
Measuring velocity with Bessel beam
fringes

Mahmud Sakah
Brahim Chebbi
Ilya Golub



Measuring velocity with
Bessel beam fringes

Mahmud Sakah,a Brahim Chebbi,a,* and Ilya Golubb

aLaurentian University, Bharti School of Engineering,
Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
bAlgonquin College, School of Advanced Technology,
Woodroffe Avenue, Ottawa, Ontario K2G 1V8, Canada

Abstract. We analyze theoretically, numerically, and
experimentally the spectral response of scattered light
intensity from moving particles crossing the fringes of a
Bessel beam. This response could be the basis of a simple
technique to measure velocity. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.54.8.084106]

Keywords: laser Doppler velocimetry; axicons; Bessel beams.

Paper 150686L received May 25, 2015; accepted for publication Jul.
6, 2015; published online Aug. 7, 2015.

Laser Doppler velocimetry (LDV) is a very well established
technique for measuring fluid and solid surface velocities.
The most widely used configuration of this technique is the
dual beam mode, in which two beams intersect at the meas-
uring volume and the modulation frequency of scattered light
is given by the difference of the Doppler frequencies. This
frequency difference depends on the angle of intersection
and is independent of the point of observation. The fringe
model, frequently used to describe this relationship, relates
the Doppler frequency difference to the fringe spacing of the
two intersecting beams.1 Usually, refractive and reflective
elements (lenses, mirrors, and beam splitters) are used to
intersect the beams, however, diffractive holographic ele-
ments were also suggested and proved to produce a fringe
pattern that is stable against wavelength drift and laser
mode hoping.2 Also, methods for the formation of fringes
other than using the intersection of two Gaussian beams
were suggested in the literature. For example, the interfer-
ence of three coplanar Gaussian beams was used to form
the measuring volume and measure the particle position
and microflow velocity profile with increased spatial resolu-
tion.3 In another investigation, two nearly Bessel beams were
intersected to form the measuring volume of an LDV sys-
tem.4 A technique related to the LDV, called laser
Doppler flowmetry (LDF), is used for estimation of blood
flow and perfusion measurements on skin and organs. In
this technique, a single Gaussian beam is used.

In the present investigation, we explore the use of the
fringes of one Bessel beam to measure velocity. The concept
we propose is shown in Fig. 1. We measure the intensity of
light scattered from moving particles crossing the fringes of
a Bessel beam created by an axicon. The frequency content
of the obtained signal is analyzed for information about

the velocity of the particles. The Bessel beam fringes are
axisymmetric and their intensity is not uniform. In most
cases, using parallel fringes with uniform spacing is better
than using Bessel beam fringes. The technique suggested
in the present research is, in its current form, less advanta-
geous than regular LDV in terms of accuracy, resolving
velocity components, flow direction, and longitudinal spatial
resolution. However, this method has a simple and compact
configuration and can offer an advantageous alternative in
some applications, for example, in solid surface measure-
ments or in one-dimensional microfluidic flows, where
compactness is important. More importantly, this technique
might be useful for measurements in turbid media such as in
LDF. Bessel beams have distinct properties, namely near
diffractionless, long depth-of-field (DOF), and self-healing.
Because of their ability to reconstruct after being disturbed
by an obstacle, they are particularly advantageous for use in
turbid media for which they were used in applications such
as micromanipulation5 and microscopy.6 Moreover, one of
the main limitations of LDF is the depth in tissue where mea-
surements are performed. There is no control on the depth of
measurement and the most widely used method to measure at
different depths is placing the detector at varying distances
from the source to pick up scattered light from different
regions.7 Bessel beams offer an opportunity to reach larger
depth and to control the depth measurements more effi-
ciently. It is possible to control the longitudinal intensity
distribution of Bessel beams by using logarithmic,8 linear,
and exponential axicons9 and to compensate for the losses
in turbid media.10 Finally, the study of the spectral response
of light scattered from particles crossing the fringes of a
Bessel beam is important on its own merit and can be useful
in other applications where Bessel beams are used, such as in
micromanipulation and microscopy.

The present concept is different from the one used in the
system reported in Ref. 4, which is an LDV system using two
Bessel beams to create a measurement volume with parallel
fringes. It should be mentioned that another investigation
reported the use of Bessel beams in ultrasound Doppler
velocity estimation.11 Because the field is measured in an
ultrasound system, it has a different spectral response than
the current optical system, where the intensity is measured.

We perform a theoretical analysis by considering a par-
ticle crossing the fringes of a Bessel beam with a constant
velocity normal to the longitudinal axis and passing through
the center of the beam. For simplicity, we use a very basic
model for the light scattered from this particle and collected
by the detector. We consider that the particle size is smaller
than the fringes, and we assume that the intensity of this light
is proportional to the intensity of the fringes it crosses. It is
well established that from an incoming Gaussian beam, a
regular axicon of base angle α produces an intensity propor-
tional to J20ðkβrÞ, where J0 is the Bessel function of the first
kind of order 0, r is the radius from the center of the beam, k
is the wave number, and β is the refraction angle. The wave
number is given by k ¼ 2π∕λ, and the refraction angle is
approximated for small angles in terms of α by β ≈ ðn − 1Þα,
where λ is the wavelength and n is the index of refraction of
the axicon. Thus, as the particle crosses the fringes through
the center, it scatters light with intensity proportional to
J20ðkβrÞ and a photodetector collecting this light produces
a proportional electrical signal (particle 1 in Fig. 1). If the*Address all correspondence to: Brahim Chebbi, E-mail: bchebbi@laurentian.ca
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particle is moving with a velocity v parallel to the y axis, we
can substitute r ¼ vt and the intensity as a function of time,
t, is proportional to J20ðkβνtÞ. The spectrum, FðfÞ, as a
function of the frequency fðHzÞ, of this signal is obtained
by calculating its Fourier transform, F , which is given
using the distribution theory.12
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fb ¼ kβv∕π, which can be written as

