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Abstract. The potential benefits of real-time, or near-real-time, image processing hardware to correct for tur-
bulence-induced image defects for long-range surveillance and weapons targeting are sufficient to motivate
significant resource commitment to their development. Quantitative comparisons between potential candidates
are necessary to decide on a preferred processing algorithm. We begin by comparing the mean-square-error
(MSE) performance of speckle imaging (SI) methods and multiframe blind deconvolution (MFBD), applied to
long-path horizontal imaging of a static scene under anisoplanatic seeing conditions. Both methods are
used to reconstruct a scene from three sets of 1000 simulated images featuring low, moderate, and severe
turbulence-induced aberrations. The comparison shows that SI techniques can reduce the MSE up to 47%,
using 15 input frames under daytime conditions. The MFBD method provides up to 40% improvement in
MSE under the same conditions. The performance comparison is repeated under three diminishing light con-
ditions, 30, 15, 8 photons per pixel on average, where improvements of up to 39% can be achieved using SI
methods with 25 input frames, and up to 38% for the MFBDmethod using 150 input frames. The MFBD estimator
is applied to three sets of field data and representative results presented. Finally, the performance of a hybrid
bispectrum-MFBD estimator that uses a rapid bispectrum estimate as the starting point for the MFBD image
reconstruction algorithm is examined. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.OE.53.4.043109]
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1 Introduction
There is interest in the development of human-portable sur-
veillance systems capable of observing a wide field of view
over long horizontal or near-horizontal paths. In addition,
remotely piloted surveillance systems must transmit images
to remote users over wireless channels that have limited
bandwidth. As a result, currently fielded surveillance sys-
tems compress images prior to transmission.1 An image
processing system that could reconstruct images corrupted
by turbulence prior to compression and transmission
would allow such systems to make more efficient use of
available bandwidth. Thus, effort must be directed toward
the examination and selection of computationally efficient
and robust image reconstruction techniques. Under all but
the most benign conditions, temperature inhomogeneities
in the atmosphere result in turbulence and variations in
the index of refraction along the imaging path. Even
small variations in the index of refraction cause changes
in the optical path length that result in phase aberrations
at the aperture.2 As the optical path length increases, or
the turbulence strength increases, the aberrations become
stronger, and the isoplanatic angle decreases. Terrestrial sur-
veillance scenarios often involve imaging scenes that

subtend angles much larger than the isoplanatic angle, a sit-
uation referred to as anisoplanatic imaging. Under these con-
ditions, increasing the size of the aperture will not improve
the quality of the image. Unless the seeing conditions are
very favorable, anisoplanatism will dominate most practical
horizontal imaging situations. The resulting distortion will
limit the performance of any optical system operating in
such a turbulent atmosphere, frequently causing the observed
scene to be blurred beyond usefulness.3

Many strategies have been proposed to estimate the true
scene from turbulence-corrupted images, not all of which are
explored in this work. Each represents a compromise
between how quickly the technique produces an estimate
of the scene, the accuracy of the estimate, and the robustness
of the technique. Quick and accurate convergence under a
wide range of atmospheric seeing conditions, regardless
of the scene illumination, while remaining transportable
by a single operator are desirable characteristics. Power
and portability constraints may eliminate traditional adaptive
optics approaches that have been applied to similar problems
in the imaging of space objects4 using currently available
technology. An additional limitation to adaptive optic sys-
tems is that they only correct well over a few multiples of
the isoplanatic angle, while common horizontal surveillance
scenarios observe scenes that extend over many multiples of
the isoplanatic angle.*Address all correspondence to: Glen E. Archer, E-mail: gearcher@mtu.edu
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Ayers and Dainty,5 among others, and Lohmann et al.6

determined that near diffraction-limited phase information
could be recovered from multiple-speckled images through
the use of Knox-Thompson and bispectrum techniques.7 The
recovered phase and intensity information are used to recon-
struct nearly diffraction-limited images of astronomical
objects. Carrano8 proposed the use of speckle imaging
(SI) for horizontal imaging and EM Photonics, (Newark,
Delaware) has developed an embedded system using the
technique to reconstruct turbulent images over horizontal
paths in near real time.9 Bos and Roggemann have extended
this technique for use over wide fields of view and also
explored the performance limits of SI over a range of turbu-
lence levels. Both Carrano and Bos ignore anisoplanatism in
their processing but nevertheless produce reconstructions
with reduced error.3

Other blind deconvolution techniques have also been
applied to reconstructing turbulence-corrupted images.
Richardson10 and Lucy11 pioneered the application of an iter-
ative blind deconvolution technique to a single image
degraded by atmospheric turbulence. Their method relied
on the enforcement of positivity, and finite support con-
straints on the object estimate. Schulz12 extended that
method to include multiple input images and developed a
penalized-maximum-likelihood algorithm to avoid the trivial
solution that incorrectly concludes that the optical system’s
point spread function (PSF) is a Dirac delta function and that
the most likely object estimate is the observed turbulent
image. Little research has been done to compare the perfor-
mance characteristics of the multi-frame blind deconvolution
(MFBD) and SI techniques under anisoplanatic conditions;
that is the subject of this work.

This article compares the performance of SI techniques and
MFBD at estimating object intensities from simulated images
exhibiting extreme levels of anisoplanatism, using the number
of input frames and scene illumination levels as the opera-
tional parameters. To enable this comparison, the authors
developed a horizontal imaging simulation model and used
it to create three sets of 1000 simulated, turbulent images
based on the image processing Lena image, common in the
literature. In order to explore the technique’s performance
under multiple illumination conditions, each set of simulated
turbulent images was used to generate a set of speckle images
with a mean photon count of 30, 15, and 7 photons per pixel.
The effectiveness of SI and MFBD is assessed by calculating
the mean-square-error (MSE) between the resulting object
estimate and the diffraction limited image.

