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Abstract. Spectral computed tomography (CT) can reconstruct scanned objects at different energy-bins and
thus solve the multimaterial decomposition (MMD) problem. Because the linear attenuation coefficients of
different basis materials may be extremely close, the decomposition problem is often ill-conditioned. Meanwhile,
traditional material decompositions with image-domain algorithms are usually voxelwise based. Therefore,
these algorithms rely heavily on image quality. Ring artifacts often exist in the reconstructed images of spectral
CT due to the inconsistency feature of energy-resolved detectors and beam-hardening effect. Considering the
enlargement of the receptive field and taking advantage of the modeling ability of convolutional neural networks
in deep learning, we proposed a convolutional material decomposition algorithm to solve the MMD problem
through a basis of patches instead of pixels of the spectral CT images. Simulations and physical experiments
were performed to validate the proposed algorithm, and its quality was compared with a traditional MMD algo-
rithm in the image domain. Results show that the proposed method achieves good accuracy, reduces mean
squared errors by one to two orders, and exhibits robustness in the MMD of spectral CT images even in
the case that obvious ring artifacts is presented. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.OE.58.1.013104]
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1 Introduction
The ability of spectral computed tomography (CT) to distin-
guish photons in terms of their different energies allows this
technique to decompose scanned objects into their basis
materials.1–5 Compared with linear attenuation coefficients
from traditional single energy CT, the distribution of basis
materials can effectively reflect inner information. For exam-
ple, in clinical practice, liver fat quantification requires the
calculation of the components of fat, tissue, blood, and con-
trast agent.6

With the upgrading of product applications and the
popularity of spectral CT, many material decomposition
algorithms have been proposed. These algorithms can be
divided into three types, namely, projection-domain process-
ing methods, image-domain processing methods, and direct
iterative reconstruction methods. Projection-domain meth-
ods use the projections from detectors as the input data
and bring the decomposition model into nonlinear polychro-
matic projection process.7–9 Therefore, they are sensitive to
the mismatch of the projection data in different energy-bins.
Image-domain methods assume that the effective attenuation
coefficients of each pixel of the spectral CT images can be
decomposed into the linear combination of several basis
functions.10–16 They are widely using in current preclinical
and clinical applications. However, the performance of
image-domain method is usually affected by the ring artifacts
and beam-hardening artifacts within the CT images espe-
cially for the spectral CT using the photon-counting detec-
tors. The direct iterative reconstruction method incorporates
the models of the material decomposition and the physics of

spectral CT transmission.17–20 For example, in Ref. 20, the
iterative reconstruction method can even perform MMD
of traditional integral detectors using angle-dependent filters.
Theoretically, it has the potentials of decreasing noise and
artifacts by taking the advantages of accurate modeling.
However, its computational cost of the forward- and back-
ward-projections between the material images and the pro-
jections in different energy-bins is expensive. In this paper,
we focus on the MMD problem in image-domain.

Traditional material decomposition algorithms in spectral
CT use the linear combination of a set of basis functions to
represent the linear attenuation coefficient of location ~x and
then apply these functions in material decomposition.21

Different basis functions lead to different material decompo-
sition methods. For example, Ref. 22 uses the linear attenu-
ation curves of preselected materials as the basis functions,
leading an analytical solution of MMD problem. However,
regardless of the choice of basis functions, these traditional
material decomposition algorithms are voxelwise based,
using no more than dozens of pixels around the target
pixel. Therefore, their performances usually depend on the
reconstructed image quality of spectral CT. They are often
affected by the beam-hardening artifacts and ring artifacts
in the spectral CT using the photon-counting detectors.
An idea to avoid these problems is using the data-driven
methods, for example, machine learning, instead of the ana-
lytical solution such as Ref. 22. In this way, we can expand
the receptive field of data-driven algorithms to provide more
information for their learning.

Wang23 published an outlook article on deep learning and
presented a roadmap of CT imaging methods in the deep
learning framework. Inspired by his work, we imported
the deep learning technique into spectral CT and proposed*Address all correspondence to Liang Li, E-mail: lliang@tsinghua.edu.cn
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a multimaterial decomposition (MMD) method in image-
domain.24 Deep learning has made considerable progress
in many fields. In image analyses, deep neural networks
can extract the features of images without manual marking
and are thus effective in image classification.25–27 Recently,
deep learning has shown its effectiveness in medical imag-
ing,28 such as auxiliary diagnosis,29–31 lesion localiza-
tion,32,33 and image noise reduction.34,35 By using deep
learning, we can break through the restriction of sampling
theorem and realize reconstruction using few views.36

Using deep learning to acquire priori knowledge of images
can also enhance the results of traditional MMD algorithm.37

As a universal approximator,38 neural networks can be
trained to solve the MMD problem by given adequate and
suitable training data. In this paper, we propose a convolu-
tional material decomposition (CMD) algorithm on the basis
of patches instead of voxels of the spectral CT images by
building two convolutional neural networks (CNN) based
on existing networks. Section 2 presents the CMD algorithm.
Then, the results of simulation and physical experiment are
presented in Sec. 3 to validate it. Sections 4 and 5 are the
discussion and conclusion.

