (a) MC-2L slab model and (b) curved model
overlaid with the analytical fit at 25- and 30-mm separations and eTCD. Only fitting results using
MC models with up to 6-mm extracerebral thickness are shown.

Fig. 7 Subject 1 timecourses fitted with MC-3L slab and curved models overlaid with the analytical
fit at 5-, 25-, and 30-mm separations and eTCD during (a) pressure modulation and (b) hypercap-
nia measurements.
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and hypercapnia maneuvers in subject 1. For the slab model, a 1-mm scalp and a 7-mm skull
thickness were used; for the curved model, a 2-mm scalp and 10-mm skull thickness were
chosen. The brain-to-scalp BFi ratio for each model was 3.61 and 4.42, respectively.

In both the MC-3L slab and curved models, CBFi reduction during the pressure modulation
reaches a maximum of 16%, significantly less than the reduction observed in the analytical long
separation fit. In the hypercapnia protocol, we observe that the peak BFi reached in the MC-3L
timecourse occurs 10 s earlier compared to the analytical fit, the MC-3L peak aligning closer to
what is shown in the expected TCD timecourse. Last, similar to the eTCD timecourse, the MC-
3L timecourse returns to within a few percent of baseline by 250 s, in contrast to the analytical fit,
which remains at 10% to 12% above baseline.

3.3.4 Subject 1: Monte Carlo three-layer models with variable scattering
in each layer

Figure 8 displays MC-3L fits with scattering values adjusted per layer instead of using a uniform
scattering value. As mentioned in Sec. 2.4.3, values for the scalp, skull, and brain used for our
850-nm source were 0.74, 0.81, and 1.16 mm−1, respectively. The same criteria for scalp and
skull thickness choice were applied with this fit; the slab model used thicknesses of 2 and 5 mm,
at a brain-to-scalp flow ratio of 3.75, whereas the curved model used thicknesses of 3 and 7 mm,
at a flow ratio of 3.59. We observe a slight overcompensation of CBFi during the pressure period
in the slab timecourse, whereas the curved model stays under 20% variation during applied
pressure period. However, the responses of the two models are nearly the same during the hyper-
capnia measurement, with approximately a 10% overshoot in CBFi right after the CO2 period
ends, but a full return to baseline by 250 s. Given the end results are very similar, this also being
the case for the other subjects presented in the paper (results not shown)—we decided to use
uniform scattering for the rest of the work.

3.3.5 Subject 1: Monte Carlo four-layer models with variable diffusion
coefficients for CSF

The final model tested for subject 1 was a four-layer MC curved geometry with uniform scatter-
ing across layers, as shown in the timecourse depicted in Fig. 9. The scalp thickness was main-
tained at 3 mm. One and two millimeters, for Figs. 9(a) and 9(b), respectively, were taken off the
9-mm skull to create a CSF layer between the skull and the brain. We held the diffusion coef-
ficient for the CSF at values ranging from 1 × 10−8 to 9 × 10−8 mm2∕s, a span of values approx-
imately centered at the “biological-zero” of CBFi as measured by Busch et al.52

Both four-layer curved models using uniform scattering across layers displayed only mar-
ginal differences from the three-layer curved fit. We proceed with MC-3L fitting for the remain-
ing subjects.

Fig. 8 Monte Carlo slab and curved fits for subject 1 for (a) pressure modulation and (b) hyper-
capnia using variable scattering values across tissue layers.
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3.4 Subjects 2 and 3: Monte Carlo-Based Three-Layer (MC-3L) Modeling
Validation

Figure 10 shows subject 2 MC-3L fits for pressure modulation and hypercapnia timecourses, the
latter overlaid with an expected TCD timecourse computed from the PETCO2 measurement. The
slab model had a 3-mm scalp thickness and a 4-mm skull thickness, with a brain-to-scalp BFi
ratio of 3.82; the curved model had respective thicknesses of 5 and 5 mm, with the brain/scalp
BFi ratio of 3.35.

In the pressure modulation maneuver, we note a 10% decrease in the 25-mm s–d BFi and
moderate instability—possibly due to slight motion in the hand pressure—throughout the
30-mm detector timecourse fitted with the analytical model. For the hypercapnia measurement,
we see a significant increase of 5-mm s–d BFi, peaking a little over 50% of baseline at 230 s. This
peak occurs about 47 s later than the eTCD peak. We observe a peak in the 25-mm BFi at 190 s
and elevation during the recovery, failing to decrease below 25% by 250 s. We observe a similar
continued increase in the post-hypercapnia period for the 30-mm detector at approximately the
same percentage.