We find that the both SI- and MFBD-reconstructed
objects show significant improvement in MSE compared
with the average MSE over the entire data set. SI reduces
the MSE 46%, 42%, and 47% on average for low, moderate,
and severe turbulence cases respectively, using 15 input
frames, under daytime illumination. Similarly, the MFBD
method provides 40%, 25%, and 36% improvements in
MSE on average under the same conditions. Under low-
light conditions (fewer than 30 photons per pixel), improve-
ments of 39%, 29%, and 27% are available using SI with 25
input frames used in the reconstruction, and 38, 34 and 33,
respectively, for the MFBD method using 150 input frames.

The remainder of this article is organized as follows. In
Sec. 2, we discuss horizontal imaging as it applies to the
reconstruction of turbulent images under anisoplanatic

conditions and develop foundations of the bispectrum and
the objective functions to be applied to the optimization rou-
tine. In Sec. 3, the object recovery methods used for SI and
MFBD are described for both Gaussian and Poisson noise
models. In Sec. 4, the comparative results of processing
for SI and MFBD are presented under all three turbulence
cases and, in the case of the Poisson noise model, for
three turbulence conditions and three values of mean photon
counts. Section 5 presents the results of MFBD performance
using field data followed by the results of a processing strat-
egy that uses the bispectrum estimate to jumpstart the MFBD
estimator in Sec. 6. Summary conclusions are offered
in Sec. 7.

2 Background

2.1 Horizontal Imaging

We begin our discussion by examining some assumptions
regarding the horizontal-imaging problem. The atmospheric
coherence radius, r0, is commonly used to define the effec-
tive aperture radius of an imaging system. Increasing the size
of the aperture beyond r0 will not improve the resolution of
the system, when imaging in the presence of anisoplanatism.
For spherical wave propagation, the atmospheric coherence
radius, r0, is defined by Frieds

13 and Roggemann and Welsh2

as

r0 ¼ 0.185
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where λ is the mean wavelength, the wave number k ¼ 2π∕λ.
The limits of the integral are from z ¼ 0 at the pupil plane to
the scene at z ¼ L. For purposes of this study, it is assumed
that in Eq. (1) that the refractive-index structure constant
C2
nðzÞ does not vary with location, for paths that are horizon-

tal or at shallow angles from the aperture.14 This assumption
simplifies the expression of the atmospheric coherence
radius given in Eq. (1) to

r0 ¼ ð0.16k2C2
nLÞ3∕5: (2)

It is further assumed that the strength of the turbulence is
such that scintillation effects can be neglected. Evaluating
these expressions for the simulated propagation path L ¼
1 km and index of refraction structure C2

n for the low-
turbulence condition C2

n ¼ 2.25 × 10−14 mð−2∕3Þ, and r0 ¼
3.33 cm. Simulation conditions for the moderate condition
C2
n ¼ 3.75 × 10−14 mð−2∕3Þ yields r0 ¼ 2.45 cm. For the

severe turbulence condition, C2
n ¼ 5.25 × 10−14 mð−2∕3Þ and

r0 ¼ 2.01 cm. A complete description of the simulator used
to create these data sets is available in Ref. 15.

Using Fried’s16 definition for the isoplanatic angle, θo,

θo ¼ 1.09k2C2
nðΔzð5∕3ÞÞð−3∕5Þ; (3)

and evaluating for the conditions under consideration, we
find the isoplanatic angle to be between 10.8 and 6.63 μrad.
For the conditions simulated here, a single pixel in the simu-
lated imaging system captures 2.79 μrad. Expressing the θ0
values for the low, medium, and severe turbulence conditions
of the simulation, we see that the isoplanatic patch covers 4,
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3, and 2 pixels in the simulated imaging system and that ani-
soplanatic effects are present in the simulated images. These
results are summarized in Table 1, and samples of the simu-
lated images are shown in Fig. 1.

2.2 Speckle Imaging

Atmospheric turbulence can also be described by a correla-
tion time constant τc. The phase perturbation at every multi-
ple of τc can be considered independent of the previous and
next interval. One strategy to mitigate the effects of atmos-
pheric turbulence is the use of short exposure images, where
the detector is exposed to light for a period less than τc to
freeze the atmospheric turbulence in a single, independent
realization of the phase perturbation. The term “speckle im-
aging” arises from astronomical imaging, where short

exposure images of stellar objects exhibit high-frequency
intensity fluctuations, or “speckles.”

Noise-free image formation in the spatial domain is the
convolution of the atmospheric PSF and the object intensity
distribution,

ið~xÞ ¼ oð~xoÞ � hð~xÞ; (4)

where ~x is a two-dimensional (2-D) coordinate system in the
image plane, and ~xo is a 2-D coordinate system in the object
plane. A set of images that have been corrupted by additive
Gaussian noise can be described.

dkðxÞ ¼ ið~xÞ þ nkð~xÞ ¼ oð~xÞ � hkð~xÞ þ nkð~xÞ; (5)

where nkð~xÞ represents an additive noise term characterized
by an independent, identically distributed Gaussian random
variable with zero mean and variance σ2. Taking the Fourier
transform of both sides of Eq. (4) allows a multiplication in
the Fourier spatial-frequency domain. The product of the
complex object spectrum Oð~fÞ with the atmospheric optical

transfer function (OTF) Hkð~fÞ, results in the received com-

plex image spectrum Dkð~fÞ.

Dkð~fÞ ¼ Oð~fÞ ×Hkð~fÞ þ Nkð~fÞ: (6)

Two independent steps are required to recover the ampli-
tude and phase information associated with the received
complex object spectrum. First, inverse pseudo-Wiener fil-
tering the ensemble average power spectral density (PSD)
yields an estimate of the power spectrum of the object in
the scene.

hjDð~fÞ2ji ¼ hjHLEð~fÞj2ijOð~fÞj2; (7)

where HLEð~fÞ represents the long exposure OTF of the im-
aging system and turbulent atmosphere and h•i represents an
ensemble average.

jOð~fÞj2 ¼ hjDð~fÞ2ji
hjHLEð~fÞj2i þ α

: (8)

For our processing, the theoretical long-exposure atmos-
pheric OTF of the simulated imaging system is applied to
estimate the amplitude of the complex object spectrum.13,17

The additive term α is a constant adjusted by the user that
compensates for the fact that at high signal-to-noise ratios
the PSD of the OTF may go to zero.