2 Method

2.1 MMD Model

As an image-domain method, the reconstructed image of
spectral CT is used as the input data. The reconstructed
image is the x-ray linear attenuation coefficient μð~x; EÞ of
an object scanned at different spectra. Here, ~x is the spatial
position, and E is the spectrum or energy-bin.35

Knowing μð~x; EÞ by the spectral CT reconstruction algo-
rithm, we choose the attenuation coefficient μlðEÞ of the
basis material l at different spectra E as the basis function.
Thus, we have

EQ-TARGET;temp:intralink-;e001;63;367μð~x; EÞ ¼
XNl

l¼1

ηð~x; lÞμlðEÞ; E ¼ 1; : : : ; NE; (1)

where ηð~x; lÞ denotes the volume fraction of basis material l
at position ~x, Nl is the number of basis materials, and NE is
the number of spectra. As proven in Ref. 4, we apply the
constraints on volume and mass conservation, all of which
lead to the following constraints:

EQ-TARGET;temp:intralink-;e002;63;262

�PNl
l¼1 ηð~x; lÞ ¼ 1; ∀~x

0 ≤ ηð~x; lÞ ≤ 1; ∀ ~x; l
: (2)

The constraints on each ~x have the same form as the result
of the image classification, that is, the possibility of each
image type. Therefore, a CNN designed for image classifi-
cation can be transformed to fit the material decomposition
problem.

2.2 Deep Learning Based on CNN

Equations (1) and (2) describe the relationship between
the reconstructed image and the decomposition result.
Traditional material decomposition algorithms in image-
domain are based on these voxelwise equations. They often
suffer from the spatial-specific errors or artifacts such as
beam-hardening artifacts, metal artifacts, ring artifacts,

and so on. Although some decomposition algorithms add
regularization terms based on a priori knowledge, e.g.,
total variation, into the cost function to improve image qual-
ity, the results are still unsatisfactory. These spatial-specific
features are difficult to describe using explicit mathematical
formulas; nevertheless, they can be learned using deep neural
networks. As a universal approximator, neural networks have
been proved effective if enough neurons are given.38 This
paper will show that neural networks can determine the pat-
terns of material decomposition if the neural networks are
trained with sufficient samples.

Enlarging the receptive field of each pixel can improve
material decomposition performance as well. As shown in
Fig. 1, we train the CNN to fit each patch and the exact
decomposition result of this patch’s central voxel. Then,
by moving this receptive field voxel-by-voxel among the
reconstructed CT image, we obtain the decomposition result.
We refer to this method as the CMD algorithm.

CNN has become one of the most important methods of
image analysis.26,38 A CNN consists of several simple oper-
ations or so-called layers. By sending an image into the CNN
and going through several layers, such as convolutional, acti-
vation, pooling, and fully connected layers, we can transform
the image into the result we want, including classification or
material decomposition.

The image can be considered as a three-rank tensor
Tðx; y; kÞ, whose first two parameters x and y describe
the position of a voxel and k is the channel.39 For a chromatic
image, k ranges from 1 to 3, and for the reconstructed image
of spectral CT, k ranges from 1 to NE. All the layers men-
tioned above are the derivable operations on this tensor,
transforming tensor into another tensor. Because these
parameters are derivable, most of parameters in the layers
can be trained automatically by stochastic gradient descent
(SGD) or other training algorithms.38

Details of these layers can be found in the Appendix.

2.3 CNN Used in CMD

We build two CNNs for the decomposition task. Both CNNs
are simplified versions of the CNNs that work effectively in
image classification. Let x ¼ 32 and y ¼ 32. k ¼ 5 is the
size of the input patch Tðx; y; kÞ, which is the receptive
field with size x, y and channel number k ¼ NE.

Fig. 1 Work flowchart of CMD.
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2.3.1 Visual geometry group network

The first CNN is based on a visual geometry group (VGG)
network.25 The VGG network is stacked by convolution
layers with small kernel. Its structure is shown in Fig. 2.
All the activation layers are ReLUs except for the last
one, which is Softmax.

2.3.2 Deep residual network

To compare the performances of the different networks, we
build the second CNN based on a deep residual network
(DRN),27 which is more complicated than a VGG network.
The network comprises three types of blocks that are shown
in Fig. 3. Block A does not change the size of the input
tensor. Block B halves the size of the input image by down-
sampling the first two parameters. Block C halves the size
while doubling its channels. The full structure of the DRN
is shown in Fig. 4.

2.4 Loss Function and SGD with Momentum

As shown in Fig. 1, ðT;UÞ is the training sample, where T is
a three-rank tensor and U is a one-rank tensor. U represents
the material decomposition result of the central voxel of T.
The CNN is initialized randomly and trained using the
minibatch SGD method. To establish a regression problem,
we use mean square error (MSE)

EQ-TARGET;temp:intralink-;e003;63;188L ¼ 1

NS

X
T∈S

1

Nl
½U − FðTÞ�2; (3)

as the loss value, where FðTÞ is the output of the CNN. S is
a set of T, who is the minibatch in the training step, the
validation set in validation step, and test set in test step.
NS is the number of tensors in S. As defined above,
every parameter in the CNN layers is derivable or assigned
with a gradient. According to the chain rule of derivation,38

the partial derivatives of L to the parameters in the CNN

are calculable. For a parameter p of the CNN, the updating
function is

EQ-TARGET;temp:intralink-;e004;326;461p ¼ p − lr ×
∂L
∂p

; (4)

where lr is the learning rate or the step length of the gradient
descent algorithm. To improve the stability of the conver-
gence, we add the momentum term ρ to Eq. (4)

EQ-TARGET;temp:intralink-;e005;326;385v ¼ ρv − lr ×
∂L
∂p

; p ¼ pþ v: (5)

However, no specific method can be used for training
CNNs. In this study, a learning rate decrease policy is
adopted to train the CNN and achieve satisfactory
convergence.

