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Abstract. The performance of the “weighted Fourier phase slope” centroiding algorithm at the subpupil image of
a Shack–Hartmann wavefront sensor for point-like astronomical guiding sources is explored. This algorithm esti-
mates the image’s displacement in the Fourier domain by directly computing the phase slope at several spatial
frequencies, without the intermediate step of computing the phase; it then applies optimized weights to the phase
slopes at each spatial frequency obtained by a Bayesian estimation method. The idea was inspired by cepstrum
deconvolution techniques, and this relationship is illustrated. The algorithm’s tilt estimation performance is char-
acterized and contrasted with other known centroiding algorithms, such as thresholded centre of gravity (TCoG)
and cross correlation (CC), first through numerical simulations at the subpupil level, then at the pupil level, and
finally at the laboratory test bench. Results show a similar sensitivity to that of the CC algorithm, which is superior
to that of the TCoG algorithm when large fields of view are necessary, i.e., in an open-loop configured adaptive
optics system, thereby increasing the guide star limiting magnitude by 0.6 to 0.7 mag. On the other side,
its advantage over the CC algorithm is its lower computational cost by approximately an order of magnitude.
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1 Introduction
The Shack–Hartmann wavefront sensor (SHWFS) continues
to be the most widely used wavefront sensor in astronomy
with the most mature technology. It is essentially composed
of an array of microlenses and a detector, typically a charge
coupled device (CCD) array, situated at the microlenses focal
plane. The system’s pupil is reimaged onto the array of
microlenses, thereby being split into subpupils and creating
an array of images of the observed object at the detector. The
relative displacement of these images between the aberrated
and plane incident wavefront cases is proportional to the
wavefront tilt over each microlens. The estimation of such
displacements allows to retrieve the aberrated incident wave-
front profile.1 This sensor’s parameters, such as the pupil’s
sampling factor and subpupil’s image field of view (FoV)
and resolution, can be selected according to the application
requirements of wavefront estimation precision, sensitivity,
and dynamic range. This flexibility is in contrast to other
wavefront sensing techniques, for example, the pyramid
wavefront sensor (P-WFS).2 This other technique achieves
greater sensitivity than the SHWFS but relies for its opera-
tion on the at least partial correction of the wavefront aber-
ration to reduce its dynamic range.3

Multiobject adaptive optics (MOAO) systems span
a wide sensed FoV, of the order of arcminutes, and correct
only those reduced portions of the FoV (of the order of

arcseconds), where the scientific objects of interest are
situated.4–6 Thus, they operate in an open-loop correction
configuration, and a requirement of their wavefront sensors
is to maintain their sensitivity in the low light level
conditions when sensing a larger FoV than in traditional
closed-loop systems, to cope with the uncorrected atmos-
pheric turbulence dynamic range. For SHWFSs, this require-
ment applies directly to the centroiding method employed to
estimate the tilt at the subpupil level from the spot’s position
in the focal plane image, and therefore justifies the revision
of traditional centroiding methods and the proposal of new
ones (as suggested in the future work section in Ref. 6).

Hardware speed and processing capabilities continue
to improve. The hundreds, even thousands, of GFlops of
processing power of modern graphical processing units
(GPUs), for example, encourage us to move from the simple
centre of gravity (CoG)-based traditional centroiding meth-
ods, which work in the subpupil image domain, toward more
robust methods that work in transformed domains where
optimum estimators could be more easily obtained.

In this paper, we present the characterization and compar-
ative performance results of a centroiding method formulated
as an optimized Bayesian estimator in the Fourier domain,
for Shack–Hartmann wavefront sensors and point-like guid-
ing sources, which we have called the weighted Fourier
phase slope (WFPS) algorithm. Its performance is compared
with the thresholded centre of gravity (TCoG) and cross-
correlation (CC) centroiding methods through simulations
first at the subpupil level, then at the pupil level, and finally
with real SHWFS images obtained with a laboratory setup.
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2 Description of the Weighted Fourier Phase Slope
Algorithm

The formulation of the WFPS has already been presented
and validated as a tilt estimation method at the subpupil
level of SHWFSs.7,8 This algorithm first calculates the hori-
zontal and vertical displacements Cx

k;l and Cy
k;l of the subpu-

pil image Ixy evaluated at the discretized spatial frequencies
determined by the integer indices k and l based on the slopes,
or derivatives with respect to both spatial frequency axes, of
the phase of the Fourier transform of Ixy, without the need to
compute explicitly the phase or its unwrapping9,10

EQ-TARGET;temp:intralink-;e001;63;625

Cx
k;l ¼ Re

�
2D_DFTfxIxygjk;l
2D_DFTfIxygjk;l

�

Cy
k;l ¼ Re

�
2D_DFTfyIxygjk;l
2D_DFTfIxygjk;l

�
; (1)

where Ref·g is the operation of taking the real part,
2D_DFTfg is the bidimensional discrete Fourier transform,
and x and y are the horizontal and vertical coordinates of
Ixy, respectively. The algorithm then applies Bayesian maxi-
mum-a-posteriori (MAP) estimation weight row vectors Wx

v
and Wy

v to the column vector version of the observed dis-
placements, Cx

v and Cy
v, by assuming Gaussian probability

distributions for displacements and errors and disregarding
the a priori means of the estimated displacements
EQ-TARGET;temp:intralink-;e002;63;444

