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Abstract. Orbital angular momentum (OAM), one of the most recently discovered degrees of
freedom of light beam field has fundamentally revolutionized optical physics and its technologi-
cal capabilities. Optical beams with OAM have enabled a large variety of applications, including
super-resolution imaging, optical trapping, classical and quantum optical communication, and
quantum computing, to mention a few. To enable these and several other emerging applications,
optical beams with OAM have been generated using a variety of methods and technologies, such
as a simple astigmatic lens pair, one-/two-dimensional holographic optical elements, three-
dimensional spiral phase plates, optical fibers, and recent entrants such as metasurfaces. All
these techniques achieve spatial light modulation and can be implemented with either passive
elements or active devices, such as liquid crystal on silicon and digital micromirror devices.
Many of these devices and technologies are not only used for the generation of amplitude
phase-polarization structured light beams but are also capable of analyzing them. We have
attempted to encompass a wide variety of such technologies as well as a few emerging method-
ologies, broadly categorized into generation and detection protocols. We address the needs of
scientists and engineers who desire to generate/detect OAM modes and are looking for the
technique (active or passive) best suited for their application. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.OE.59.4.041205]
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1 Introduction

The fact that light carries spin angular momentum (SAM) of σℏ (σ ¼ �1) was known as early as
1909, when Poynting demonstrated that a circularly polarized beam of light could cause a piece
of birefringent material suspended on a thin wire to rotate about its center.1 However, it was not
until 1992 that Allen et al.2 proved that an optical beam with azimuthal varying phase expðilϕÞ
carries orbital angular momentum (OAM) of lℏ per photon, with l being the topological charge
of the beam. The past three decades have seen tremendous growth of such optical beams from
being a mere scientific curiosity to being a key enabler in a wide variety of cutting-edge appli-
cations, such as super-resolution imaging, optical trapping, and classical and quantum optical
communications. In all these applications, the first step is the generation of an OAM mode.
Experimentally, there are numerous methods to generate the desired OAM modes.3–5 One of
the first reports on the generation of OAM mode was simply using two cylindrical lenses.6
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Since then, there has been tremendous growth in this field, and the current state of the art
includes several different design techniques such as binary holographic optical designs, spiral
phase plate (SPP) designs, and planar metasurface designs. In general, OAM mode generation is
achieved by modulation of one or more of the incident light beam’s characteristics through an
optical element fabricated lithographically using electron beam, ion beam, and/or photolithog-
raphy, or by using active devices, such as liquid crystal on silicon (LCoS)-based spatial light
modulators (SLMs) and digital micromirror devices (DMDs).

In this paper, we discuss the various widely used phase-modulation- and amplitude-
modulation-based approaches for generating the desired OAM modes using both passive and
active optical elements. In addition to the scalar OAM mode generation mentioned above,
SLMs are also used extensively to manipulate the polarization and intensity degrees of freedom
(DoFs) of a light beam to generate vector modes of light beam—fields without and with angular
momentum (AM) from standard laser source. Generation of phase-polarization structured light
beam fields in two-dimensional (2-D) is a growing field in optical science and its applications
span research areas, including polarization imaging, data encoding, and polarization multiplex-
ing. This is also discussed in the first section. Second, in certain applications, such as optical
communication, detection of specific OAM modes in a precise manner is important in order to
demodulate the information carried by the different modes. The methods for detection and sort-
ing of OAM modes will also be analyzed and reviewed in this paper.

1.1 Characteristics of Orbital Angular Momentum Modes

Optical beams carrying OAM typically exhibit helical wavefronts. The pitch and handedness of
the helix determine the topological charge and type (positive/negative) of the OAM beam.7

Various solutions of the Helmholtz wave equation can result in different kinds of beams that
carry OAM. The differences arise based on the geometry or conditions that are used to solve
the wave equation. Examples of some of the solutions with an OAM component are Laguerre–
Gaussian (LG) modes,2 Bessel modes,8 Mathieu modes,9 Ince–Gaussian modes,10 and hyper-
geometric-Gaussian modes.11,12

The solutions of the paraxial wave equation in cylindrical coordinates ðρ;ϕ; zÞ have a trans-
verse scalar electric field given as
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whereCLG
lp is the normalization constant, zR is the Rayleigh range, ψG is the Gouy phase, w is the

beam radius, R is the radius of the spherical wavefront, k ¼ 2π∕λ is the wave number, LG is the
Laguerre polynomial, and l and p are the azimuthal and radial modal numbers. These modes are
also called LG modes. The expðilϕÞ term denotes the azimuthal phase variation, because of
which, the beam exhibits OAM of lℏ per photon. The term expð−ikρ2∕2RÞ represents the spheri-
cal wavefront structure of the beam. LG polynomials with variables l and p are orthogonal to
each other. Therefore, LG modes with beam waist w and l and pmodal numbers form a complete
orthogonal basis set. The intensity and phase structures of LG modes with −2 < l < 2, p ¼ 0, 1
are shown in Figs. 1 and 2. LG modes have a donut intensity structure if azimuthal number is
jlj > 0. In general, LG modes have pþ 1 rings in the intensity structure.
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1.2 Applications of Orbital Angular Momentum Modes