Initially, we set lr ¼ LR and patience = P and then pick
VAL_NUM patches randomly from the validation phantoms
as the validation set. We then pick BATCH_NUM samples
from the training set randomly and use them to train
the CNN through SGD. For every ITER_NUM iteration
(the training patches are reselected for every iteration),
we send the validation set to calculate the MSE of the
CNN output. If the MSE is greater than the lastMSE for
more than patience times sequentially, we divide lr into
two, add P_STEP to patience, repick the validation set, and
continue the iteration until theMAX_ITERATION_TIMES or
while lr is less than ε. The pseudocode is shown in Fig. 5.

2.5 Convergence Property of Neural Network

The SGD with momentum method is widely used in deep
learning optimization and turns out to be effective among
various applications.

In the case of a local minimum p� nearing p. At time step
t, Eq. (5) can be rewritten as

Fig. 2 Structure of the first CNN based on VGG used in this work. The left parts of the rectangles are the
layers’ names, and the right parts are the sizes of the input tensors T and output tensors U. The numbers
after the convolutional layers are ðcx ; cy ; lÞ, which refer to the size of the convolutional kernels.
Parameter k of convolutional layers is determined by the input tensor.
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EQ-TARGET;temp:intralink-;e006;63;294

vtþ1 ¼ ρvt − lr ×
∂Lt

∂pt
;

ptþ1 ¼ pt þ vtþ1 ¼ pt þ ρvt − lr ×
∂Lt

∂pt

¼ pt þ ρðpt − pt−1Þ − lr ×
∂Lt

∂pt
: (6)

Define momentum operator At

EQ-TARGET;temp:intralink-;e007;63;193At ¼
 
lr ·

∂Lt
∂pt

pt−p� −ρ
1 0

!
: (7)

Equation (11) is equivalent to

EQ-TARGET;temp:intralink-;e008;63;131

�
ptþ1 − p�

pt − p�

�
¼ At ×

�
pt − p�

pt−1 − p�

�
: (8)

Reference 40 proved that when pt is close to the local
minimum p�, if

EQ-TARGET;temp:intralink-;e009;326;294

�
1 −

ffiffiffi
ρ

p �
2 ≤ lr ·

∂Lt
∂pt

pt − p� ≤
�
1þ ffiffiffi

ρ
p �

2; (9)

we may get

EQ-TARGET;temp:intralink-;e010;326;244λðAtÞ ¼
ffiffiffi
ρ

p
; (10)

where λ is the spectral radius of At. When At is a constant
matrix, λ ¼ ffiffiffi

ρ
p

< 1 which ensures Eq. (8) converges.
Actually, At may be changed in the above iterations. In
this case, Ref. 40 verified that this momentum method
could robustly yield linear convergence with rate

ffiffiffi
ρ

p
empiri-

cally around a local minimum p�.
The difference between the method in Ref. 40 and ours is

that we evaluate the gradient ∂L∕∂p by sampling a minibatch
from the training set instead of calculating over the whole
training set, which is a widely used trick to accelerate the
convergence without losing too much accuracy. In this way,
the SGD with momentum method is converged in the expect-
ation sense.

Fig. 3 Three substructures in DRN. The furcation indicates two copies of the related tensor. The plus
sign in the circle represents the addition of a corresponding element in the tensor with the same shape.
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However, because the fitting ability of deep neural net-
work is nearly infinite, the search for the global optimal sol-
ution in most cases will lead to overfitting.41 On the other
hand, critical point is quite rare in a deep neural network.
The SGD method tends to stop in some “flat minima.”42

The loss of flat minima that SGD could reach is related with
the structure of neural network.43 As stated in the paper, the
CNNs we used are based on VGG and DRN, which are
widely verified in image classification. As a task immigra-
tion, these CNNs perform well according to our experiments.

Fig. 4 Structure of the second CNN used in this paper.

Fig. 5 Pseudocode of learning rate decrease policy.
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3 Numerical Simulation and Physical Experiment
Results

To train the CNN to solve the MMD problem, we need
organize three datasets, namely, the training dataset for
SGD to optimize the parameters in the CNNs, the validation
dataset for adjusting the hyperparameters (such as the num-
ber of mini-batches, lr, and so on), and the test dataset
for evaluating the performance of the VGG-CMD and
DRN-CMD. The three datasets should satisfy the same
distribution.38 The ground truth values for the three datasets
are also necessary as the supervised signal for training or the
evaluation criterion. The phantom generation, projection,
and reconstruction are all coded in MATLAB R2014a.
The construction, training, and testing of CNN are coded
by deep learning library Keras 2 in Python.44

3.1 Numerical Simulation Results

In numerical simulations, we used 115 digital phantoms
based on the 2-D Shepp–Logan phantom to train and evalu-
ate the proposed CMD algorithm. All of these phantoms
comprise ten ellipses and five materials such as soft tissue,
lung, bone, blood, and air. Their linear attenuation coeffi-
cients are obtained from Ref. 5, as shown in Table 1. One
of the phantoms is shown in Fig. 6. The concentrations of
these ellipses are shown in Table 2. “×” in Table 2 means
the concentration is 0. “∼” means the concentration is
1 minus the other materials’ concentrations for meeting
the constraints of Eq. (2). “�0.1” means that the concentra-
tion of that ellipse satisfies 0.1 normal distribution among

different phantoms. Then, we randomly changed the posi-
tion, size, and direction of the ellipses, and the concentra-
tions of the materials to generate other similar 114
phantoms, as shown in Fig. 7.