Ĉx
WFPS ¼ ðHTV−1

Ex HÞ−1ðHTV−1
Ex Cx

vÞ ¼ Wx
v · Cx

v;

Ĉy
WFPS ¼ ðHTV−1

Ey HÞ−1ðHTV−1
Ey Cy

vÞ ¼ Wy
v · C

y
v; (2)

where H is an observation vector, and Ex and Eyare the error
vectors with respect to a true tilt estimation

EQ-TARGET;temp:intralink-;e003;63;370Cx
v ¼ H × Cx þ Ex Cy

v ¼ H × Cy þ Ey; (3)

with Cx and Cy being the true tilt coordinates. The size of
these vectors corresponds to the number of selected spatial
frequencies, Nf. “True tilt” at the subpupil is the tilt we are
interested in estimating, such as the Z-tilt (the Zernike tilt) or
the G-tilt (the mean of the wavefront phase gradient at the
subpupil). The values of the Bayesian weights are calculated
in simulations at the subpupil level where the true tilt is
known (see Sec. 4.1).

VEx and VEy are the covariance matrices of errors Ex and
Ey. Their role is to give more weight to the cleanest or least
noisy displacement measurements in Cx

v and Cy
v. Moreover,

they take advantage of the strong correlation of the errors
at neighboring spatial frequencies to cancel out noise in
an optimized manner. This is equivalent to smoothing the
rapid variations in the Fourier phase shape as a function of
spatial frequency and has a symmetrizing effect in the image
domain. Thus, it can also be viewed as a low pass filter in
the cepstrum domain of the Ixy subpupil image.

2.1 Relationship of the Weighted Fourier Phase
Slope Algorithm with Cepstrum Filtering
Techniques

The complex cepstrum of image Ixy is defined as the image
Îxy with the Fourier transform

EQ-TARGET;temp:intralink-;e004;326;752FfÎxygjωx;ωy
¼ log½FfIxygjωx;ωy

�
¼ log jFfIxygjωx;ωy

j þ j argðFfIxygjωx;ωy
Þ;
(4)

where log is the natural logarithm, j · j is the magnitude, and
argð·Þ is the unwrapped phase.10 Low-pass cepstrum filtering
consists in convolving the log of the Fourier domain with a
broad shape, thereby smoothing the spectral shape. This has
a denoising, dereverberating, and symmetrizing effect on the
original image domain. On the other hand, taking the phase
slope at the origin of spatial frequencies is equivalent to cal-
culating the pure CoG in the image domain [this can be
derived from Eq. (1)]. These facts lead us to the relationship
between the proposed algorithm and filtering in the cepstrum
domain: averaging the phase slope around the origin of spa-
tial frequencies in the Fourier domain implies smoothing the
Fourier’s phase or, equivalently, low-pass cepstrum filtering
of the image, and subsequently taking the CoG of the filtered
image in the original domain.

Panels (a), (b), and (c) in Fig. 1 show simulated focal
plane subpupil images obtained with the simulator described
in Sec. 4. Measurement noise is dominated by asymmetric
optical aberration in panel (a), by the detector noise in
panel (b), and by spot’s truncation due to a limited FoV in
panel (c). Panels (d), (e), and (f) are the same images after
low-pass cepstrum filtering. In the case of panel (f), the origi-
nal image has been zero padded to a bigger FoV before
the cepstrum transform. In all cases, the low-pass filter has
been calculated from the WFPS Bayesian weights. The green
crosses in Fig. 1 represent perfect Z-tilt estimation. The red
and blue dots are the results of pure CoG application over
the original and filtered images, respectively. A considerable
improvement in the Z-tilt estimation is achieved by low-pass
cepstrum filtering, owing to its capacity to attenuate distor-
tion and noise, and symmetrize the spot. Relating the WFPS
algorithm to the cepstrum deconvolution helps us become
aware of its effect in the image domain; the proposed algo-
rithm could be viewed as the subset of operations from
the cepstrum filtering technique strictly required to estimate
the centroid, to minimize its computational cost.

3 Comparison of Weighted Fourier Phase Slope
Computational Cost Against Traditional
Centroiding Methods

The computational cost of the WFPS algorithm is dominated
by the two-dimensional (2-D) DFTs in Eq. (1). These DFTs
need not be fully calculated but only at those Nf spatial
frequencies considered in Eq. (2). As will be seen in Sec. 4,
six spatial frequencies give a good tilt estimation perfor-
mance; including more spatial frequencies increases the
computational cost with no appreciable tilt estimation
improvement. Hence, Nf ¼ 6 will be considered in the
present section.

Specifically, Fourier phase slopes will be assumed to be
obtained at frequencies f00, f01, f02, f10, f11, and f20, with
fkl being the 2-D spatial frequency composed of the horizon-
tal fk and vertical fl frequencies. So, if we compute the N by
N 2D-DFTs in Eq. (1) by first obtaining the one-dimensional
N point DFTs of the rows, only the first three output values
will be necessary. When afterward applying N point DFTs to
the resulting three columns, only three, two, and one output
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values are required, summing up the six output values that
we are looking for.