EQ-TARGET;temp:intralink-;e002;63;344fb ¼
2βv
λ

: (2)

FðfÞ is plotted if Fig. 2 for α ¼ 5 deg, λ ¼ 658 nm, and n ¼
1.52 and different velocities. It has a half-hut shape, high
at low frequencies, and decreases until fb, after which it
becomes zero. The expression of the frequency, fb, which is

called the Bessel frequency,4 is similar to the expression of
the Doppler frequency shift, fD, for the LDV dual beam
mode, where β is the half angle between the two intersecting
beams. The difference is that in the case of the LDV, the
spectrum shows a peak at fD, while in this case fb marks
the edge of the hut-shaped frequency distribution.

This analysis considers only the simplest case where a
particle crosses the Bessel beam at its center. Numerical sim-
ulations were performed to deal with the more general cases
where the particles can cross the beam at other trajectories
with respect to the center. A time signal of scattered light
intensity was generated by allowing one particle to move at
constant velocity in the y direction from any starting point in
the ðx; yÞ plane, as shown in Fig. 1. The intensity is assumed
to be proportional to that of the fringes where the particle
is located as it moves, and the spectral response of the gen-
erated signal was numerically calculated by using the fast
Fourier transform. The results are plotted in Fig. 3 for par-
ticles crossing the Bessel beam at different cross-sections
for a velocity of 50 mm∕s. For a particle crossing the center
(x ¼ 0 mm, y ¼ −1 mm), the results are consistent with the
theoretical results in Fig. 2.

The spectra for particles crossing off-center have the same
value of the limiting frequency, fb, with oscillation at lower
frequencies depending on the trajectory of the particle. As
expected, the signal strength decreases as the trajectories get
away from the center. Since fb is the quantity, which relates
to velocity, these curves can be used to infer the velocity
value.

Experiments were conducted to validate the theoretical
and numerical simulations. A red laser beam (λ ¼ 658 nm)
was expanded to a diameter of ∼8 mm and passed through
a 5 deg axicon to generate a nearly Bessel beam with a DOF
∼86-mm long and an average fringe spacing of ∼7 μm.
A sandpaper sheet was mounted on a linear actuator and
allowed to move at known different constant velocities with
its surface in the plane ðx; yÞ of Fig. 1 perpendicular to the
direction of propagation of the Bessel beam. The scattered
light from particles of the sandpaper crossing the fringes of
the Bessel beam was focused by a lens on the photodetector.
In order to obtain a steady state and constant velocity during
a reasonable time period, the sandpaper was selected to be
large compared to the size of the Bessel beam. The signal
from the photodetector was amplified, lowpass filtered,
digitized, and processed. The spectrum of the signal was
computed and the results are shown in Fig. 4 for different
velocities. Polynomial curve fitting for the spectra was
used and is shown in the figure. The theoretical values
of the Bessel frequency calculated using Eq. (2) are also
shown. In general, the experimental results agree with the
theoretical analysis and numerical simulations in terms of
the dependence of the spectra on the velocity. The main
differences, which are mostly due to the finite size of the
particles crossing the Bessel beam, are that the experimen-
tal spectrum of the scattered light shows variations and it is
not well defined at the Bessel frequency. For the theoretical
and numerical simulation, the spectrum falls off abruptly to
a zero value at fb while experimentally it does so gradually.
Nevertheless, the value at which the decrease starts corre-
sponds well with the theoretical value. Equation (2) can
then be used to calculate the velocity from the measured
spectrum.

Fig. 1 Scattering of light from particles crossing Bessel beam fringes.

Fig. 2 Fourier transform of J2
0ðkβvtÞ.
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In conclusion, the results presented can be the basis for
the development of a new technique to measure velocity.
We call this technique the laser Bessel velocimetry, since
even though it resembles LDV, it has a completely different
spectral response specific to Bessel beams. This technique,
as presented, does not have a confined measuring volume
and does not give velocity direction or components. These
limitations can be further investigated, for example, one
can use the receiving optics to focus on the desired measur-
ing location or detectors placed at different positions to
resolve the components. Also, there are ways of limiting
the extent of the measuring volume in the longitudinal direc-
tion and remotely controlling its location by using a three
axicons system similar to the system presented in Ref. 14.
Finally, this technique has more potential for use in turbid
media, for example, to measure blood perfusion where
flow direction is less important and where the self-healing
properties of Bessel beams and the ability to control their
longitudinal intensity distribution are advantageous.

Fig. 3 Numerical simulation of scattered light spectra from particles
crossing Bessel beam at different positions at a speed v ¼ 50 mm∕s.

Fig. 4 Experimental results of Fourier transform of intensity. Dotted line shows theoretical value [Eq. (2)].
White lines show polynomial curve fitting. (a) v ¼ 30 mm∕s. (b) v ¼ 40 mm∕s. (c) v ¼ 50 mm∕s.
(d) v ¼ 60 mm∕s. (e) v ¼ 70 mm∕s.
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