Note that the linear attenuation coefficients of materials 1,
4 and 2, 5 in this paper are both relatively close, which
worsens the ill-condition of MMD problem.

The x-ray beam spectra used in numerical simulations
were generated with a Siemens simulator45 at 75, 135, 105,
and 95 kilovolts peak (kVp), respectively. A 12-mm thick-
ness aluminum filter was added. To simulate five-energy-bin
photon-counting detectors, each spectrum is divided into five
energy-bins as shown in Fig. 8. The x-ray fan-beam covered
a 20-mm-diameter field of view with 256 detector elements.
The number of views over 360 deg is 360. The reconstructed
images were discretized into a 128 × 128 grid. We use

Table 1 ID of materials used this paper and in Ref. 5.

This paper [the order
in Figs. 6(b)–6(f)] 1 2 3 4 5

Material Soft tissue Lung Bone Blood Air

Reference 5
(the indexes in Fig. 4)

3 2 7 4 1

Fig. 6 An example of the digital phantoms. (a) One of the phantoms
who comprises 10 ellipses. (b)–(f) The concentrations of five materi-
als: soft tissue, lung, bone, blood, and air, respectively.

Table 2 Mean concentrations of materials in each ellipse of the
generated phantoms.

ID of ellipses

ID of materials

1 2 3 4 5

1 × × 1 × ×

2 1 × × × ×

3 0.1� 0.1 0.5� 0.1 × × ∼

4 0.1� 0.1 0.25� 0.1 × × ∼

5 0.2� 0.1 × × 0.35� 0.1 ∼

6 0.2� 0.1 0.25� 0.1 × × ∼

7 0.2� 0.1 × × 0.25� 0.1 ∼

8 × 0.3� 0.1 × × ∼

9 × 0.6� 0.1 × × ∼

10 × 1 × × ×

Fig. 7 Some phantoms used in the simulation. The size, position, and
direction of every ellipse and the concentrations of the five materials
are different (but close).
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the method in Ref. 46 to obtain the projection, which can
simulate the statistical fluctuation and scattering in the im-
aging process, and can simulate the unsatisfactory situation
such as pile up and charge sharing of the detectors based on
real detectors. The spectral CT images in different energy-
bins were reconstructed with the ASD-POCS algorithm
with 25 iterations.47

Two different simulation studies were carried out. The
first one only used the reconstructed spectral CT images
of all of 115 phantoms with the 75 kVp spectrum of
Fig. 8(a). We divided them randomly into three parts with
the number of 85, 15, and 15, and used them to generate
image patches, which were used as training sets, verification
sets, and test sets, respectively. The patches we used has
32 × 32 × 5 voxels. As stated in Sec. 2.4, we set LR ¼

0.1, P ¼ 3.5, P_STEP = 0.5, VAL_NUM = 16384, BATCH_
NUM = 128, ITER_NUM = 64, ε ¼ 1e-4, and ρ ¼ 0.9.

The MSE of decomposition results of VGG-CMD and
DRN-CMD algorithms are shown in Fig. 9 for the 15
test phantoms. As a contrast, we used an extended direct
inversion algorithm in image-domain algorithm to calculate
the MMD voxel-by-voxel (EDI-MMD). It can be seen as
a spectral CT version of the original one proposed by
Mendonca et al.4,22 The procedure of EDI-MMD is shown
in Fig. 10. The basis material triplets set is in Table 3.

On our GPU (GTX 1070), training VGG-CMD and
DRN-CMD took about 3 and 12 h, respectively. After
separation, the average MSE of all the 15 testing phantoms
are 6.5908e-4 mm−2 for VGG-CMD, 4.7651e-4 mm−2

for DRN-CMD, and 1.0030e-2 mm−2 for EDI-MMD,

Fig. 8 In numerical simulations, four spectra were generated using a Siemens simulator. Each spectrum
was divided into five different energy-bins. Twenty energy-bins of the four spectra used in this paper. The
maximum energies of (a–d) are 75, 135, 105, and 95 kVp, respectively. The scales of the energy-bins
are marked in each figure.
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respectively. The MSE of EDI-MMD algorithm of different
testing phantoms are very close because the illcondition of
MMD problems of the test phantoms are similar with the
same five basis materials as shown in Figs. 6(b)–6(f).

There are some differences among the MSE of VGG-
CMD and DRN-CMD algorithms for different phantoms
due to their different structures. However, compared to
the results of EDI-MMD, the MSE are reduced more than
two orders in general. The decomposition results of one
phantom are shown in Fig. 11. The rows from top to bottom
are the decomposition ground truth and the results of
VGG-CMD, DRN-CMD, and EDI-MMD, respectively. The
columns from left to right are the concentrations of five
materials: soft tissue, lung, bone, blood, and air, respectively.

Table 3 Triplets set for phantom in simulation.