The MC-3L pressure modulation fits are more stable than what is observed in the 30 mm,
although we still see mild variations, up to 10%, comparable to what is seen in the 25-mm ana-
lytical fit. In the hypercapnia measurement, both the slab and the curved models peak much
closer to the expected TCD curve, albeit a little too early. A return to baseline within a few
percentages for the slab and a complete return for the curved model are observed; however,

Fig. 10 Subject 2 timecourses fitted with MC-3L slab and curved models overlaid with the ana-
lytical fit at 5-, 25- and 30-mm separations and eTCD during (a) pressure modulation and (b) hyper-
capnia measurements.

Fig. 9 MC curved, four-layer fits with various diffusion coefficients used for the CSF layer for sub-
ject 1. A 1-mm CSF thickness was used for (a) and a 2-mm thickness was used for (b).
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a rise in CBFi after 220 s, similar to what is shown in the 30-mm s–d BFi, is also noted for both
models. This is likely related to subject motion due to hypercapnia discomfort.

Since MR scans were available for subject 2, we compare the total extracerebral thicknesses
used in our MC fitting to what is observed in the MR scan. Figure 11 shows the estimated probe
to brain distance as measured using the two methods described above in Sec. 2.5. The optical and
MR data for this subject were acquired in one measurement session—that is, the fiducial marker
denoting the probe location was preserved between the pressure modulation, hypercapnia, and
MR structural scan. We observe a ∼12-mm distance in Fig. 11(a); this falls in approximately the
center of the distribution in Fig. 11(b). The thickness combination used for the MC-based slab
model is about 5 mm less than what is measured, whereas the MC curved model underestimates
the measured extracerebral thickness by 2 mm.

In this subject, we were also able to run MC fitting that used a head segmented volume
derived directly from the MRI scan taken as an input to the MC forward simulation. The head
volume was segmented into four layers (scalp, skull, CSF, and brain tissue). However, the CBFi
results from these fits were very unrealistic (high noise and exaggerated variation), suggesting
there may be a systematic bias in the MC modeling of actual anatomy, a potential subject for
future investigation.

Last, Fig. 12 displays the MC-3L slab and curved fits for subject 3. A significant drop in the
25- and 30-mm BFi is observed during the pressure period (∼70% and 60%, respectively) in the
first plot. We observe ∼30% less of a decrease in CBFi with MC fitting, though it is unable to

Fig. 11 Total extracerebral thickness for subject 2 as measured using a distance ruler on image
software (a) and a mesh-based MATLAB function after segmentation (b).

Fig. 12 Subject 3 timecourses fitted with MC-3L slab and curved models overlaid with the ana-
lytical fit at 5-, 25- and 30-mm separations and eTCD during (a) pressure modulation and (b) hyper-
capnia measurements.
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keep estimated CBFi flat throughout the timecourse. Similarly, while the MC-3L plots do not
show CBFi returning to baseline completely at the end of the hypercapnia measurement, they are
still able to reduce the BFi elevation by 50% at 250 s compared to the analytical fit. The slab
model used a 2-mm scalp and 7-mm skull thickness, whereas the curved model used 3 and 9 mm,
respectively. The brain-to-scalp BFi ratio was 3.58 for the slab and 3.12 for the curved model.

4 Discussion

4.1 Group Response to Hypercapnia

A gradual, significant increase in systemic blood flow due to CO2 administration can be
observed in both the group average responses shown in 5-mm scalp probe and the 20-mm calf
probe. A number of previous studies of hypercapnia-induced CBF changes with DCS have either
used only a long separation detector in the DCS probe or an alternate modality for measuring
SBF, such as the laser Doppler flowmetry used by Durduran et al.15,43,53,54 Our study, as well as
recent work by Milej et al.,55 shows that measurements without a short separation detector may
fail to reveal a possible SBF response that could be driving a significant portion of the observed
long separation BFi timecourse. While Durduran et al. reported negligible SBF during the hyper-
capnia measurement, we note that the data shown were from a single subject, whereas the 5- and
20-mm data shown in our group average span 46 measurements across 18 subjects. As also
mentioned in Sec. 3.2, over half of the sessions across our larger hypercapnia study contained
at least one measurement with significant (>20% increase) 5-mm response. Selb et al.33 have
posited the possibility of SBF increase in their DCS measurements during hypercapnia, and
several other studies indicate a positive correlation between systemic flow or flow-related param-
eters and percentage of CO2 inhaled.56–58

