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Abstract. In the work, we have presented the technique based on the graphics processing unit accelerated
finite-difference time-domain (FDTD) method for characterization of a single-mode photonic crystal fiber
(PCF) with an arbitrary refractive index profile. In contrast to other numerical methods, the FDTD allows studying
the mode propagation along the fiber. Particularly, we have focused attention on the method details that allowed
us to reduce dramatically the computation time. It has been demonstrated that the accuracy of dispersion
obtained by the FDTDmethod is comparable to the one provided by the finite elements method while possessing
lower computation time. The method has been used to determine the fundamental mode cut-off of all-normal
dispersion PCF and to find fiber losses beyond this wavelength. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
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1 Introduction
Today, the photonic crystal fiber (PCF) technologies allow
experimenting with complex and exotic fiber profiles discov-
ering new possibilities and applications such as fiber sen-
sors,1 lasers,2 and even textiles.3 The properties of such
fibers are well investigated. However, in specific problems
such as supercontinuum generation4 and formation of the
parabolic beam profile,5 the exact dispersion, losses and non-
linearity profile of the fiber should be known. The method
used to determine the dispersion depends on a fiber type. In
case of large-mode PCF, such as LMA-20, even an analytical
method works fine. However, as the fiber core size becomes
smaller, numerical methods should be used. Moreover, in
case of low-size core, the fundamental mode cut-off of
the fiber may exist close to an excitation wavelength which
may introduce losses to the fiber due to the mode leaking.

The dispersion can be computed with any numerical
method capable of finding an eigen-frequency of the micro-
structure. However, the plane-wave expansion (PWE)
method6,7 can only treat linear materials with no material
dispersion. The finite-element method (FEM), while provid-
ing more flexibility in the structure definition and high accu-
racy, appears to be quite slow and, moreover does not allow
determining exactly the losses beyond the fundamental mode
cut-off.

Therefore, in this work, we have focused our attention on
the finite difference-time domain (FDTD) method.8 Being
comparatively easy to implement, it provides a good basis
for the hardware acceleration such as graphics processing
unit (GPU) parallel computing.

The paper is organized as follows. We present the FDTD
algorithm with unsplit-field perfectly-matched layer (PML)
suitable for the fiber eigenfrequency computations. Then we

describe the procedure and present basic steps for the method
acceleration by means of GPU. The dispersion computed
with the FDTD method is compared with the one obtained
by the FEM technique. Finally, we find the losses of the fiber
beyond the fundamental mode cut-off by solving the long-
distance propagation problem.

2 FDTD Method for PhC Fibers Characterization
The best way to find the dispersion of a PhC fiber is to com-
pute its dispersion diagram [i.e., the eigenfrequencies versus
the propagation constant ωðβÞ]. In the most basic case, such
as linear, dispersionless materials, this can be done by a
numerous methods such as PWE, FEM, FDTD, etc. How-
ever, when long-term effects should be taken into account,
the FDTD method becomes preferable.

2.1 FDTD Algorithm Formulation

The time-dependent field distribution within the fiber is
found by solving the system of Maxwell’s equations. In gen-
eral, the FDTD technique is used to present the equations in
the form of recursive formulas where the field distribution at
the next time step is found from the one at the previous step.

Using the FDTD technique, the PhC fiber eigenfrequen-
cies can be computed in at least two different ways. First, we
can define the PhC-fiber as an infinite periodic structure with
a defect representing the fiber core. This technique is similar
to the one used in the PWE method. It requires a very basic
FDTD implementation involving periodic boundary condi-
tions. A delta-pulse is launched into a structure with further
response analysis. However, it has many serious disadvan-
tages. Particularly, with this method, it is only possible to
treat purely periodic structures with no parametric variations
that are now possessed by the most of the dispersion-man-
aged fibers. Other technical difficulties occur when trying to
analyze the time response and to extract the eigenfrequency.*Address all correspondence to: Igor Guryev, E-mail: guryev@ieee.org
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In this case, it is necessary to use the fast Fourier transform
(FFT) or discrete Fourier transform (DFT). However, the pre-
cision of such methods rely on the computation time and if
the fiber possesses two or more eigenfrequencies close to
each other, the FFT or DFT will be unable to resolve
them. This is not a big deal when investigating the effective
mode index, but becomes a great problem when trying to
compute the dispersion of the fiber. Therefore, this tech-
nique, while being very simple, appears to be very limited
and cannot be used in an applied research.