The amplitude of the PSD is insufficient to form an
image. A separate process is required to recover the phase
information in the speckle images. The object phase infor-
mation is recovered by computing the bispectrum,7 defined
as

Bð~f1;Δ~fÞ ¼ Dð~f1ÞIðΔ~fÞD�ð~f1 þ Δ~fÞ; (9)

where D�ð~fÞ represents the complex conjugate of Dð~fÞ, and
Δ~f represents a constant spatial frequency offset.

It can be shown2 that the object phase information can be
recovered from the bispectrum by substituting the image
spectrum Dð~fÞ defined in Eq. (6) into the the definition

Table 1 Atmospheric simulation turbulence conditions. This table
presents parameters associated with the three turbulence conditions
used in the study.

Atmospheric turbulence parameters

Turbulence condition C2
N [mð−2∕3Þ]

r 0 Spherical
case (cm)

θ0
(μrad)

θ0
(pixels)

Low 2.25 × 10−14 3.33 10.8 4

Moderate 3.75 × 10−14 2.45 7.75 3

Severe 5.25 × 10−14 2.01 6.63 2

Fig. 1 Horizontal imaging simulator output. Single-image representa-
tive samples of the horizontal image simulator output (a) diffraction-
limited image, (b) image for C2

N ¼ 2.25 × 10−14 mð−2∕3Þ, (c) image for
3.75 × 10−14 mð−2∕3Þ, and (d) image for 5.25 × 10−14 mð−2∕3Þ.
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in Eq. (9). The estimate of the object phase can be deter-
mined at any arbitrary spatial frequency ~f 0 ¼ ~f þ Δ~f in
terms of the bispectrum estimate, assuming the phases at
~f and Δf are known.

ϕ̂oð~f 0Þ ¼ ϕ̂oð~fÞ þ ϕ̂oðΔ~fÞ − ϕ̂Bð~f;Δ~fÞ. (10)

Because images are real valued, the phase of ~f ¼ 0 is
zero. The adjacent frequency points ð0;ΔfÞ, ð0;−ΔfÞ,
ðΔf; 0Þ, ð−Δf; 0Þ can also arbitrarily be set to zero without
loss of image quality. This assumption will result in loss of
image registration information, and reconstructed images are
often not centered within the image frame. Further process-
ing can recenter the reconstructed images.

2.3 MFBD for the Gaussian Noise Model

MFBD is another common image reconstruction method5

that uses an iterative process to recover object amplitude
and phase information. The term ið~xÞ is the noise-free
image characterized in Eq. (4) as the convolution of a deter-
ministic object and the imaging system’s incoherent PSF.
The incoherent PSF hð~xÞ is the modulus squared of the
coherent PSF.

hð~xÞ ¼ jgð~xÞj2; (11)

where the coherent PSF is given by

gð~xÞ ¼
X
~xp

Aejθð~xpÞej2πN ð~x~xpÞ; (12)

where A is a binary aperture function whose value is zero
outside the aperture, ~xp is a 2-D coordinate system in the
aperture plane, the • operator represents the inner product,
and

θð~xpÞ ¼
X

ϕkð~xpÞαk: (13)

The phase term θð~xpÞ represents the accumulated phase
perturbation in the aperture of the imaging system decom-
posed to a linear sum of orthonormal basis functions,
ϕkð~xpÞ and αk are the weighting coefficients for each
term and image. Zernike polynomials are a convenient set
of basis functions commonly used in describing classical
aberrations in optical systems.

Using a Gaussian noise model, each point x in each image
dkð~xÞ is a random variable with a Gaussian probability den-
sity function (PDF). The PDF of dkð~xÞ is parameterized by
the object intensities oð~xÞ and the vector of aberration
weighting coefficients ~αk.

4

p½dkð~xÞ; ið~x; ~αkÞ� ¼
1

ð2πσ2nÞ1∕2
exp

�
−
½dkð~xÞ − ikð~x; ~αkÞ�2

2πσ2n

�

(14)

and the likelihood of the complete data set consisting of all
the pixel intensities in all the corrupted images is given by

pf½dkð~xÞ�; ið~x; ~αkÞg ¼
YK
k¼1

Y
xϵχ

1

ð2πσ2nÞ1∕2

× exp

�
−
½dkð~xÞ − ikð~x; ~αkÞ�2

2πσ2n

�
: (15)

Taking the natural log of Eq. (15) makes the analysis more
tractable. The resulting summation, neglecting a constant
term, yields the log-likelihood function

L½ið~x; ~αkÞ� ¼ −
XK
k¼1

X
xϵχ

½dkð~xÞ − ið~x; ~αkÞ�2: (16)

The processing objective is to maximize this cost func-
tion, parameterized in terms of the true object ox and the vec-
tor of Zernike coefficients, ~αk that expand the phase terms
θð~xpÞ. This is a complex nonconvex optimization problem
that may not yield a global minimum. Further discussion
is provided in Sec. 3.1. To maximize this cost function,
the optimization routine needs at least an estimate of the gra-
dient,∇½ið~x; ~αkÞ�, and Hessian,∇2½ið~x; ~αkÞ�, of the likelihood
function. Although an analytic form of the Hessian is not
required, optimization is much more efficient if an analytic
form of the gradient is provided. The expression of the gra-
dient is derived in Appendix A.