Triplet ID Soft tissue Lung Bone Blood Air

1
p p

2
p p

3
p p

4
p p p

5
p p p

6
p p p p

Fig. 9 MSEs for 15 testing phantoms based on three methods.

Fig. 10 Pseudocode of EDI-MMD.

Optical Engineering 013104-8 January 2019 • Vol. 58(1)

Chen and Li: Robust multimaterial decomposition of spectral CT using convolutional neural networks



Fig. 11 Ground truth and decomposition results of three algorithms. The rows from top to bottom are
ground truth, results of VGG-CMD, DRN-CMD, and EDI-MMD algorithms. The columns from left to right
are the concentrations of soft tissue, lung, bone, blood, and air.

Fig. 12 Profiles of the decomposition results of lung. (a–c) Mean the different positions of the 44th, 69th,
and 102nd rows.
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The EDI-MMD algorithm decomposes the soft tissue,
lung, and blood wrong due to the close linear attenuation
coefficients.

We chose the 44th, 69th, and 102nd rows of the decom-
position result of lung to draw profiles, which divide the
ellipses halves. The positions of these profiles are showed
in the second column of Fig. 11, and the section lines are
drawn in Fig. 12. The MSE of the three methods on the pro-
files are presented in Table 4.

Equation (1) indicates that the decomposition result
should only depend on single voxel if we ignore the unideal
factors in spectral CT image. Although it uses patches as the
input data, the output of CMD algorithm should rely mainly
on the central voxel of every patch. We chose a test phantom.
A 3 × 3 square in the center of each patch of its reconstructed
images is set to zero. The decomposition results are shown in
Fig. 13. Although the zero region only occupies 32∕322 ¼
0.879% of the whole patch, the degradation of the output of
the CMD is drastic. This result indicates that the deep

learning procedure of CMD algorithm can insure that the
central voxel of each patch plays a more important role.

In the second simulation, we studied the CMD perfor-
mance on the spectral CT images from an unknown or
never trained spectrum. Traditional material decomposition
algorithms need to measure μlðEÞ of the basis materials
and spectral CT images of the scanned object at the same
x-ray spectrum. μlðEÞ relates to not only the physical proper-
ties of material itself but also the spectrum of incident x-ray
beam and the detection efficiency of the detector. Therefore,
their decomposition results are sensitive to the variation of
the effective spectrum of spectral CT systems. Figure 14
shows the decomposition results of EDI-MMD algorithm.
The first, second, and third rows are the results when the
x-ray spectra and μlðEÞ of the basis materials within the cor-
responding energy-bins are all exactly provided. If the x-ray
spectrum used in CT scanning is changed from the one meas-
uring μlðEÞ of the basis materials, the decomposition results
of EDI-MMD will deteriorate. As showed in the last row of
Fig. 14, μlðEÞ of the basis materials used in EDI-MMD
algorithm were generated by performing interpolations
among the μlðEÞ of the basis materials of the spectra of
Figs. 8(a)–8(c). The average MSE of the results of spectra
Figs. 8(a)–8(c) is 1.1751e-2 mm−2, while the MSE of the
results of spectrum Fig. 8(d) is 1.2002e-2 mm−2.

Trained by patches from multiple different spectra rather
than one specific spectra, CMD shows its potential to solve
the MMD problem of unknown x-ray spectra. Because train-
ing for every CT system and its configuration on kVp/filtering
is sometimes uneconomical. In this simulation, we randomly
picked 85 phantoms and reconstructed their spectral CT

Fig. 13 Decomposition results of (a) VGG-CMD and (b) DRN-CMD. The top row of each figure is
the results with normal patches. The bottom row of each figure is the results with the patches setting
the central 3 × 3 square to zero. The columns from left to right are the concentrations of soft tissue,
lung, bone, blood, and air.

Table 4 MSE of the decomposition section lines of material 2.

MSE (mm−2) Profiles (a) Profiles (b) Profiles (c)

VGG-CMD 0.0061 0.0060 0.0235

DRN-CMD 0.0051 0.0072 0.0253

EDI-MMD 0.1215 0.0407 0.0076
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images at the 15 energy-bins of Figs. 8(a)–8(c). Then, from
each of these 15 channels of patch, five channels were
randomly selected to form the input of CNN. That is, the
input tensor still had 32 × 32 × 5 voxels. The other 15 phan-
toms were randomly picked to generate the validation dataset
in exactly the same way. We use the same learning rate
decrease policy as in the first simulation to train the CNNs.
As the test dataset, the reconstructed images of the rest 15
phantoms in all of 20 energy-bins of Fig. 8(a)–8(d) were
used to test the decomposition results of the CMD algorithm.

The results are shown in Fig. 15. For the first three
spectra, the average MSE on 15 testing phantoms are
1.3352e-3 mm−2 for VGG-CMD and 6.6640e-4 mm−2 for
DRN-CMD, respectively. And for the fourth spectra, which
was not used in training, the MSE of the above two CMD
algorithms are 9.7165e-4 and 5.3719e-4 mm−2, respectively.
As shown in Fig. 15, the CMDs’ performance did not turn
worse when the x-ray spectrum was changed from the one
calibrating the basis materials. This result means that we
can use the proposed CMD algorithm to solve the MMD

Fig. 15 MSE on 15 testing phantoms with four different spectra.