When computing these partial 2D-DFTs for a typical sub-
pupil image size between 12 × 12 and 16 × 16 pixels with
real data, the highly parallelizable direct method, which com-
putes every output of the 1D-DFT independently, is advanta-
geous from a computational latency point of view over
the Cooley–Tukey, prime factors or FFT pruning schemes,
which are recursive or iterative in nature.10 Application of
the direct method to the 1D-DFTs means N complex multi-
plications and N − 1 complex sums for every computed DFT
output value. Provided the DFTs are applied to rows first and
then to columns in the 2D-DFT, the multiplications are real
by complex for the row DFTs and complex by complex for
the column DFTs. Three such 2D-DFTs are computed in
Eq. (1). The product of coordinates x and y by phasors in
the same equation can be done offline. Operations in Eq. (2)
can be disregarded for the present estimation.

With the purpose of assessing the WFPS algorithm’s
computational cost against other control algorithms, the
weighted centre of gravity (WCoG), TCoG, and CC algo-
rithms have been selected. As for the CC algorithm, we are
assuming the conventional method of implementing the
correlation operation in the Fourier domain, with an Nfft

by Nfft size of the 2D-FFT large enough to avoid spatial
aliasing, and that a TCoG is applied to the correlation figure
to obtain the sought-after centroid. Thus, we guarantee the
robustness and linearity of the CC method.11 The “phase
correlation” technique estimates the displacement of the cor-
relation figure in the Fourier domain, thereby considerably
reducing the computational cost of the correlation;12–14 how-
ever, it has been reported to be very susceptible to noise12 and
is only adequate for small displacements between live and
reference images due to the Fourier phase wrapping around
the −π to π range, which leaves no reliable phase values
when the displacement is of the order of half the FoV,
the 2D-DFT is the same size as the FoV and in the presence
of noise.13 In contrast, the “periodic correlation” technique,
consisting of obtaining the correlation figure in the Fourier

domain with 2D-DFTs of the same size as the live image, has
reported to be adequate only when the image quality is good,
due to spatial aliasing.12

Table 1 shows the results of computational requirement
estimations for an example of SHWFS with 80 × 80 subaper-
tures, 16 × 16 detector pixels per subaperture, the imposed
condition of finishing the complete centroids computation in
100 μs, and for the four centroiding methods. Regarding the
computational cost of the CC method, the 2D-FFTs have to
be computed in their entirety. Nfft was varied allowing
for different Nref by Nref sizes of the reference image. The
Cooley–Tukey scheme has been assumed for Nfft ¼ 32 in
the 1D-FFTs, and the Prime Factors scheme for Nfft equal to
20 and 24. The resulting figures in Gflops include the total
number of real sums and multiplications per second required.
It can be seen that the computational cost of the WFPS

Table 1 Computational cost comparison of WCoG, TCoG, WFPS,
and CC algorithms, with an example.

Computational cost comparison

80 × 80 subpupils, 16 × 16 pixels per subpupil, 100-μs latency

WCoG TCoG

∼98 Gflops ∼115 Gflops

WFPS (Nf ¼ 6, N fft ¼ 16) CC

∼719 Gflops N ref <¼ 5, N fft ¼ 20

∼7706 Gflops

N ref <¼ 9, N fft ¼ 24

∼11;096 Gflops

N ref <¼ 16, N fft ¼ 32

∼7406 Gflops

Fig. 1 Simulated focal plane subpupil images with (a) asymmetric aberration, (b) detector noise, and
(c) limited FoV; and (d)–(f) their cepstrum low-pass filtered counterparts. Green crosses correspond
to perfect Z -tilt estimation; red and blue dots are the results of pure CoG application.
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algorithm is an order of magnitude higher than that of
centre of gravity-based algorithms but still within the Tflop
limit. The CC algorithm requires yet a further order of
magnitude more computational capacity, reaching a value
close to 10 Tflops.

4 Performance Simulations at the Subpupil Level

4.1 Description of the Simulator

We have first evaluated and understood the behavior of
the WFPS algorithm and compared it with other known cen-
troiding methods through numerical simulations at the sub-
pupil level using the MATLAB tool from Mathworks, Inc.
The simulation workflow follows the block diagram
shown in Fig. 2. A single Shack–Hartmann subaperture is
illuminated with a wavefront fulfilling Kolmogorov phase
statistics, simulated as in Ref. 15. A point-like source, uni-
form light intensity across the subaperture, and statistical
independence between frames are assumed. A Fraunhofer
integral is then applied to each complex light field frame
to obtain the corresponding image at the microlens focal
plane, and finally the electron multiplying charge coupled
device (EMCCD) detector gain and noise model from
Ref. 16 is applied to obtain a close-to-real simulated subpupil
image sequence, except that it does not consider temporal
turbulence dynamics. The incident phase tilt is then esti-
mated by applying different centroiding methods to this
image sequence, and the result is compared with the known
applied true tilt, thus obtaining a tilt estimation error for each
centroiding method as its figure of merit. Two possible “true”
tilts have been considered: the Zernike tilt obtained at the
Kolmogorov phase simulation, or Z-tilt, and the mean of
the phase gradient, or G-tilt, which is obtained by applying
a true CoG to a version of the image sequence with maxi-
mum FoV and exempt from detector noise.