2.4 Poisson Noise Model MFBD

Not all images are taken in full daylight. At low light levels,
photon noise may dominate image frames. This is often char-
acterized by a grainy quality of the images due to the random
arrival times of discrete photons. Photon noise in images is
described by modeling the number of photons detected in an
image frame at each pixel as a Poisson random variable with
a mean photon count rate λ, which is proportional to average
pixel intensity. For this simulation, the number of photons
detected at each detector pixel is assumed to be an indepen-
dent, Poisson distributed random variable with a mean rate
given by a noiseless diffraction-limited image ið~xÞ. The ran-
dom nature of the PSF is neglected. The probability of
detecting dkð~xÞ photons at a specific pixel location is
given by

p½dkð~xÞ� ¼
ið~x; ~αkÞdkð~xÞe½−ikð~x;~αkÞ�

dkð~xÞ!
: (17)

The distribution over the entire set of pixel locations dk is
given by4

p½fdkg� ¼
YK
k¼1

Y
xϵχ

ið~x; ~αkÞdkð~xÞe½−ikð~x;~αkÞ�
dkð~xÞ!

: (18)

As before, taking the natural log yields a modified log-
likelihood function

Lpoisson½ið~x; ~αÞ� ¼ −
XK
k¼1

X
xϵχ

fdkð~xÞ ln½ikð~x; ~αkÞ�

× −ikð~xÞg −
XK
k¼1

X
xϵχ

dkð~xÞ! (19)
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where the last term is a constant and can be neglected.
The expression for the gradient of the Poisson noise
model log-likelihood function is derived in Appendix B.

3 Methods
Our simulations assume that the propagation occurs over
horizontally homogeneous conditions with both the object
and the imaging system immersed in a turbulent atmosphere.
Furthermore, we assume that the height above ground does
not vary significantly between imaging system and a static
scene. In addition, C2

n is assumed to be constant over the
propagation path.14 We assume that the simulated data has
effectively frozen the turbulence at the moment the turbulent
image is created. Reconstruction processing begins by select-
ing images from the complete data set in groups of Nf ¼ 2,
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 23 and 25, 50, 75, 100,
125, 150, 175, and 200 frames. Once the number of frames to
process, Nf, is determined, a stack of Nf images is selected
for processing. The number of reconstructions, N, used to
determine the average MSE declines as the number of frames
used in the reconstruction increases. For example, For Nf ¼
2 through 25, N ¼ 40. When N ¼ 20 for Nf ¼ 50, N ¼ 10
for Nf ¼ 75 and 100. When 200 frames are applied to the
reconstruction algorithm, only five independent trials are
available.

Prior to applying the simulated turbulent images to the
reconstruction algorithms, they must be recentered, as tilt
is not estimated in the MFBD algorithm. This was accom-
plished by using a correlation filter to compare each image in
the stack to an ensemble average image and then shifting the
turbulent image to recenter it. When the optimization routine
exits, the recovered object is compared with the diffraction-
limited image and the MSE is averaged over all pixels after
both images are normalized to a maximum value of 255, as
follows

MSE ¼
XN
1¼1

½fð~xÞ − f̂ð~xÞ�2
N2

; (20)

where fð~xÞ is the normalized diffraction-limited image, f̂ð~xÞ
is the current-normalized estimate of the object, and N2 is the
total number of pixels in the image. The image stack is incre-
mented to begin processing the next group of K turbulent
images and the process repeated. When the entire data set
has been processed, the average of the vector of MSEs
for images processed Nf at a time is calculated. To facilitate
direct comparison between the reconstruction methods,
exactly the same simulated turbulent images were applied
to each estimator in every trial for both methods, and the
MSE was calculated from the recovered images.

3.1 Multiframe Blind Deconvolution

In order to reduce edge effects in the reconstructed object,
each image in the data set was preprocessed to pad the recen-
tered image by replicating the edges of the image outward
and then adding a border of zeros. The images as applied
to the estimator were padded with 8 replicated pixels fol-
lowed by 5 zero pixels at the margins of each image, bringing
the total size of the image to 256 × 256 pixels.

We jointly process all images and all Zernike coefficients,
thus for a data set of K, N × N images, using J Zernike

polynomial terms, there will be N2 þ J × K parameters
that must be jointly estimated. To make the optimization trac-
table and reduce run times, the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS)15 method is used to
optimize the cost functions in Eqs. (16) and (19) to find
the object and aberration coefficients most likely to have pro-
duced the simulated images in the data set. One of the char-
acteristics of line-search methods like L-BFGS is the need
for an estimate of the Hessian ∇2fð~xÞ. The limited memory
form of the BFGS does not require an explicit expression for
∇2fð~xÞ. It estimates the value of the Hessian matrix by main-
taining the last few updates of fð~xÞ and ∇fð~xÞ. L-BFGS is a
quasi-Newtonian, “hill-climbing” technique that begins with
an initial guess at a solution for ~x0 and then proceeds along a
line in the direction pointed to by the gradient of the objec-
tive function evaluated at each location. For MFBD process-
ing, the spatial average of all the frames used in the trial was
used as starting point for the estimator. In Sec. 6, we propose
a hybrid bispectrum-MFBD (B-MFBD) method, in which a
bispectrum object estimate is used to provide the starting
point for the MFBD estimator. The initial guess Zernike
coefficients applied to the estimator for both techniques
are random Gaussian numbers with a mean of 0.5 and
unity variance. Based on previous work,18 for the image
reconstruction processing in this article, the number of iter-
ations was limited to 25 and the number of Zernike terms
was fixed at 30.

4 Results

4.1 Gaussian Noise Model

Figure 2 shows the plots of MSE for the Gaussian case
MFBD, and bispectrum estimators, as the number of images,
Nf are varied for low, moderate, and severe turbulence con-
ditions. For comparison, the average MSE for the each data
set is also provided. We see that at Nf ¼ 2 and thereafter
both estimators can be expected to perform better than the
average MSE for all three simulated turbulence conditions.
For the low turbulence case, C2

N ¼ 2.25 × 10−14 mð−2∕3Þ,
marginal improvement in MSE declines at Nf ¼ 12, reach-
ing a maximum improvement of ∼40% over the average
MSE over the entire data set. For the moderate turbulence
case, C2

N ¼ 3.75 × 10−14 mð−2∕3Þ, the improvement in
MSE available by including additional input frames hits a
maximum of ∼25% of full scale at Nf ¼ 14. For the severe
turbulence case, C2

N ¼ 5.25 × 10−14 mð−2∕3Þ, the improve-
ment in MSE available by including additional input frames
hits a maximum of ∼36% of full scale atNf ¼ 14 and neither
the MSE nor the standard deviation improves significantly as
additional input images are added to the processing stack.
However, for low and moderate turbulence cases, if process-
ing time is not of consequence, the MSE and its standard
deviation continues to improve as additional images are
included or if the number of iterations is increased.18 A sam-
ple of the simulated turbulent image data set is compared
with a sample-reconstructed object for MFBD and SI as
shown in Figs. 3–5.