The second technique consists of detailed representation
of the fiber profile under investigation. To emulate the con-
tinuity of the computation region, it is surrounded by absorb-
ing boundary conditions. In this case, we have used PML.8,9

The delta-pulse (or a predefined field pattern) is launched
into a fiber core. After a certain time, only the propagation
modes are left in the fiber, whereas the noise and leaky
modes are effectively absorbed by the PML. The method

possesses the highest efficiency when investigating a sin-
gle-mode PhC fiber. In this case, the frequency of the
eigen-mode can be determined by direct measurement of
the oscillation period, avoiding the DFT or FFT.

In our work, we have implemented the FDTD with the
nonsplit field PML. To emulate the field propagation
along z axis possessing the propagation constant β, the z
components of the electric and magnetic fields are presented
in the form of harmonic functions as follows:

E 0ðx; y; zÞ ¼ Eðx; yÞ · ei·β·z
H 0ðx; y; zÞ ¼ Hðx; yÞ · ei·β·z : (1)

In this case, z derivatives are found analytically and the
problem becomes two dimensional. The recursive equations
for the electric components are then presented in the follow-
ing form:
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For the magnetic field:
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Here β 0 ¼ β · Δ, and the coefficient κ and the conduc-
tivity σ vary gradually within the PML area providing
minimum back reflection from the computation region
boundary.

After launching the field into a fiber, the propagation is
computed by the leapfrog algorithm for a specific value of
the propagation constant β. After a certain propagation time
due to a PML, only the fundamental mode is left in the fiber
while the leaky ones are absorbed. The response is then ana-
lyzed, and the mode frequency is found.

3 FDTD Method Acceleration with CUDA-Enabled
GPU

One of the main problems of the FDTD method compared,
for example, with FEM and especially PWE, is large com-
putation time. In particular cases such as dispersion compu-
tation, it is possible to reduce the number of time-steps by
applying the field teleportation and by avoiding the FFT
when analyzing the spectrum. However, to achieve an
acceptable dispersion accuracy it is still necessary to com-
pute at least 200000 time steps. Other tasks such as long-dis-
tance propagation simulations require many more steps
(≈107 per centimeter of a fiber). Being implemented directly
in MATLAB, the FDTD technique appears to be very slow
and computation of 30 points of the dispersion curve lasted
for several days.

First, there have been attempts made to accelerate the
method using parallel CPU computing. For this, we have
run the computation at the supercomputer “Piritakua” of
the University of Guanajuato. The supercomputer is
equipped with 30 CPUs which allowed computing 30
times faster. However, this was not even close to the time
COMSOL Multiphysics required to compute the dispersion
with the same accuracy.

After this, there has been decided to take advantage of the
GPU computing since “Piritakua” is equipped with three
compute unified device architecture (CUDA)-enable graphic
cards (Tesla M2070, Tesla M2050, and GeForce GTX580).
Moreover, there are also three mobile workstations equipped
with NVIDIA Quadro 1000 M and Quadro 3000 M.

Usually, the “leap-frog” algorithm8 is used to compute the
field propagation by means of the recursive expressions 2 to
7. In the algorithm, the field distribution at the next time step
is found from the distribution at the previous one. The only
way to parallelize the computation in this case is within a
single time step.

One of well-known bottleneck of the GPU computing is
memory operations. Therefore, before creating any CUDA
kernel, we have introduced several changes to optimize
the code itself and to make it suitable for massive parallel
computing, namely

• We avoided complex numbers and used a single pre-
cision numbers for the field computation. Since the
field distribution is computed at each time step, the
optimization of memory traffic here is of crucial impor-
tance. In the PCF model presented here, the real-to-
imaginary conversion occurs only in the analytical
expression for z-derivative as i · β 0 (e.g.,
∂Ex
∂z → iβEx). Therefore, if an initial field distribution
would be real, we could avoid the complex numbers
by changing iβEx → βEx. This does not change the
field distribution but allows halving the memory
amount required for the field storage. Another point
we can sacrifice to reduce the memory traffic is reduc-
tion of the numbers’ precision. Typically, MATLAB
creates a double-precision variable when dealing
with floating-points numbers. However, each variable
occupies 8 bytes and, in case of the field distribution,
such precision is basically unnecessary. Therefore, it
would be wise to deal with a single-precision variable
to reduce two times the arrays’ size. In the postprocess-
ing, however, using the double precision is strongly
recommended for operations such as the Fourier trans-
form, interpolation, etc. Therefore, just by smart vari-
ables managing, it is possible to accelerate the GPU
processing almost four time.