A parallel training sequence, with 50,000 frames and with
exactly the same system parameters as the sequence under
study, is simulated to obtain the necessary weights for
the WFPS algorithm. As described in Sec. 2, the Fourier
phase slopes of the sequence at a set of spatial frequencies
are obtained by applying Eq. (1) to each image. The resulting
spot displacement measurements are compared with the true
applied tilt to obtain the measurement errors, and MAP
weights are a function of the measurement error covariance
matrices. The number Nf and order of the spatial frequencies

involved in the WFPS algorithm, and consequently the
number of weights, are selectable and determined in the sim-
ulation as a compromise between computation latency and
tilt estimation precision.

Simulations in this section assume an adaptive optics sys-
tem with an open-loop correction scheme, so the TCoG and
CC algorithms have been considered as comparison methods
for their good linearity response even with wide FoVs.11

WCoG is in principle adequate for closed-loop controlled
systems.17 TCoG’s threshold is a unique value for the
whole sequence under study, optimized by minimizing the
tilt estimation error. As for the CC algorithm, the reference
image is a 2-D Gaussian shape with a two-pixel full width at
half maximum (FWHM) and an 8 × 8 pixel FoV. The corre-
lation figure is obtained with no interpolation, i.e., with the
same resolution as the live and reference images. The cent-
roid is calculated over the correlation figure with a TCoG
algorithm for which the threshold is again a unique opti-
mized value for the whole sequence.

The centroiding algorithms give the result of the spot’s
displacement in pixel units. However, r.m.s. wave radians are
required for the tilt estimation error results. Equation (5)
relates displacement in pixels d with the peak-to-valley
phase tilt Δϕ across the subaperture extent at the telescope
pupil plane in wave radians11

EQ-TARGET;temp:intralink-;e005;326;477Δϕ ¼
�

2π

FWHM

�
d: (5)

FWHM being the full width at half maximum of the
simulated spot at the diffraction limit in pixels. For circular
subapertures, peak-to-valley tilt is divided by a factor of
four to obtain r.m.s. radians, whereas for a square subaper-
ture the factor is 2

ffiffiffi
3

p
(as derived by the authors).

All the parameters defining the system at subpupil level
can be easily changed in the simulation; hence, the sensitiv-
ity of the different algorithms as a function of the light level
flux and detector noise, their linearity as the FoV of the
subpupil image changes, and their robustness against such
effects as higher orders of turbulence phase when the Fried
parameter decreases, can be easily evaluated. Moreover, opti-
mization of every centroiding method’s parameters, such as
MAP weights for the WFPS, is achieved through this type of
simulation.

Fig. 2 Block diagram of the simulation workflow at the subpupil level in the MATLAB tool.
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4.2 Optimum Field of View

The optimum working FoV for a particular sensing condition
is a means of assessing the capacity of each algorithm to
maintain its sensitivity when an increase in FoV is required
to gain in dynamic range. Extended FoVs imply more sens-
ing pixels, more influence of the detector noise, and less
sensitivity. Therefore, those algorithms that are more robust
against detector noise will be optimum at larger FoVs,
thus allowing for larger dynamic ranges of tilt sensing, as
required with strong turbulence and in an open-loop wave-
front sensing.

Figure 3 shows the dependence of the tilt estimation error
in r.m.s. radians at the sensing wavelength with the FoV in
pixels by pixels and light flux level in photons per subpupil,
for the TCoG algorithm (dashed red lines), the CC algorithm
(dash-dotted green lines), and the WFPS algorithm with
4 × 4 spatial frequencies (solid blue lines), when estimating
Z-tilt (a) and estimating G-tilt (b). Dsub∕r0 is 2.5. The spot’s
FWHM size is 2 pixels at diffraction limit. Clock induced
charge (CIC) is 0.05 e−∕pix∕frame, and readout noise
(RON) is 50 e− rms. Selected EM gain for each light
level is high without saturating a 14-bit detector, with a maxi-
mum value of 1000. The detector quantum efficiency (QE) is
97% and its sensitivity is 10 e−∕ADU (electrons per analog
to digital unit). These values for the detector parameters are
maintained throughout this section. Table 2 shows the opti-
mal FoV values for the different light flux levels and the
three algorithms under study. A general conclusion that
can be extracted from this simulation is that the WFPS algo-
rithm is the least affected by detector noise among the three

evaluated algorithms; it calls for wider FoVs for each light
level under study and gives as a result a better tilt estimation
at the optimal FoV. The CC algorithm would be in second
place in this regard, with a very similar behavior. However,
the TCoG is very much affected by detector noise and
requires small optimal FoVs. Moreover, the dashed red traces
in Fig. 3 tend to increase rapidly with the FoV value for light
levels below 100 photons, thereby indicating that the TCoG
algorithm is very sensitive to the optimal selection of FoV.

Fig. 3 Tilt estimation error in r.m.s. radians as a function of FoV and light flux level for the TCoG algorithm
(dashed red), the CC algorithm (dash-dotted green) and the WFPS algorithm with 4 × 4 selected spatial
frequencies (solid blue), (a) for Z -tilt estimation and (b) G-tilt estimation. D∕r 0 is 2.5. CIC is
0.05 e−∕pix∕frame and RON is 50 e− rms.