4.2 Poisson Noise Model, Photon Rate 2 × 106, 30
Photons Per Pixel

Each set of 1000 turbulent images, representing the the three
turbulence cases, was used to generate a set of speckle
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images with a mean photon count per image of 2 × 106. Each
set of images was processed using the MFBD and SI meth-
ods described above. The MFBD method used the cost func-
tion and gradients described in Eqs. (19), (31), and (32).

Figure 6 shows the plots of MSE for the Gaussian MFBD
and SI reconstructors, as the number of images,Nf are varied
for (a) Case 1: low turbulence C2

N ¼ 2.25 × 10−14 mð−2∕3Þ,
(b) Case 2: moderate condition C2

N ¼ 3.75 × 10−14 mð−2∕3Þ,
and (c) Case 3: severe turbulence C2

N ¼ 5.25×10−14 mð−2∕3Þ.
For comparison, the average MSE for each data set is also

provided. For the low turbulence case, MFBD performance
is less than the data set average until 50 input frames are used
in each reconstruction. At Nf ¼ 50 and thereafter the esti-
mator can be expected to produce an estimate that has a
value lower than 2095, the average MSE of the images in
the simulated data set. Marginal improvement in MSE con-
tinues as additional frames are added to the image stack,
reaching a maximum of about 38% improvement over the
average MSE across the data set. Bispectrum achieves sim-
ilar results with far fewer input frames. For the low

Fig. 2 Gaussian noise model, bispectrum, and multiframe blind deconvolution (MFBD) mean-square-
error (MSE) versus number of frames. (a) Case 1: low turbulence C2

N ¼ 2.25 × 10−14 mð−2∕3Þ,
(b) Case 2: moderate condition C2

N ¼ 3.75 × 10−14 mð−2∕3Þ, and (c) Case 3: severe turbulence
C2

N ¼ 5.25 × 10−14 mð−2∕3Þ.

Fig. 3 Gaussian noise model Case 1 sample images. Compares (a) a sample turbulent image, (b) a
sample MFBD-reconstructed object, and (c) a sample bispectrum-reconstructed object.

Fig. 4 Gaussian noise model, Case 2 sample images. Compares (a) a sample turbulent image, (b) a
sample MFBD-reconstructed object, and (c) a sample bispectrum-reconstructed object.
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turbulence case, MFBD performance approximates that of
the bispectrum technique after 125 images are processed
in each image stack. For moderate and severe turbulence
cases, the use of 150 input frames produces a slightly
lower MSE than the SI method. The reduced number of trials
for large frame groups is conjectured to be the reason why
the MSE plots are not consistently monotonic. Processing
times for SI can be a short as 1 min, MFBD can be as
short as 30 min when run to convergence. A sample simu-
lated turbulence image is compared with MFBD and SI
reconstructed objects in Figs. 7–9. The MFBD sample
was processed using 175 frames; the SI method used 200
frames in the reconstruction.

4.3 Poisson Noise Model, Photon Rate 1 × 106, 15
Photons Per Pixel

Figure 10 shows the plots of MSE for the MFBD, and
bispectrum reconstructors, as the number of images, Nf,
are varied for (a) Case 1: low turbulence C2

N ¼ 2.25×
10−14 mð−2∕3Þ, (b) Case 2: moderate condition C2

N ¼ 3.75×
10−14 mð−2∕3Þ, and (c) Case 3: severe turbulence C2

N ¼
5.25×10−14 mð−2∕3Þ. For comparison, the average MSE for
each turbulence condition is also provided. For the low-tur-
bulence case, MFBD performance is less than the input
images until 50 input frames are used in each reconstruction.
The MFBD estimator produces a lower MSE than that of the

Fig. 5 Gaussian noise model, Case 3 sample images. Compares (a) a sample turbulent image, (b) a
sample MFBD-reconstructed object, and (c) a sample bispectrum-reconstructed object.

Fig. 6 Bispectrum and MFBD MSE versus number of frames. Poisson Case, photon rate 2 × 106

(a) Case 1: low turbulence C2
N ¼ 2.25 × 10−14 mð−2∕3Þ, (b) Case 2: moderate condition

C2
N ¼ 3.75 × 10−14 mð−2∕3Þ, and (c) Case 3: severe turbulence C2

N ¼ 5.25 × 10−14 mð−2∕3Þ.

Fig. 7 Case 1 low condition sample images, photon rate 2 × 106, C2
N ¼ 2.25 × 10−14 mð−2∕3Þ. Compares

(a) a sample turbulent image, (b) a sample MFBD-reconstructed object (Nf ¼ 175), and (c) a sample
bispectrum (Nf ¼ 200) reconstructed object.
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bispectrum estimator when the number of frames processed
Nf > 50. MFBD error reduces as additional frames are
added to the image stack, reaching a maximum of
about 38% improvement over the average MSE across the
data set.

A sample simulated turbulent image is compared with
reconstructed objects in Figs. 11–13. The MFBD sample
was processed using 175 frames, the bispectrum method
used 200 frames in the reconstruction. Processing times
for bispectrum are significantly shorter than for MFBD.