Fig. 14 Decomposition results of EDI-MMD algorithm. The rows from top to bottom are the results using
spectrum (a), (b), (c), and (d) of Fig. 8, respectively. The columns from left to right are the concentrations
of soft tissue, lung, bone, blood, and air.
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problems in different spectral CT systems with different
hardware configurations even if the spectrum of a CT system
is unknown.

3.2 Physical Experiment Results

In the physical experiment, we used the reconstructed images
of our spectral CT system to validate CMD algorithm and
compare it with the EDI-MMD algorithm. The experiments
were completed on our spectral CT system as shown in
Fig. 16. It uses a conventional Hamamatsu L12161-07 x-ray
tube and a linear photon-counting detector array (eV3500,

eV PRODUCTS, Saxonburg, Pennsylvania).46,48 The detec-
tor array has 256 elements and 5 energy-bins of each one.
The energy-bins were set at [26, 33], [33, 40], [40, 50],
[50, 60], and [60, 80] keV. The size of each element is
0.5 mm × 2 mm. The x-ray tube’s max energy was set
75 kVp, and the tube current 20 μA. Over a 360-deg scan,
360 projections were acquired, and every projection radiated
for 5 s. The distance between the x-ray source and the
detector was 70 cm, and the distance between the x-ray
source and the center of rotation was 44 cm. The recon-
structed image had 256 × 256 pixels whose size was
0.025 mm × 0.025 mm. The image was reconstructed by
the filtered-backprojection algorithm for each energy-bin.

The phantom used in the experiments was a 50-mm diam-
eter resinic cylinder with eight 11-mm-diameter round holes
to insert centrifugal tubes, as shown in Fig. 17. We used three
types of solutions, namely, NaI, GdðNO3Þ3, and CaCl2, with
different concentrations to test the performance of the CMD
algorithm and compare it with EDI-MMD algorithm. Four
basis materials were used. NaI and GdðNO3Þ3 represented
the typical components of the contrast agents used in clinics,
CaCl2 and H2O represented the typical components of the
human body. According to the concentrations in Refs. 11
and 49, all the concentrations (weight/volume) of the
three solutes we used are listed in Table 5. In each spectral
CT scanning, we used eight solutions with different concen-
trations in one row of Table 5. After six scans, we obtained
6 × 5 ¼ 30 reconstructed images of different solutions and
energy-bins.

Figures 18(a)–18(f) show the six reconstructed images in
the first energy-bin of [26, 33] keV, and Figs. 18(g)–18(k)
are the reconstructed images of the first phantom in all
five energy-bins, whose display window are ½−0.15; 0.7�.
It shows that the images at higher energy-bins are darker
than the ones at lower energy-bins, which means high energy
x-ray photons were less absorbed than low energy x-ray
photons. The diameter of centrifuge tubes contains 36 voxels
in reconstructed images. Note that there are some ring
artifacts in the images which were caused by the different
detection response functions element-by-element, especially
the abnormally high detection efficiency of the elements
on the edges of the 32-element modules that comprised
the whole detector array. Moreover, these elements
suffered from severer pile-up distortion compared with other
elements, resulting in further deviation from the Beer–
Lambert law.

Table 5 Concentrations in centrifugal tubes.

Solute Concentrations in the centrifugal tubes (mg/mL)

NaI 0 2.9 3.2 3.5 3.8 4.1 4.4 4.7

NaI 5.0 5.3 5.6 5.9 6.2 6.5 6.8 7.1

GdðNO3Þ3 · 6H2O 0 7.1 7.8 8.5 9.2 9.9 10.6 11.3

GdðNO3Þ3 · 6H2O 12.0 12.7 13.4 14.1 14.8 15.5 16.2 16.9

CaCl2 · 2H2O 0 200 240 280 320 360 400 440

CaCl2 · 2H2O 480 520 560 600 640 680 720 760

Fig. 16 The experimental spectral system.

Fig. 17 (a) All of the 48 centrifugal tubes filled with different concen-
tration solutions. (b) The resinic cylinder phantom.
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As shown in Fig. 18, the concentrations within the red
circles were used to generate the validation dataset. Those
within the green circles were used to generate the testing
dataset. The rest were used for the training dataset.
Because it was difficult to exactly obtain the effective spec-
trum of the x-ray beam used in experiment, we could not get
the exact linear attenuation coefficients of every solutes.
Thus, we used the maximum concentration solutions of
three solutes and water as the basis materials to validate
the decomposition algorithms.

The regions within the centrifugal tubes were extracted to
validate our CMD algorithm and compare it with EDI-MMD
algorithm. To improve the generalization of the CNNs with
limited training data, we randomly overturned the input
patches.35 We obtained 36,324 samples for the training data-
set, and 6054 samples for the validation and testing datasets,
respectively. Because there always had some noise and
artifacts, we used a smaller learning rate than that used in
the simulation. We set LR ¼ 0.01, P ¼ 2.5, P_STEP =
0.5, VAL_NUM = 6054, BATCH_NUM = 128, ITER_

NUM = 64, ε ¼ 1e-5, and ρ ¼ 0.9. We also calculated the
decomposition results by EDI-MMD algorithm as a contrast.
The triplets set for EDI-MMD is in Table 6.