Table 2 Optimal FoV in pixels × pixels as a function of light flux level
for the TCoG, CC, and WFPS (with 4 × 4 frequencies) algorithms,
obtained from Fig. 3. D∕r 0 ¼ 2.5. CIC ¼ 0.05 e−∕pix∕frame. RON ¼
50 e− rms.

Optimal FoV for Z -tilt/G-tilt estimation (pixels × pixels). D∕r 0 ¼ 2.5

#photons
(per subpupil) TCoG CC

WFPS
(4 × 4 freqs)

10 10 × 10∕10 × 10 10 × 10∕10 × 10 10 × 10∕10 × 10

20 10 × 10∕10 × 10 10 × 10∕12 × 12 12 × 12∕12 × 12

30 10 × 10∕10 × 10 12 × 12∕12 × 12 12 × 12∕12 × 12

50 12 × 12∕12 × 12 12 × 12∕12 × 12 14 × 14∕16 × 16

100 12 × 12∕12 × 12 16 × 16∕12 × 12 16 × 16∕16 × 16

300 14 × 14∕16 × 16 16 × 16∕16 × 16 16 × 16∕16 × 16

10,000 16 × 16∕16 × 16 16 × 16∕16 × 16 16 × 16∕16 × 16
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WFPS and CC are much more tolerant in this sense in that
they allow for a broader range of FoV selection with little or
no penalization in tilt estimation error for light levels above
30 photons. For low light levels, such as 30 to 100 photons,
the TCoG must work with FoVs in the order of 10 × 10 to
12 × 12 pixels, whereas CC and WFPS can work with FoVs
of 12 × 12 to even 16 × 16 pixels. Similar conclusions are
obtained for the Dsub∕r0 ¼ 1 case.9

4.3 Maximum-a-Posteriori Weights

A key aspect of the WFPS algorithm is obtaining the value of
the MAP weights at the spatial frequencies considered for the
centroid computation. These are determined at the simula-
tions at the subpupil level, in which the true applied tilts for
a large sequence of frames are known, so that the error vec-
tors Ex and Ey in Eq. (3) and their covariance matrices VEx

and VEy in Eq. (2) can be determined. This is the reason of
the 50,000 frame training sequence in Fig. 2.

Table 3 shows the MAP weights for the calculation of the
horizontal WFPS centroid value, called Wx

k;l [the matrix for-
mat version of Wx

v in Eq. (2)]. The weights for the vertical
centroid value would be the transpose of those listed; that is,
Wy

k;l ¼ Wx
l;k. The following parameter values describe the

geometry of the system: Dsub∕r0 is 2.5; the FWHM of the
diffraction spot is 2 pixels; the FoV is 14 × 14 pixels, and
the detector parameters are as in Sec. 4.2. Three different
incident light levels have been considered: 30, 100, and
1000, respectively, photons per subpupil. Simulations have
been conducted for circular and square subapertures, Dsub

being the diameter for the former shape and the side for
the latter. Both Z-tilt and G-tilt have been considered as true
tilts. Finally, the spot displacement has been evaluated at
the lowermost six spatial frequencies as it has been seen
that, for higher frequencies, the weight values become lower
than 1% of the total sum of weights.9 Table 4 shows theWx

k;l

weights for a Dsub∕r0 value of unity and an FoV of
10 × 10 pixels.

For the low light level of 30 photons, the weights tend to
be similar, irrespective of the subaperture’s shape or the true
tilt being estimated. Here, detector noise dominates in the
error estimation, and the actual spot’s shape or symmetricity
is of much less importance. It is for higher incident light
levels that we can see the influence of the spot’s shape on the
weights, and in a more evident manner for the Dsub∕r0 ¼ 1
case, for which the spot’s shape in the focal plane is better
defined. When estimating G-tilt, the weights tend to concen-
trate at zero frequency, the estimation then approximating to
a pure CoG, whereas for the Z-tilt estimation, the weights are
more dispersed, thereby symmetrizing the spot. Furthermore,
weights for a circular subaperture and G-tilt estimation tend
to be symmetric, whereas both a square subaperture and
Z-tilt estimation tend to concentrate the weights at zero
vertical frequency, especially for Dsub∕r0 ¼ 1 in Table 4.

4.4 Sensitivity Performance

As can be seen in Sec. 4.2, a centroiding algorithm’s optimal
working FoV is a function of the incident light level
per subaperture. In practice, it is the available number of
pixels per subaperture at the detector that will determine the
working FoV in an SHWFS. In this section, we present a
comparative behavior of the WFPS centroiding method as
a function of incident light for a number of possible FoV
values.

Figure 4 shows the plots of tilt estimation error in r.m.s.
radians at the sensing wavelength as a function of incident
light level per subaperture in photons, with logarithmic
scales for both abscissae and ordinates, for three centroiding
algorithms: TCoG, plotted in dashed red, CC plotted in
dash-dotted green, and WFPS with six spatial frequencies
plotted in solid blue. Panel (a) is for Z-tilt and (b) is for

Table 3 List of Wx
k;l MAP weights for the horizontal WFPS centroid value. Dsub∕r 0 is 2.5. FWHM of the diffraction spot is 2 pixels. FoV is

14 × 14 pixels. CIC is 0.05 e−∕pixel∕frame. RON is 50 e− rms. Values are shown for three incident light levels (30, 100, and 1000 photons), cir-
cular, and square subaperture shapes, and Z -tilt and G-tilt estimation, for the case of six selected spatial frequencies.