4.4 Poisson Noise Model, Mean Photon
Rate 5 × 1015, 8 Photons Per Pixel

Figure 14 shows the plots of MSE for the Gaussian MFBD
and bispectrum estimators, as the number of images Nf are
varied. For comparison, the average MSE for the entire data
set is also provided. On average, MFBD performance is less
than the input images until 25 input frames are used in each
reconstruction. At Nf ¼ 25 and thereafter, the estimator can
be expected to produce an estimate that has a lower MSE
than the average MSE of the images in the simulated data

Fig. 8 Case 2 moderate condition sample images, mean photon rate 2 × 106,
C2

N ¼ 3.75 × 10−14 mð−2∕3Þ. Compares (a) a sample turbulent image, (b) a sample MFBD-reconstructed
(Nf ¼ 175) object, and (c) a sample bispectrum (Nf ¼ 200) reconstructed object.

Fig. 9 Case 3 severe condition sample images, mean photon rate 2 × 106, C2
N ¼ 5.25 × 10−14 mð−2∕3Þ.

Compares (a) a sample simulated turbulent image, (b) a sample MFBD-reconstructed object, Nf ¼ 175,
and (c) a sample bispectrum reconstructed object Nf ¼ 200.

Fig. 10 Bispectrum and MFBD MSE versus number of frames. Poisson case, photon rate 1 × 106

(a) Case 1: low turbulence C2
N ¼ 2.25 × 10−14 mð−2∕3Þ, (b) Case 2: moderate condition

C2
N ¼ 3.75 × 10−14 mð−2∕3Þ, and (c) Case 3: severe turbulence C2

N ¼ 5.25 × 10−14 mð−2∕3Þ.
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set. One possible reason that the SI estimate performance has
diminished is that the estimator was optimized for high light
levels. Only five bispectrum subplanes were used to recon-
struct the phase estimate, which is sufficient for high-light
levels, but the inclusion of higher-frequency offsets may
increase the noise in the final estimate, thereby degrading
the MSE performance. The MSE produced by the MFBD
estimator will on average be less than that of SI techniques
when the number of frames processed Nf > 100. After
Nf > 125, MSE is not further reduced byMFBD processing.
For the moderate and severe turbulence cases shown in

Figs. 14(b) and 14(c), the MFBD estimator produces a
lower MSE then SI after Nf > 100.

Sample simulated turbulent images are compared with
reconstructed objects in Figs. 15–17. The MFBD sample
was processed using 175 frames; the bispectrum method
used 200 frames in the reconstruction.

5 MFBD Estimator Performance Using Field Data
MFBD estimator performance is also evaluated with field
images that were gathered as an ancillary part of a free-
space-laser communications experiment.19 The transmitter

Fig. 11 Case 1: low condition C2
N ¼ 2.25 × 10−14 mð−2∕3Þ, photon rate 1 × 106. Compares (a) a sample

simulated turbulent image, (b) a sample MFBD reconstricted object, Nf ¼ 175, and (c) a sample bispec-
trum reconstructed object Nf ¼ 200.

Fig. 12 Case 2: moderate turbulence C2
N ¼ 3.75 × 10−14 mð−2∕3Þ, mean photon rate 1 × 106. Compares

(a) a sample turbulent image, (b) a sample MFBD-reconstructed object, and (c) a sample bispectrum-
reconstructed object.

Fig. 13 Case 3: severe turbulence C2
N ¼ 5.25 × 10−14 mð−2∕3Þ, mean photon rate 1 × 106. Compares

(a) a sample turbulent image, (b) a sample MFBD-reconstructed object, and (c) a sample bispec-
trum-reconstructed object.
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side of the experiment consisted of an 808-nm laser trans-
mitter and a pinwheel target. The receiver end of the experi-
ment was a 300-cm Celestron telescope located 3.046-km
downrange. The imaging path extended horizontally over
both land and water at ∼250 m above sea level. As part
of the communications experiment, simultaneous images
and turbulence measurements were taken using a Shack–
Hartmann wave front sensor and a point gray CCD camera.
The images used in MFBD reconstruction were recorded in
the absence of continuous wave front sensor (WFS)

measurements because the active laser present in the images
recorded for the communications experiment regularly satu-
rated the image sensor. Turbulence measurements were taken
for three 27-s intervals pre- and postimage collection. WFS
sensor data was not concurrent with the images. Our
assumption is that the atmospheric turbulence will not
change more rapidly than the data could be recorded. The
Fried parameter estimates, r0, are shown in Table 2.

Images from the July 1, 2009, data set were processed
using the MFBD estimator. A 250 × 250 pixel region of

Fig. 14 Bispectrum and MFBD MSE versus number of frames. Poisson case mean photon rate 5 × 105

(a) Case 1: low turbulence C2
N ¼ 2.25 × 10−14 mð−2∕3Þ, (b) Case 2: moderate condition

C2
N ¼ 3.75 × 10−14 mð−2∕3Þ mð−2∕3Þ, and (c) Case 3: severe turbulence C2

N ¼ 5.25 × 10−14 mð−2∕3Þ.

Fig. 15 Case 1: low turbulence C2
N ¼ 2.25 × 10−14 mð−2∕3Þ, mean photon rate 5 × 105. Compares (a) a

sample turbulent image, (b) a sample MFBD-reconstructed object Nf ¼ 175, and (c) a sample Nf ¼ 200,
reconstructed object.

Fig. 16 Case 2: moderate turbulence C2
N ¼ 3.75 × 10−14 mð−2∕3Þ, mean photon rate 5 × 105. Compares

(a) a sample turbulent image, (b) a sample MFBD-reconstructed object, and (c) a sample bispectrum-
reconstructed object.

Optical Engineering 043109-10 April 2014 • Vol. 53(4)

Archer, Bos, and Roggemann: Comparison of bispectrum, multiframe blind deconvolution. . .



interest was extracted from the recorded images and padded
up to 256 × 256 by replicating the pixels at the margin of the
image outward. Fifteen images were processed using a spa-
tially averaged initial estimate. The images were applied to
the estimator for 20 iterations, and the result is shown in
Figs. 18 and 19.