Figure 19 shows the decomposition results of six different
concentration solutions highlighted in italics in Table 5.
Figures 19(a)–19(f) are the results of 4.1 mg∕mL NaI,
5.9 mg∕mL NaI, 9.9 mg∕mL GdðNO3Þ3 • 6H2O,
14.1 mg∕mL GdðNO3Þ3 • 6H2O, 360 mg∕mL CaCl2 •
2H2O, and 600 mg∕mL CaCl2 • 2H2O, respectively. In

Fig. 18 (a)–(f) The spectral CT reconstructions with the first energy-bin [26, 33] keV. (a), (b) The recon-
structed image of the NaI solutions, (c), (d) for GdðNO3Þ3 solutions, and (e), (f) for CaCl2 solutions.
The display window is [0, 1]. (g)–(k) The reconstructed images of the NaI solutions in all five energy-
bins. The display window is ½−0.15; 0.7�.

Table 6 Triplets set for phantom in experiment.

Triplet
ID

NaI
(7.1 mg∕mL)

GdðNO3Þ3 · 6H2O
(16.9 mg∕mL)

CaCl2 · 2H2O
(760 mg∕mL) H2O

1
p p

2
p p

3
p p
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each figures [Figs. 19(a)–19(f)], the columns from left to
right are the results of four basis materials, NaI, Gd ðNO3Þ3,
CaCl2, and H2O, respectively. The rows from top to bottom
are the ground truth, decomposition results of VGG–CMD,
DRN-CMD, and EDI-MMD algorithms, respectively. We
can find that both the VGG-CMD and DRN-CMD algo-
rithms can provide good decomposition results. They are
much better than the results of EDI-MMD algorithm which
are seriously suffered from the ring artifacts existing in
the spectral CT images. As shown in the last rows of
Figs. 19(a)–19(d), the decomposition results are far from
desire for the low concentration solutions. Moreover, the
deeper network used in DRN-CMD algorithm can provide
a smoother and more uniform results. In addition, compared
with Ref. 37, the decomposition of traditional materials
cannot achieve good results even if there is a clear prior
knowledge (the solution consists of two basic materials:
water and solvent) in the case of serious ring artifacts.

Figure 20 shows the decomposition MSE of three algo-
rithms. The average MSE of six testing images are 5.3719e-
3 mm−2 for VGG–CMD, 4.8768e-3 mm−2 for DRN–CMD,
and 1.9544e-1 mm−2 for EDI-MMD. In general, the MSE of
CMD algorithms are reduced more than one order comparing
to the MSE of EDI-MMD. Figure 21 shows the profiles of
the decomposition results of NaI locating at the colorful lines
in Fig. 19(a). MSE of the decomposition section line are
1.0645e-2, 2.7356e-3, and 1.2634e-1 mm−2 for three meth-
ods. The conclusion is similar to the numerical simulations.
Although the CMD algorithm has never been trained by the
testing solutions, the generalization of the CNNs guarantees
its accuracy. Compared with the direct inversion decompo-
sition method, CMD can resist the effects of ring artifacts
that provide much more accurate and uniform decomposition
results.

4 Discussion
Compared with traditional direct inversion algorithms, the
proposed algorithm improves the decomposition results

Fig. 19 Decomposition results of italic cells in Table 5, namely,
(a) 4.1 mg∕mL NaI, (b) 5.9 mg∕mL NaI, (c) 9.9 mg∕mL GdðNO3Þ3 ·
6H2O, (d) 14.1 mg∕mL GdðNO3Þ3 · 6H2O, (e) 360 mg∕mL CaCl2 ·
2H2O, and (f) 600 mg∕mL CaCl2 · 2H2O. In each figure of (a–f),
there are 4 × 4 images. The rows from top to bottom are the ground
truth, the decomposition results of VGG-CMD, DRN-CMD, and EDI-
MMD algorithm. The columns from left to right are the results of
NaI, GdðNO3Þ3 · 6H2O, CaCl2 · 2H2O, and H2O.

Fig. 20 MSEs of the six test images in Fig. 19.

Fig. 21 The profiles of the decomposition results of NaI locating at
the lines in Fig. 19(a).
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significantly especially for the cases that artifacts, e.g., ring
and beam-hardening artifacts, existing in the CT images or
the spectrum of x-ray source is distorted. For example, in
current spectral CT systems using photon-counting detec-
tors, the ring artifacts often appear due to the property incon-
sistency among the detector units (e.g., detection response
function, dead time, pulse pile-up, etc.). As an image-domain
method, no matter how the images are reconstructed, the pro-
posed CMD algorithm can provide better decomposition
results than direct inversion methods as shown in Fig. 19.
It works well even the linear attenuation coefficients of the
basis materials are close. Due to the robustness of CMD,
it is also expected to be used in other incomplete-data or
sparse-data CT cases in the future, e.g., limited-angle CT,
few-view CT, and low-dose CT.46–48,49–52

Because the forward-propagation process in the CNN can
be configured on GPU, the CMD algorithm can complete the
material decompositions in a few seconds once it has been
well trained. However, CMD also has some disadvantages.
Traditional MMD algorithms in image domain only need the
linear attenuation coefficients of the basis materials. When
environment changes, we can update the algorithms easily.
However, CMD method needs to gather training data and be
retrained. The simulation 2 shows that the trained neural net-
work is compatible with different imaging conditions, but it
is almost impossible to generate every data for all the situa-
tions. For CMD, the biggest problem is that it is difficult to
get the ground truth in practical situations for training. Even
though we know all the material distributions of the designed
phantoms, it is still difficult to ensure the diversity of data.
We hope to train the neural network with simulation data as
real as possible, and then decompose the materials directly
on the real samples in our further experiments. Incorporating
the models of the material decomposition and the physics
of spectral CT, the direct iterative reconstruction and decom-
position method sometimes provide good results. In the
future, it is worth combining CMD algorithm with iterative
reconstruction algorithm.