MAP weights for WFPS horizontal centroid (Wx
k;l ). Six spatial frequencies

Dsub∕r 0 ¼ 2.5. FoV ¼ 14 × 14 pixels

Circular subaperture Square subaperture

Photons Z -tilt G-tilt Z -tilt G-tilt

30 0.5636 0.1390 0.0232 0.6190 0.1220 0.0167 0.5833 0.1404 0.0227 0.6372 0.1287 0.0188

0.1854 0.0680 0.1692 0.0563 0.1734 0.0642 0.1534 0.0490

0.0207 0.0168 0.0160 0.0129

100 0.4050 0.2669 0.0306 0.5392 0.2025 0.0134 0.4559 0.3066 0.0327 0.5332 0.2229 0.0123

0.2399 0.0426 0.2177 0.0215 0.1746 0.0256 0.2084 0.0170

0.0150 0.0057 0.0046 0.0062

1000 0.2497 0.3594 0.0134 0.6644 0.1755 −0.0126 0.4327 0.4663 0.0097 0.5749 0.2176 −0.0146

0.3719 0.0005 0.2127 −0.0250 0.1123 −0.0166 0.2592 −0.0283

0.0050 −0.0150 −0.0044 −0.0088
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G-tilt estimation. Each panel comprises four subpanels, each
for a different FoV value: 10 × 10, 12 × 12, 14 × 14, and
16 × 16 pixels. Dsub∕r0 is 2.5 for a circular subaperture.
Sampling follows Nyquist criterion at the diffraction limit.
The detector parameters are as in Sec. 4.2.

For light levels from below 20 to beyond 200 photons per
subaperture, both CC and WFPS algorithms outperform
the TCoG method owing to their capacity to neutralize
detector noise, and this improvement becomes more evident
for increasing FoVs. For example, the decrease in Z-tilt and
G-tilt estimation error at 50 photons is of ∼40% and ∼33%
for a 16 × 16 pixel FoV, respectively, and of ∼20% and
∼12% for a 10 × 10 pixel FoV. For high light levels of
1000 to 10000 photons per subaperture, with measurement
noise dominated by high-order turbulent phase modes, trun-
cation due to limited FoV, and light shot (intrinsic Poisson)
noise, all the algorithms show r.m.s. errors of one twentieth
of a wavelength or less. However, certain minor differences
between them are worth noting. When estimating Z-tilt,
which requires symmetrizing the spot, and with a reduced
FoV, as in the case of 10 × 10 pixels, the WFPS method
needs to employ bigger 2D-DFTs than the FoV to cope
with spots near the edge of the FoV; this is the reason for
the black dotted curves, for which 14 × 14 2D-FFTs have
been used. G-tilt estimation, on the other hand, requires
considering the asymmetric part of the spot as well. Here,
the WFPS method outperforms the CC and TCoG methods
for large FoVs because its robustness against the still present
detector noise without the need of thresholding.

The straight line of 2.03 r.m.s. radians corresponds to the
energy in the tip and tilt modes for a circular aperture with
D∕r0 ¼ 2.5 and Kolmogorov turbulence; whereas 0.79 r.m.
s. radians is the turbulence level when tip and tilt are cor-
rected, this being a kind of fitting error at the subpupil
level.18 The same sensitivity study has been conducted for
the Dsub∕r0 ¼ 1 case, showing the same kind of differences
between algorithms, although attenuated. The whole study

was also repeated for a square subaperture and the conclu-
sions are identical as for the circular subaperture.9

5 Performance Simulations at Pupil Level
To simulate the performance of the complete SHWFS with
the different centroiding algorithms under study, the object-
oriented MATLAB toolbox for adaptive optics (OOMAO)
has been employed. This is a freely available extension of
the MATLAB language consisting of a library of classes ori-
ented toward the numerical modeling of AO systems.19 The
“shack hartmann” object has been for this purpose extended
with the WFPS centroiding algorithm; the necessary MAP
weights are obtained in the simulation at the subpupil level
described in Sec. 4.1. Similarly, the “detector” class, which is
embedded in the “shack hartmann” class, has been modified
to implement the EMCCD model described in Ref. 16.

Figure 5 shows the simulation workflow corresponding to
an open-loop correction configuration. In the upper optical
path, an SHWFS receives the light from a Natural Guide Star
(NGS) at a wavelength of 550 nm through a 4.2-m telescope,
with an 8.4% central obscuration surface. It has an array of
20 × 20 square lenslets, with an equivalent side size at the
telescope aperture of 21 cm, and a spot sampling at diffrac-
tion limit that follows the Nyquist criterion. Two values of
r0 (21 and 8.4 cm) have been used in the “atmosphere” class
to give Dsub∕r0 values of unity and 2.5. For the first case,
10 × 10 pixels have been assigned at the detector per suba-
perture, giving an FoV of ∼2.7 00, and 14 × 14 pixels have
been assigned for the second case, giving an FoV of
∼3.8 00. The QE at the detector has been set to 97%,
the EMCCD gain value to 1000, CIC noise to
0.05 e−∕pixel∕frame, and RON to 50 rms e−. The sensitivity
of the detector is the default 1 e−∕ADU. The system sam-
pling rate is 500 frames per second.