• We avoided array indexing. In most of the implemen-
tation of the FDTD method, the E- and H-field arrays
possess different dimensions to emulate the middle-
point field, such as Hnþ1∕2;lþ1∕2. This involves index-
ing while passing the matrices into a kernel. Such
indexing appeared to significantly slow down the algo-
rithm and, therefore, it has been decided to use the
arrays of the same size leaving the indexing to the
kernel.

• We implemented the CUDA kernel in “C”. Initially, the
algorithm has been implemented using MATLAB
because of its accelerated matrix operations and ability
to use CUDA. However, when we implemented the
CUDA kernel in “C” and used MATLAB functions
to call it, we encountered a problem of the “parameters
by reference,” i.e., MATLAB does not support user-
defined pointers. When passing a matrix as a parameter
to a function, it works pretty fast (as fast as passing the
pointer in “C”) until we change the data in these matri-
ces. In this case, it creates a copy of the matrix and
returns the pointer to a calling function. This behavior
resulted in a significant increase of the computation
time since such copying appeared at any computation
step. Therefore, it has been decided to implement all
the time-iterations code in “C” while all the analyses
were carried out in MATLAB. An initial field distribu-
tion, the coefficients, and the results are passed by files.
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This operation, being very slow in principle, does not
affect significantly the total computation time since it is
performed only twice for each value of β.

• We used the texture memory. Since we use the PML
boundary conditions that involve time-constant but
spatially distributed coefficients, it was reasonable to
bind them to the texture memory which allowed almost
two times acceleration of the algorithm.

• We aligned the dimensions of the matrices with number
of threads. Since all the GPUs possess 32-thread par-
allelism, it is reasonable to align the size of the com-
putation matrices with a multiple of 32. Particularly, in
our work, we have taken the structures of 352 × 320
points.

All these details taken into account allowed us to achieve
single-GPU acceleration of more than 200 times as com-
pared to a single CPU. The computation times measured
for a single eigenfrequency but for a different number of
time steps are given in Table 1.

Apart from the great acceleration, from the table we can
estimate the amount of time taken by non-CUDA related
operations (particularly, file I/O). As it can be easily calcu-
lated, they take several seconds and do not introduce signifi-
cant delay even at 100,000 points.

4 Numerical Results
The most important part of the method is the PML since it
should effectively absorb the leaky modes. Therefore, we

have first analyzed the fiber response to the Gaussian
pulse computed with and without the PML. As can be
seen in Fig. 1, when the PML is absent, a lot of chaotic oscil-
lations present in the response even after 200,000 steps. They
are formed by the leaky modes that are multiply reflected
from the computation area boundary. On the other hand,
when the fiber is surrounded with PML, the chaotic oscilla-
tions vanish after about 10,000 steps which means that the
leaky modes are effectively absorbed.

Another factor that can reduce the accuracy of the
dispersion computation is the Fourier transform. Unfortu-
nately, even at 500,000 time steps, the precision of the eigen-
frequency is still very low and will cause a dispersion error of
about 104 ps∕nmkm.

The problem has been overcome by assuming that the
fiber is single mode and, therefore, possesses a single eigen-
frequency. Taking this into account, we can measure the
period directly from the response. Such a technique reduced
dramatically the number of time steps. Now, 100,000 points
is enough to estimate the dispersion with acceptable accuracy
(of an order of 5 ps∕nmkm).

4.1 PCF Dispersion Computation

To verify the method, we have compared the dispersion with
the one presented in Ref. 10. Namely, we have investigated
the dispersion of the fused silica fiber with pitch a ¼ 2 μm
and the radii varying from r ¼ 0.1a to r ¼ 0.2a. The
dispersion itself is calculated from the eigenfrequencies
using the relationship:

DðλÞ ¼ −
2πc
λ2

d2β
dω2

¼ −
λ

c
d2neff
dλ2

: (8)

The transverse-field component distribution and the
dispersion are presented in Fig. 2. The field distribution
after 100,000 time steps possesses good central symmetry
and all the field is concentrated inside the core which allows
expected correct dispersion computation.