5 Conclusion
In this study, we proposed a deep-learning-based CMD algo-
rithm to solve the MMD problem of spectral CT in image-
domain. We redesigned two CNNs that worked well in the
image classification field. Given the property of the Softmax
layer, the output of the CMD can satisfy the mass and vol-
ume conservation constraints automatically. Simulation and
experimental results proved the CMD algorithm can robustly
solve the MMD problem of spectral CT.

6 Appendix

6.1 Layers Used in This Work

6.1.1 Convolutional layer

The convolutional layer is the most important layer in
a CNN. The advanced features in an image are detected
by convolutional layers. A convolutional layer receives
a three-rank tensor and outputs a three-rank tensor as well.
A convolutional layer can be divided into the weight tensor
Wðcx; cy; k; lÞ and the bias matrix bðlÞ. Receiving a tensor
Tðx; y; kÞ, the output tensor is

EQ-TARGET;temp:intralink-;e011;326;752

Uðx; y; lÞ ¼
�X

cx

X
cy

X
k

½Tðxþ cx; yþ cy; kÞ

×Wðcx; cy; k; lÞ�
�
þ bðlÞ: (11)

Two types of convolutional operations are available for
the edge of an image, i.e., using Eq. (11) to directly lead
the size reduction or supplementing 0 around the input tensor
to keep the size unchanged.

6.1.2 Activation layer

As shown above, no matter how many convolutional layers
are piled up, the effect is the same as the case of only one
convolutional layer because the operation in the convolu-
tional layer is linear.38 To enhance the capability of the
CNN, nonlinearity should be introduced. We explain two
types of activation layers, each of which has its own features.

Rectified linear unit (ReLU) is a simple activation func-
tion that effectively introduces nonlinearity into CNNs and
has thus been widely used since its discovery. ReLU sets the
negative value of the output tensor of a convolutional layer to
0, that is,

EQ-TARGET;temp:intralink-;e012;326;491Uðx; y; kÞ ¼
�
Tðx; y; kÞ; Tðx; y; kÞ > 0

0; Tðx; y; kÞ ≤ 0
: (12)

ReLU simplifies the process of derivation and lightens the
vanishing gradient problem of traditional artificial neural
networks, resulting in the rapid convergence of networks.

Softmax is the last layer of a CNN. It receives a one-rank
tensor and outputs a one-rank tensor:38

EQ-TARGET;temp:intralink-;e013;326;391UðxÞ ¼ eTðxÞP
x 0
eTðx 0Þ : (13)

Obviously, the output of the Softmax activation layer sat-
isfies the constraints of Eq. (2). In image classification, the
output of Softmax (in common, the Softmax activation layer
is the last layer of the CNN, so it is also the output of a CNN)
is considered as the possibility of each image type predicted
by CNN. However, in the material decomposition problem,
we train the output as the volume fraction of each material of
the central pixel of the input patch.

6.1.3 Batch-normalization layer

Similar to the ordered subset used in CT reconstruction,
which can accelerate convergence, we send a certain number
of samples to update the CNN at a time during training. This
set of samples is called a minibatch. BN is set between the
convolutional and activation layers to scale and translate the
values in a batch uniformly and to improve the following
activation layers.38,53 BN accelerates convergence, relaxes
the requirements of the initial values of networks, and makes
very deep networks possible.

6.1.4 Max pooling layer

The pooling layer is a screening operation of the input three-
rank tensor. Given the strides of the x and y directions sx and
sx, the output is
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EQ-TARGET;temp:intralink-;e014;63;752Uðx; y; kÞ ¼ max
0≤i≤sx−1
0≤j≤sy−1

fT½ðsx − 1Þxþ i; ðsy − 1Þyþ j; k�g:

(14)

As shown in Eq. (14), the max pooling layer shrinks the
size of the image and introduces nonlinearity into the CNN.
The max pooling layer also preserves only one value of
a region of the image. Therefore, small translations in
the image will be ignored by the CNN. In another word,
the translation invariance is improved.

6.1.5 Fully connected layer

An inchoate neural network consists of fully connected
layers and activation layers. This composition is
ineffective.38 After extracting features through the convolu-
tional layer, the fully connected layers can work effectively.

The fully connected layer receives a 1-rank tensor TðxÞ
and outputs a one-rank tensor:

EQ-TARGET;temp:intralink-;e015;63;547UðyÞ ¼
X
x

Wðx; yÞTðxÞ þ bðyÞ: (15)

In a CNN, the first two parameters of the image’s size, x
and y, will shrink when flowing through the convolutional
and pooling layers. The third parameter k enlarges when
operated by the convolutional layer. Therefore, the image
becomes increasingly small while the number of its channels
increases. Finally, we ignore the difference in the first two
parameters, flatten the three-rank tensor image into a one-
rank tensor, and send it into the fully connected layer.

6.2 Codes Available

Our trained codes, some synthetic and real datasets used in
this paper can be downloaded from Github repository avail-
able at: https://github.com/ZhengyangChen/Convolutional_
material_decomposition.
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