In the lower optical path, the scientific object under study
is located on sky at the same position as the NGS and also at
the same wavelength. Its light goes through the telescope to

Table 4 Same as Table 3 for a Dsub∕r 0 equaling 1 and an FoV of 10 × 10 pixels.

MAP weights for WFPS horizontal centroid (Wx
k;l ). Six spatial frequencies.

Dsub∕r 0 ¼ 1. FoV ¼ 10 × 10 pixels

Circular subaperture Square subaperture

Photons Z -tilt G-tilt Z -tilt G-tilt

30 0.4987 0.1634 0.0431 0.5638 0.1355 0.0363 0.5031 0.1974 0.0656 0.5284 0.1638 0.0649

0.1870 0.0858 0.1689 0.0733 0.1448 0.0689 0.1593 0.0659

0.0220 0.0222 0.0202 0.0177

100 0.3742 0.2568 0.0780 0.5382 0.1720 0.0548 0.4048 0.3298 0.1140 0.4876 0.2316 0.0803

0.1747 0.0854 0.1620 0.0559 0.0878 0.0456 0.1400 0.0331

0.0309 0.0171 0.0180 0.0274

1000 0.3239 0.3245 0.0759 0.8338 0.0892 −0.0469 0.4877 0.4319 0.1047 0.7653 0.2221 −0.0657

0.1860 0.0408 0.1513 −0.0026 −0.048 0.0043 0.1017 −0.0709

0.0489 −0.0248 0.0194 0.0475
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Fig. 4 (a) Z -tilt and (b)G-tilt estimation error (r.m.s. radians) versus incident photons per subaperture, for
several FoVs and the TCoG, CC, and WFPS centroiding method with six spatial frequencies. Black dot-
ted plots correspond to the WFPS algorithm with 2D-FFT sizes bigger than the FoV. See text for detailed
system’s description.
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a “zernike” object that acts as a phase corrector, which
receives the necessary Zernike coefficients from the
“shack hartmann” object. These are calculated in the
“shack hartmann” instance in two different ways depending
on the incident light level: when the light level is higher than
∼50 photons per subpupil for the TCoG algorithm or ∼30
photons per subpupil for the CC and WFPS algorithms, a
zonal linear minimum mean square error method estimates
the phases at the subpupils corners, and then a pseudoinver-
sion of the matrix that relates the modes with these phases
is applied; for dimmer situations, directly estimating the
Zernike modes from the phase slopes, also by matrix

pseudoinversion, gives better results. The number of recov-
ered Zernike modes that seems to be best for this lenslet pitch
configuration is 120, which corresponds to modes up to the
14th radial order. Phase correction is applied with the same
spatial resolution at the pupil as that defined at the “tele-
scope” and “shack hartmann” objects; i.e., the number of
lenslets multiplied by the number of detector pixels per
lenslet. After this correction, the final Strehl Ratio (SR)
can easily be calculated by the Marechal approximation,
even before the computation of the point spread function
(PSF). The residual phase is integrated during a period of
4 s for this purpose. Finally, an “imager” object integrates

Fig. 5 Simulation workflow at the OOMAO.

Fig. 6 OOMAO simulation results expressed as Strehl ratio as a function of NGS magnitude for
(a) r 0 ¼ 21 cm and (b) r 0 ¼ 8.4 cm, and encircled energy curves as a function of the spanned portion of
the PSF in arcsecs for (c) r 0 ¼ 21 cm and (d) r 0 ¼ 8.4 cm. TCoG results are the red circle-marked traces,
CC results are the green star-marked traces and WFPS results are the blue triangle-marked traces.
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the corrected images during 4 s to obtain the PSF over which
encircled energy (EE) graphs are obtained.

Panel (a) for a 21 cm r0 and panel (b) for an 8.4 cm r0 in
Fig. 6 show the results of the SR achieved as a function of
NGS magnitude when employing the TCoG (circle-marked
red traces), CC (star-marked green traces), and WFPS
with six spatial frequencies (triangle-marked blue traces)
centroiding algorithms, all tuned to estimate Z-tilt at the
subpupil level, and for 120 and 136 recovered Zernike
modes (continuous and discontinuous traces, respectively).
We can see that the CC and WFPS algorithms show a similar
sensitivity behavior, outperforming the TCoG algorithm by
increasing the limiting NGS magnitude for a particular SR.
This performance improvement occurs for NGS magnitudes
from 8.5 to 9 to 11 to 12 and is in accordance with the sen-
sitivity performance at the subpupil level shown in Fig. 4.
In the best cases, the NGS limiting magnitude increases
by ∼0.6 to ∼0.7 mag. The fraction of encircled PSF
energy as a function of the spanned circle diameter size
in arcseconds is shown in panels (c) and (d); panel (c) is for
a 21 cm r0 and NGS magnitudes of 10.5 (continuous trace)
and 11.5 (discontinuous trace), whereas panel (d) is for an
8.4 cm r0 and NGS magnitudes of 9.5 (continuous trace)
and 10.5 (discontinuous trace). The centroiding algorithms
were tuned to estimate G-tilt at the subpupil level and
120 Zernike modes were recovered at the pupil level. EE
results are in good agreement with SR results and show
the same increase in NGS limiting magnitude of CC/WFPS
over TCoG.