The dispersion, on the other hand, shows a good agree-
ment with the FEM results within the wavelengths
λ ¼ 700 : : : 1700 nm [see Fig. 2(c)]. An error does not
exceed 10 ps∕nm km, which is in good agreement with pre-
vious estimations. Since the error is a direct consequence of

Table 1 Measured computation times for 100,000, 250,000 and
500,000 time steps.

100,000 250,000 500,000

1 CPU 12,500 s 30200 s 61100 s

8 CPUs 1500 s 3750 s 7350 s

MATLAB-CUDA Quad 1000M 480 s 920 s 1600 s

C-CUDA Quad 1000M 200 s 422 s 828 s

C-CUDA Tesla M2070 50 s 105 s 208 s

Fig. 1 The fiber temporal response computed without PML (a) and with PML (b).
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inaccurate estimation of the eigenfrequency due to the lack
of points, the further error reduction can be made by per-
forming a longer computation. In case of using the method
in the optimization procedure, this may be critical, but for a
single computation, the accuracy improves dramatically.

Although the accuracy of the FDTD results was lower
than one of the FEMs, a computation with FEM takes
about 11 h (at 6 CPUs) while FDTD solves the problem
within 1 h (at a single GPU). Another advantage of the
FDTD technique is the ability to take into account the
dispersion and nonlinearity8 when the field propagation is
computed, which can increase the range of applications
and the precision of the method.

4.2 Long Distance Propagation in PCF

Among the most important applications of the accelerated
FDTD method is a simulation of a mode propagation
along the fiber. This is particularly important to determine
the fundamental mode cut-off of the PCF and the losses
below this limit.

As can be demonstrated in Ref. 5, the all-normal
dispersion PCF can be effectively used for supercontinuum
generation as well as for pulse reshaping and compression
after about 10 cm of the fiber.

The method presented here can be used to simulate the
propagation along the fiber and to verify its single-mode
operation.

In Fig. 3(a), it is demonstrated that the electric field inten-
sity in the center of the PCF core is computed at λ ¼ 940 nm
along 2 cm of fiber. The field magnitude does not seem to
change. The large-period oscillations (of about 4-mm period)

appear due to the interference between almost degenerated
orthogonal modes with frequency difference <1%.

However, in case of the field propagation at λ ¼
2000 nm, the magnitude drops to zero after about 1 cm of
propagation [see Fig. 3(b)].

From these results, we conclude that the fundamental
mode cut-off of the fiber is somewhere between 1 and
2 μm. To find its exact value, we have computed losses
by approximating the magnitude with an exponential

Fig. 2 The Ex (a) and Ey (b) field distribution inside the PCF core and the dispersion computed by FEM
and by the FDTD method (c).

Fig. 3 Field propagation along the PCF at 940 nm (a) and at
2000 nm (b).
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function as presented in Fig. 4(a). The loss curves are pre-
sented in Fig. 4(b). Analyzing the losses, the fundamental
mode cut-off of the PCF appears at a wavelength 1020 nm
where the nonmaterial losses become different from zero.

Therefore, computing the long-distance propagation by
means of the accelerated FDTD method allowed determining
exactly the fiber fundamental mode cut-off as well as fiber
losses that should be taken into account in problems such as
supercontinuum generation.

5 Conclusions
In the work, we have demonstrated the FDTD method that
can be effectively used for dispersion investigation of an
optical fiber possessing arbitrary refractive index profile.
Due to CUDA-enabled GPU acceleration, the productivity
of the method has been dramatically increased, and the com-
putation time has been reduced 200 times as compared to a
single CPU. Results analysis has demonstrated that the accu-
racy of the dispersion computation is compared with the
FEM while taking less time. High performance of the
method opens new possibilities for investigating the long-
distance mode propagation which allows finding the fiber
losses beyond the fundamental mode cut-off.

Although we have considered only single-mode fibers,
the method is suitable for multimode fibers as well. The
eigenfrequencies in this case are found by means of
Fourier transform, which, of course, will require much
longer computation time, but would allow treating for several
modes.
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Fig. 4 Exponential approximation of the magnitude (a) and the PCF losses (b).
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