Images from July 24, 2009, 1900 EDT data set were proc-
essed using the MFBD estimator. A 250 × 250 pixel region
of interest was extracted from the recorded images and
padded up to 256 × 256 by replicating the pixels at the mar-
gin of the image outward. R0 for this data set ranged from 2.3
to 2.4 cm, substantially smaller than data set 1. To provide
more information for the estimator to work with, 25 images
were processed using 35 Zernike coefficients and 20

iterations of the estimator. A spatially averaged image was
used as a starting point for the optimization routine, and
the result is shown in Fig. 20.

6 Using Bispectrum as the MFBD Initial Estimate
Both bispectrum and MFBD have strengths to recommend
them. Bispectrum produces rapid results but requires an esti-
mate of C2

n and α to get started. MFBD converges more
slowly and has the potential to produce a higher-quality
image reconstruction. But, MFBD requires an initial estimate

Fig. 17 Case 3: severe turbulence C2
N ¼ 5.25 × 10−14 mð−2∕3Þ, mean photon rate 5 × 105. Compares

(a) a sample turbulent image, (b) a sample MFBD-reconstructed object, and (c) a sample bispec-
trum-reconstructed object.

Table 2 Date, time, and wave front sensor turbulence measurement
range averaged over 27 seconds pre- and postimage collection as the
images in data set 1, 2, and 3 were recorded.

Field data turbulence parameters

Data set Date Time r 0 (cm)

Set 1 July 1, 2009 14:00 EDT 4.6 to 5.2

Set 2 July 14, 2009 14:00 EDT 2.3 to 2.4

Set 3 July 24, 2009 19:00 EDT 1.78 to 2.8

Fig. 18 Field data reconstruction from July 1, 2009, 1400 EDT data
set. A sample input image is shown in (a) and a sample reconstructed
image in (b).

Fig. 19 Field data reconstruction from July 14, 1400 EDT data set. A
sample input image is shown in (a) and a sample reconstructed image
in (b).

Fig. 20 Field data reconstruction from July 24, 2009, 1900 EDT data
set. A sample input image is shown in (a) and a sample reconstructed
image in (b).
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of the object to get started and is subject to trapping in a local
minimum of the cost function. The reduced run time of the
bispectrum estimator suggests that it may offer a quick way
to provide a better starting point for the MFBD estimator.
Reconstruction processing in Sec. 3.1 used the spatial aver-
age of the input images as a starting point for the L-BFGS
optimization routine. A hybrid strategy was attempted to
combine the best of both techniques.

In the first case, a bispectrum estimate for the object inten-
sities was used to replace the ensemble average of the input
images as the starting point for the MFBD estimator. The
MSE was calculated as a function of the number of input

frames used in the estimate. Setting the number of processing
iterations at Np ¼ 40 and limiting the number of input
frames to Nf ¼ 15 the hybrid method, B-MFBD, reduced
the MSE by 16.9%, 18.6%, and 14.9% over MFBD process-
ing using the ensemble average as the starting point when
processing the low, moderate, and severe turbulence data
sets, respectively. When compared with the SI processing,
reductions of 9.4%, 8.4%, and 6.6% in MSE were observed.
Reconstruction times for each frame averaged ∼1 min for
bispectrum, 10 min for MFBD, and 35 min for the B-
MFBD hybrid. These results are summarized in Table 3.
The hybrid B-MFBD improves on the performance of the
standard MFBD estimator and approximates the perfor-
mance of the SI estimator. The significant characteristic of
the B-MFBD estimator is a 4% to 6% improvement on
the variance of the estimate over SI and MFBD applied
by themselves. The plots for MSE versus the number of
frames are shown in Fig. 21. Gaussian (a) Case 1: low
turbulence C2

N ¼ 2.25 × 10−14 mð−2∕3Þ, (b) Gaussian Case
2: moderate turbulence C2

N ¼ 3.75 × 10−14 mð−2∕3Þ, and
(c) Gaussian Case 3: severe turbulence C2

N ¼ 5.25×
10−14 mð−2∕3Þ. Further efforts to explore the performance
characteristics of this technique used a value for the gradient
of the cost function as the exit criteria for the L-BFGS
optimization routine. A value of g ¼ 10;000 was set, and
the B-MFBD estimator was allowed to run until convergence
produced the object estimate as seen in Figs. 22(c), 23(c),
and 24(c). Because processing times are both long and

Table 3 Mean and variance for multiframe blind deconvolution
(MFBD), bispectrum, and the hybrid B-MFBD methods for low turbu-
lence C2

N ¼ 2.25 × 10−14 mð−2∕3Þ, moderate condition C2
N ¼ 3.75×

10−14 mð−2∕3Þ, and severe turbulence C2
N ¼ 5.25 × 10−14 mð−2∕3Þ.

Processing was accomplished with Nf ¼ 15, Nz ¼ 15, and the exit
criteria for the optimization routine set at 40 iterations.

MFBD Bispectrum B-MFBD

μ σ μ σ μ σ

Low 431.0 32.9 395 21.0 358 32.9

Moderate 617.0 94.5 548.5 28.5 502.6 32.9

Severe 779.0 103.5 710.8 34.6 663.5 34.4

Fig. 21 MSE versus Nf for MFBD, bispectrum, and B-MFBD method using bispectrum to provide an
initial estimate for processing with the MFBD estimator.

Fig. 22 Using speckle imaging (SI) to jump start MFBD. (a) Low turbulence condition input image sam-
ple, (b) initial estimate from SI as MFBD starting point, and (c) B-MFBD output when run to convergence.
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unpredictable, this technique is unlikely to see application in
an embedded system.