On the other hand, our cerebrovascular reactivity as measured by TCD is consistent with
what Coverdale et al.59 showed in a hypercapnia-based validation study between TCD and phase
contrast MRI (PC-MRI); they report an approximately 2.5%� 2% increase in CBFV per mmHg
with TCD and a 3.6%� 2%CBFV∕mmHg increase with PC-MRI. As shown in Sec. 3.1, we
observe a 3.3% increase in CBV/mmHg with TCD. However, we note that Coverdale et al. also
reported an 18%� 8% higher increase in their calculated arterial CBF versus MCAV during
hypercapnia. In our study, the analytical model estimates of CBFi changes from DCS are below
TCD changes, likely due to partial volume effects and the fact that a non-negligible minority of
our DCS measurements showed little to no BFi increase in the long separation (probably due to
low/no brain sensitivity,). The correlates of this apparent lack of sensitivity are still under inves-
tigation and a larger sample is likely needed to draw definite conclusions. Moreover, while stud-
ies such as Coverdale et al.59 and Poulin et al.60 are able to derive blood flow from the measured
MCAV in TCD, the blood vessels measured by TCD and DCS are not the same; TCD measures
the middle cerebral artery, and the estimated velocity is largely determined by the angle between
the ultrasound beam and the direction of the blood flow.61 DCS, on the other hand, probes micro-
vasculature in the frontal cortex. Apart from the size of the vessels themselves being sources of
potentially different CBF values, and Liu et al.62 and Duffin et al.63 have shown that the cerebro-
vascular reactivity to increased CO2 may not be homogeneous throughout parts of the brain.

Thus, we restrict the comparison of our observed relative CBFi increase during hypercapnia
to previous studies that primarily used DCS. Durduran et al.15 observed an average of 2.4%
increase of CBFi∕mmHg in five adult subjects, similar to our long separation group average
shown in Sec. 3.2. Buckley et al.43 reported a 49% increase to a 30-min long hypercapnia chal-
lenge containing ∼3% inhaled CO2, a change significantly higher than what we observe.
However, we note that their study was performed on children and not adults, along with a much
longer hypercapnia period. Selb et al.33 observed an unusually high average CBFi increase of
17% per mmHg; as noted above, this may be a result of a moderate systemic response as shown
in their 8-mm separation data. Last, Milej et al.55 performed hypercapnia on a group of
five subjects and observed approximately a 0.35 cm2∕s increase in long separation BFi for a
12-mmHg increase in etCO2. While the statistics given in their study cannot be directly com-
pared to ours, the similarity of their observed extracerebral contamination will be noted shortly.
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We abstain from directly comparing relative increases observed between our TCD and DCS
data. The interpretations we make instead rest on the assumption that because the frontal cortex
receives its blood supply from the middle cerebral arteries,64 the temporal profile of blood flow in
this cerebral region is likely to follow MCAV changes fairly closely. We first note that systemic
responses shown in our DCS group averages (increases in 5-mm s–d separation on the forehead
and 20-mm s–d separation on the calf, as discussed earlier) display distinct temporal curves and
peaks than what is seen in our TCD group average. In particular, the systemic response peaks
begin a gradual decrease approximately 30 and 90 s in the 5- and 20-mm s–d separations, respec-
tively, after the end of the CO2 administration; the MCAV response as shown in TCD group
average peaks drops sharply within 10 s after CO2 administration is stopped. Additionally,
MCAV returns to baseline within 90 to 120 s at the end of hypercapnia, whereas the 5-mm and
20-mm response remains elevated 10% to 15% above baseline at 300 s. This elevated BFi
response during recovery is also observed in 25- and 30-mm data. The 25-mm timecourse peaks
earlier than the 5-mm (190 versus 210 s, closer to what we see in the TCD data) and recovers
several percentages nearer to baseline at the end of the measurement, but we do not observe the
full recovery as shown in TCD. The 30-mm s–d separation, probing deeper and thus containing
more signal from the brain, peaks even sooner than the 25-mm curve at approximately 180 s, at
the end of hypercapnia. Even so, it still recovers by about the same amount as the 25-mm dis-
tance at 300 s. As such, we interpret the group average BFi results as evidence of a systemic
response to hypercapnia contaminating results shown in the long-separation detector time-
courses. Milej et al.55 demonstrate a similar phenomenon, where a lasting elevated response
in the SBF is shown to contaminate the long separation BFi, and was confirmed via repeating
the hypercapnia challenge with a tourniquet tightened over the probe to suppress SBF. They
estimated the extracerebral contamination level to be approximately 48%� 18% at 3 cm.