6 Laboratory Test
The WFPS algorithm’s performance has been assessed
through a laboratory test at the Instituto de Astrofísica de
Canarias (IAC), taking advantage of the equalized and
diffraction limited field spectrograph experiment (EDiFiSE)
project’s AO preoptics. Figure 7 shows the optical setup
used. Inside the IAC Atmosphere and Telescope (IACAT)
simulator, a variable white light source feeds a pinholed
plate through optical fibers; only one has been illuminated,
to simulate a single NGS. Atmospheric turbulence is simu-
lated by up to three motorized Kolmogorov phase plates. The

2-cm circular mask that emulates the system aperture has a
secondary central obscuration and spider. The characteristics
of the William Herschel Telescope have been chosen, with
a focal ratio of f∕10.94. EDiFiSE’s AO subsystem is closed
loop configured. However, for the present test, the corrective
mirrors from Physik Instrumente (PI) and Alpao are used
as passive reflectors, and the SHWFS sees uncorrected
turbulence with a large dynamic range. This WFS comprises
10 × 10 subapertures for a 4.2-m simulated system aperture.
A 12 × 12 pixel window is assigned to each subaperture at
the Andor iXon 860 detector.

To assess the performance degradation of the centroiding
algorithms as the light level decreases, static turbulent aber-
rations were simulated; for each one, the light source level
was varied, and for each of these levels, SHWFS image
sequences of 5000 frames were taken. These sequences
were processed offline with the centroiding methods under
evaluation: the TCoG, the CC, and the WFPS with the six
lowermost spatial frequencies involved and two 2D-FFT
sizes, 12 × 12 and 14 × 14. The true applied phase was
estimated to be at the halfway point in the range between
the minimum and maximum centroid coordinate values at
each subpupil, computed with all the algorithms over the
accumulated frame with the highest light level.

The computation of the WFPSMAP weights and the opti-
mization of the control centroiding methods were aimed to
estimate Z-tilt, and were performed by simulating the real
system’s geometry at the subpupil level, as in Sec. 4. The
r0 introduced in the simulation is specified by the phase
plates manufacturer for a wavelength of 600 nm, where
the Andor detector shows a maximum QE response. Also,
a 2.5-pixel diffraction-limited FWHM spot size, obtained
from the wavelength value and the optical scale plate at the
SHWFS detector, was introduced in the simulation. The
detector was characterized and values of 16 e−∕ADU for
the sensitivity, 0.155 e−∕pixel∕frame for the CIC noise, and
50 rms e− for the RON were obtained and simulated. The
EMCCD gain values applied were 800 for up to 1000 inci-
dent photons per subpupil and 160 for higher light levels.

Figure 8 shows the estimated error in the phase tilt
determination at the SHWFS subpupil in r.m.s. radians as

Fig. 7 Portion of the EDiFiSE project laboratory optical setup used for the WFPS algorithm assessment.

Optical Engineering 053107-10 May 2018 • Vol. 57(5)

Chulani and Rodríguez-Ramos: Simulations and laboratory performance. . .



a function of incident light level for (a) D∕r0 ∼ 1.5 and
(b) D∕r0 ∼ 2 and the centroiding algorithms under study. The
low error values and low dispersion of results at high light
level confirm that the estimated true applied phase, though
affected by some amount of bias due to spot truncation and
high-order aberrations, is adequate for a comparative sensi-
tivity performance assessment among the algorithms under
study. Degradation of performance with decreasing light
level is in very good coincidence with the simulations at
the subpupil level, thus confirming a higher sensitivity of
the WFPS over the TCoG algorithm for light levels of
20 to 200 incident photons per subpupil, very similarly to
the results for the CC algorithm.

7 Conclusions and Future Work
The WFPS centroiding algorithm has been formulated as a
Bayesian estimator of the tilt, at the subpupil of an SHWFS,
from the focal plane image Fourier phase slopes. Phase
slopes are obtained without phase computation and unwrap-
ping, and the computational cost is estimated as an order of
magnitude lower than for the CC algorithm. Its applicability
to wavefront sensing with point-like guiding sources has
been shown. When large FoVs are required, such as in
open-loop sensing and strong turbulence conditions, the
WFPS and CC algorithms show a similar sensitivity, which
outperforms the TCoG algorithm, for light levels in the range
of 20 to 200 incident photons per subpupil and in the pres-
ence of detector noise and turbulence high-order perturba-
tions. Sky coverage is thus improved, as the NGS can be
0.6 to 0.7 mag higher.

Work is now under way to test the WFPS algorithm on the
sky. For this purpose, simulations should be completed to
assess the robustness of the algorithm in changing signal
and turbulence strength situations and the necessary MAP
weights refreshment period. Also of interest would be the
completion of the laboratory test to actually implement a cor-
rection open loop and assess the comparative performance of
the algorithm in terms of obtained SR, for example. Finally,
the algorithm will be implemented in a real-time control plat-
form, and we will look for interested MOAO systems to
test it on the sky. Success in this test would encourage us to
adapt the algorithm to extended objects sensing, such as in
Laser Guide Star and solar AO systems.
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