7 Conclusions
The performances of an SI estimator and an unconstrained
optimization-based MFBD estimator were compared in
terms of the MSE between the object reconstructed using
the method and a diffraction-limited image. Three 1000-
image data sets of a single image distorted by low, moderate,
and severe turbulence that includes anisoplanatic effects
were applied to both methods and their MSE performance
was evaluated. At normal illumination levels, a wide
range of turbulence cases would be well served by either
SI or MFBD. Point performance estimates, using a data
set of 1000 simulated turbulence-corrupted images, indicate
that speckle-imaging techniques reduce the MSE 46%, 42%,
and 47% on average for low, moderate, and severe turbulence
conditions, respectively, using 15 input frames under day-
time conditions and moderate frame rates. Similarly, the
MFBD method provides 40, 29, and 36 improvements in
MSE on average under the same conditions. But the speckle
techniques are significantly faster. The comparison is
repeated under decreasing illumination conditions (less
than 100 photons per pixel) where improvements of 39,
29, and 27 are available using SI methods and 25 input
frames and 38, 34, and 33, respectively, for the MFBD
method and 150 input frames, respectively, under the
assumption that the phase errors can be characterized as a
Gaussian distribution. For all simulated turbulence cases,
significant reductions were observed with as few as two
input images. For the Poisson case, significant results

were achieved with as few as 50 frames for MFBD and 2
frames for speckle. Processing with field data with the
MFBD produced qualitatively similar results over a modest
range of atmospheric turbulence. The B-MFBD estimator
using the SI estimator to provide the MFBD processing algo-
rithm with an initial starting point produces modest MSE
performance improvement over SI alone using 15 input
frames, 15 Zernike terms and 40 iterations of the MFBD
algotithm. The B-MFBD method produced more substantial
improvement when compared with MFBD processing that
used a spatial average of input frames as the optimizer’s start-
ing point when using similar inputs and exit criteria.
Qualitative improvements were achieved by letting the opti-
mization run until convergence, but this technique may not
be suitable for embedded system implementation because of
long, unpredictable processing time.

Appendix A: Gradient of the Gaussian Noise
Model Log-Likelihood Cost Function
With respect to the pixel intensities, the gradient of the
Gaussian log-likelihood function20 can be represented as

∂
∂o

L½ið~x; ~αÞ� ¼ 2
XK
k¼1

X
xϵχ

fdkð~xÞ − ½ikð~xÞ�g
∂
∂o

ikð~xÞ (21)

and the derivative of ikð~xÞ with respect to the object is given
by

Fig. 23 Using SI to jump start MFBD. (a) Moderate turbulence condition input image sample, (b) initial
estimate from SI as MFBD starting point, and (c) B-MFBD output when run to convergence.

Fig. 24 Using SI as the initial MFBDestimate. (a) Severe turbulence condition input image sample, (b) ini-
tial estimate from SI as MFBD starting point, and (c) B-MFBD output when run to convergence.
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∂
∂o

ikð~xÞ ¼
∂
∂o

X
~xo

hð~x − ~xoÞoð~xoÞ ¼ hð~x − ~xoÞ; (22)

where hðxi − xoÞ is the incoherent PSF.
The gradient with respect to the Zernike coefficients is

∂
∂~α

L½ið~x; ~αÞ� ¼ 2
XK
k¼1

X
xϵχ

fdkð~xÞ − ½ikð~xÞ�g
∂
∂~α

ikð~x; ~αkÞ:

(23)

∂
∂~α

ikð~x; ~αkÞ ¼
∂
∂~α

�X
~xo

hð~x − ~xoÞoð~xoÞ
�

¼
X
~xo

∂
∂~α

½hð~x − ~xoÞoð~xoÞ�. (24)

Since the object oð~xoÞ is constant with respect to the
Zernike coefficients, Eq. (24) reduces to

X
~xo

∂
∂~α

½hð~x − ~xoÞoð~xoÞ� ¼
X
~xo

�
∂
∂~α

½hð~x − ~xoÞ�
�
oð~xoÞ:

(25)

From Eqs. (11)–(13), we can express the derivative of the
incoherent PSF with respect to the αks in terms of the coher-
ent PSF,

∂
∂~α

½hð~x − ~xoÞ� ¼
∂
∂~α

jgð~xÞj2 ¼ ∂
∂~α

gð~xÞg�ð~xÞ

¼
�
∂
∂~α

gð~xÞ
�
g�ð~xÞ þ gð~xÞ

�
∂
∂~α

g�ð~xÞ
�
; (26)

where ð•Þ represents the complex conjugate of the function
in parentheses. Equation (26) can be represented as

2R

��
∂
∂~α

gð~xÞ
�
g�ð~xÞ

�
; (27)

where Rð•Þ takes the real part of a complex value.

∂
∂~α

gð~xÞ ¼ ∂
∂~α

�X
~xp

Aejθð~xpÞej
2π
N ð~x•~xpÞ

�

¼
X
~xp

�
j
∂θð~xpÞ
∂~α

Aejθð~xpÞej
2π
N ð~x•~xpÞ

�
; (28)

∂θð~xpÞ
∂~α

¼ ∂
∂~α

ϕkð~xpÞαk ¼ ϕkð~xpÞ: (29)

Combining the results of Eqs. (29), (28), (27) yields the
final result

∂
∂~α

ikð~x; ~αkÞ

¼
X
~xo

2R

��X
~xp

½jϕkð~xpÞAejθð~xpÞej2πN ð~x•~xpÞ�
�
g�ð~xÞ

�
oð~xoÞ:

(30)

Appendix B: Gradient of the Poisson Noise
Model Log-Likelihood Cost Function
Taking the derivative with respect to the pixel intensities the
gradient of the Poisson log-likelihood function20 described in
Eq. (19) can be represented as

∂
∂o

LPoisson½ið~x; ~αÞ� ¼
XK
k¼1

X
xϵχ

�
dkð~xÞ

ikð~x; ~αkÞ
− 1

�
∂
∂f

ikð~x; ~αkÞ:

(31)

With respect to the Zernike coefficients the gradient of the
Poisson log-likelihood function can be represented as

∂
∂~α

LPoisson½ið~x; ~αÞ� ¼
XK
k¼1

X
xϵχ

�
dkð~xÞ

ikð~x; ~αkÞ
− 1

�
∂
∂~α

ikð~x; ~αkÞ;

(32)

where the ∂∕∂~α½ið~x; ~αÞ� was shown in Eq. (30).
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