As mentioned above, significant scalp perfusion increases in our study were observed in a
little over half the measurements. These measurements showed a wide range of scalp reaction
magnitudes. The degree of scalp contamination in the long separation BFi will likely vary from
subject-to-subject depending on factors, such as extracerebral thickness, amount of scalp reac-
tion, and signal-to-noise ratio in the long separation signal. This phenomenon should be taken
into account for future studies using hypercapnic validation and most importantly for studies
using DCS to measure brain blood flow changes in adults clinically.

4.2 Comparison of Monte Carlo Modeling to Previous Scalp Reduction
Approaches

In the NIRS field, short-separation regression approaches have been extensively studied;21–26,65,66

however, for DCS, the non-linear nature of how the blood flow affects the different parts of the
autocorrelation curve makes it less suitable for short separation regression. Thus, post-process-
ing scalp physiology contamination reduction methods for DCS usually rely on a layered version
of the analytical model to fit for CBFi.

18,27,28 Our technique can be considered as an MC-based
analog of Baker et al.’s analytically derived pressure modulation algorithm,29 applied alongside
hypercapnia measurements as further model validation. The primary advantages of MC-based
modeling are the numerical stability and, as Li et al.32 and Shang et al.67 have shown, the ability
to accommodate realistic geometries as inputs into the forward simulation. As the development
of MC photon propagation simulations becomes more sophisticated, MC modeling would allow
us to be able to incorporate more nuanced physiological parameters into DCS fitting. This could
include investigating the effect of probe location with respect to cortical folds or mapping DCS
sensitivity across the entire forehead. Overall, data fromMC simulations need not be restricted to
in-silico validation of analytical models but can be used as inputs to fit in-vivo measurements
themselves, particularly as MC methods are becoming increasingly faster and more accurate.44,68

4.3 Qualifications of Successful Monte Carlo Enhanced CBFi Quantification;
Limitations of the Technique

We observe that pressure modulation, when used in conjunction with reasonable physiological
estimates of brain-to-scalp BFi ratio and scalp/skull thicknesses, has the potential to help guide
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optimal models for MC fitting on a case-by-case basis. However, the maneuver may also serve as
an indicator of brain sensitivity—measurements in which the long separation BFi shows equal or
comparable decrease to the short separation BFi may indicate little or no cerebral sensitivity.
Ideally, this should be checked in real time when setting up the measurement, and the DCS
probe moved as needed to minimize the relative drop in the long separation measurement com-
pared to the short separation. We interpret subject 3 as an example of this; the long separation BFi
decreases significantly more during the pressure period as compared to the other two subjects.
Correspondingly, the MC fits for this subject are unable to extract a full recovery to baseline at
the end of the measurement. Like subject 3, baseline levels of sensitivity for future subjects may
be inferred through protocols, such as pressure modulation or a hypercapnia challenge.

The criteria previously discussed in Sec. 2.4.2 serve as qualifications outlining the extent to
which our study of multi-layered MC-based fitting can remove extracerebral influence from
CBFi. As a brief investigation (results not shown), we performed MC fits on subjects from the
protocol with little to no evidence of brain sensitivity in the measurements, i.e., the long sep-
aration response did not differ much from the short in either the pressure modulation or hyper-
capnia measurements. We observed that the MC results were at best the same as the analytical
fits; model geometries that showed reasonable brain-to-SBF ratios or increased CBFi during
hypercapnia sometimes contained much noisier timecourses (presumably due to model mis-
match). Analogously, we conducted MC modeling on measurements that already showed high
levels of brain sensitivity in the analytical fit, i.e., significantly higher and timelier increase dur-
ing hypercapnia and nearly full return to baseline in the long separation. The MC timecourses for
these measurements matched the analytical fits. With the current resolution and accuracy in
MC photon simulation, fitting DCS data using MC modeling seem to prove most advantageous
under specific conditions, where the long separation analytical fit is showing evidence of both
brain sensitivity and cross-talk from systemic physiology (verified with short-separation
measurements).

Last, we acknowledge the computational limitations imposed by the use of the MC-based
models. The two computationally intensive steps are the MC simulation itself, and the post-
processing of MC history files to generate autocorrelation curves. With GPU acceleration, the
MC simulation for 1 billion photons can completed within a few minutes (and is getting faster
every year). Post-processing MC history files to obtain g2 curves for given BFi values for each
layer take on order of 50 to 100 ms in MATLAB if double-precision GPU acceleration is avail-
able or about 5 times longer using CPU only. Once the MC geometry is selected data can be fit in
real time on a high end workstation computer as long as scattering is assumed to remain constant
(this allows the reuse of the MC history file without re-running the simulation). However, there
is a preparatory phase, in which data from one or more pressure modulation maneuvers are
processed using a variety of geometries (varying scalp and skull thickness as explained in
Sec. 2.4.3)—this could take half an hour or so on today’s hardware using MATLAB code.
With highly optimized dedicated code, we believe the preparatory phase can be reduced to a
few minutes, after which real-time MC-based monitoring will be available, e.g. if the goal is
to offer brain perfusion monitoring in a clinical setting.

4.4 Monte Carlo Geometry Choices

As seen in subject 1, two-layered MC-based models appear to fail—in particular, increasing
extracerebral thickness closer to what is physiologically accurate leads to overcompensation and
a sharp decrease in CBFi during recovery period post-hypercapnia, and no thickness setting
follows the TCD measurement temporal profile effectively. The only two-layer models that
appear to have reasonable post-hypercapnia recovery responses have 1-2 mm extracerebral
thicknesses, which are too thin to be considered realistic. The three-layered models containing
a constant diffusion coefficient value for a 4- to 10-mm slice—in other words, with a layer rep-
resenting the solid slice of the skull—between the probe and the brain succeed in revealing more
accurate CBFi responses despite contrasting superficial influence at much more reasonable
extracerebral thicknesses. Disregarding the presence of low blood flow in the skull renders the
two-layer models as highly unrealistic, contributing to their failure. Using varying scattering
coefficient values across the three-layers in the MC-3L model seems to give a similar result
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as to their respective homogeneous scattering models, though at different scalp and skull thick-
ness combinations. This is expected, as adjusting the scattering and adjusting the superficial
layer thickness can both be interpreted as modifying sensitivity to the brain; changes in the
former should result in changes to the latter, and vice versa. Given the substantial uncertainty
regarding the actual scattering properties of inner tissue layers, the use of uniform scattering
values appears warranted in DCS measurement analysis. Last, adding a 1- to 2-mm extra layer
for CSF and using a four-layer model seems to have little impact on the final results.

We observe similar responses in the slab and the curved models in both pressure modulation
and hypercapnia timecourses after tuning. In all subjects, the difference in the timecourses
between the two geometries is close to negligible; however, the optimized slab extracerebral
thickness combinations across subjects fall a few millimeters short of their respective curved
thickness combinations. Comparing these values to the probe-to-brain distances measured on
the structural scan for subject 2 reveals a closer match to the curved extracerebral distances than
to the slab. In situations where either the scalp, skull, or total extracerebral thickness can be
acquired and subsequently used as an input for model tuning, a curved geometry may be a more
accurate and useful model. In other applications where this type of anatomical information is
unknown and may never be acquired, the slab and curved models can be seen as functionally
equal. With either case, we note the importance of model tuning in MC-based fitting or similar
methods where the superficial layer thicknesses are adjusted over a range of values. Some a
priori or other objective criteria—in this case pressure modulation and the analytical brain-
to-scalp BFi ratio—must be used to guide the model to the correct scalp and skull thicknesses.
Future research or clinical applications of DCS will involve situations where the expected
CBF response cannot be predicted or is unknown; these circumstances necessitate some objec-
tive methodology to choose the most accurate model out of all possible scalp and skull
thicknesses.

While minor differences are observed in the slab and the curved geometry fits, both can do
several things. First, as seen in all subjects, they can provide a more stable CBFi during the
pressure modulation maneuver than what is seen in the analytical long-separation fit.
Second, the MC models can bring CBFi closer to baseline in post-hypercapnic recovery when
superficial contamination is observed in the analytical long-separation fit. Third, as seen espe-
cially in subject 1, MC models can substantially remove of scalp influence to the temporal curve
of the fit, i.e., they can remove a time lag caused by the scalp flow increase in the DCS CBFi
estimate peaking and then decreasing.

5 Conclusion

We used DCS and TCD to measure hypercapnic responses in adult human subjects. Comparing
results from the two modalities reveals a systemic blood flow increase to hypercapnia, which has
the potential to contaminate the long separation BFi when the DCS data are fitted with the semi-
infinite homogeneous analytical model. Using multi-layered, MC-based fitting models, com-
bined with a pressure modulation algorithm to guide model choice, shows improvement over
the traditional analytical fit in removing extracerebral contaminants. A three-layer model with a
constant diffusion coefficient for the skull is likely needed; a curved, head-based model may
result in more accurate physiological parameters than a flat slab-based model, but both geom-
etries show comparable improvements in removing superficial influence versus the analytical fit.
Future work will continue exploration of more complex and variable multi-layered MC-based
models, including neuro-imaging-driven subject-specific models, along with their potentials and
limitations.
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