In Sec. 1, we briefly mentioned some of the applications of OAM modes. We discuss them in
more detail in this section. In optical communications, the need for supporting higher data rates
in a single optical fiber has led researchers to explore the path of mode division multiplexing
(MDM). In conventional MDM, data are encoded in spatially orthogonal light beams based on
the linearly polarized (LP) modes. The primary limitation with LP mode-based MDM commu-
nications is intermodal coupling, which essentially increases cross talk and degrades the signal-
to-noise ratio (SNR). To address this issue, several research groups are exploring the possibility
of using OAM modes as they promise lower intermodal coupling.13,14 It is to be noted that OAM
modes are actually unapproximated solutions of the optical fiber and are hence called “true
modes” of the fiber.15,16

Stimulated emission depletion microscopy is one of the most successful far-field imaging
techniques, allowing access to resolution beyond the diffraction limit.17 It uses a Gaussian-
shaped beam to excite the fluorophore and a redshifted, spatially overlapped donut-shaped beam
to deplete the fluorescence everywhere except at the dark center of the depletion beam. OAM
modes with a donut intensity structure are the “perfect” candidates for such applications.18,19

Donut-shaped modes are also used in material processing, such as glass cutting, since the
induced stress in the center of the irradiated area is minimal.20 OAM modes have many diverse
applications such as in optical trapping experiments to study biological interactions,21 as a rota-
tional sensor for the remote detection of spinning objects based on rotational Doppler shift of
the modes;22 in astronomy, where some of their properties are used in coronagraphs23 and in
quantum information processing to enlarge the information content that a qubit can transmit.24

1.3 Need for Detection and Sorting of Orbital Angular Momentum Modes

The need for higher data rate in optical communication has been met by various multiplexing
schemes such as polarization division multiplexing, wavelength division multiplexing, and, as

Fig. 2 Intensity (grey) and phase structures (coloured) of LG modes with azimuthal numbers
l ¼ 0, �1, �2 and p ¼ 1.

Fig. 1 Intensity (grey) and phase structures (coloured) of LG modes with azimuthal numbers
l ¼ 0, �1, �2 and p ¼ 0.
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mentioned already, MDM. The different spatial modes in MDM are utilized as information-
carrying channels and are copropagated through the same communication medium (free space
or fiber). OAM modes of different topological charges are orthogonal to each other and hence
form a suitable basis set of nonoverlapping channels for MDM.25,26 Even in cases where only a
single mode carrying information was used, the very process of propagation, whether through
free space or fiber could cause the mode to deteriorate and leak into other modes. In such cases,
the signal received at the detector can be considered to comprise a set of superimposed OAM
modes, and it is important to separate and quantify the modal weight of the various modes
present in the resultant beam.27 In such cases, it becomes necessary to multiplex and demultiplex
a number of modes and hence this has become an important research area in recent times. In
addition, quantifying the modal weights, commonly called modal decomposition, has potential
applications in wavefront reconstruction,28 beam quality measurement (M2),29 and in the fiber-
to-fiber coupling process.30

2 Generation of Optical Beams Carrying Orbital Angular Momentum

Complex light refers to electromagnetic radiation whose inherent parameters such as intensity,
phase, and polarization are manipulated to yield a specific structure. Depending upon the
requirement, either one or more of the above parameters are customized and controlled.31–40

Structuring the phase of light requires an optical element possessing a thickness or refractive
index modulation or both.42 A higher thickness/refractive index results in a longer optical path,
whereas lower values result in shorter optical paths. The result is a differential phase retardation
across the beam, which is given as ΔΦðx; yÞ ¼ 2πnΔtðx; yÞ∕λ½≃ 2πtΔnðx; yÞ∕λ�, where n is the
refractive index of the medium, λ is the wavelength, and t is the thickness. An example of a
transverse phase modulation is depicted in Fig. 3. Clearly, advanced manufacturing techniques
are required in order to sculpt the desired surface relief pattern. Typical examples of such phase-
manipulating SLMs include holographic optical elements (HOEs), refractive/diffractive optical
elements (DOEs), and dielectric metasurfaces. Such approaches are discussed in more detail in
subsequent sections. While these elements constitute passive SLMs, it is interesting to note that
the corresponding phase patterns may also be implemented using active SLMs, such as LCoS
devices. The obvious advantages of such active devices are their flexibility and reconfigurability.
However, such devices are relatively expensive and hence are more suited for niche applications
that require switching between various phase patterns, as in the case of modal decomposition.

A relatively easier parameter to sculpt is the intensity distribution, where an SLM consisting
of an amplitude mask with variable transmittivity values across the transverse plane is sufficient
to generate a desired intensity function, as shown in Fig. 4.33 A common example of such an
approach is the use of a DMD, which is described in the subsequent section. It is interesting to

Fig. 3 Phase modulation of a light beam using an SLM with varying phase across the beam cross
section.
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note that although the DMD constitutes an amplitude-only manipulating device, it can be pro-
grammed to generate a desired phase distribution at some distance from the device.

Polarization modulation can be achieved using a polarizer, as shown in Fig. 5. For some
applications, it is sufficient to modulate only one parameter such as amplitude or phase, whereas
in other cases it is desirable to simultaneously modulate one or more parameters to produce an
optical beam with particular structure.43

2.1 Phase Modulation Approach

In this section, various phase modulation-based schemes to generate beams with OAM are dis-
cussed. As mentioned in the previous section, a spatial variation of refractive index and/or thick-
ness alters phase. Therefore, by this definition even refractive elements can be considered to be
SLMs. While there are methods that use refractive elements, such as the work by Beijersbergen
et al.6 that generated high-order LG modes directly from a laser using cylindrical lenses as mode
convertors, this review focuses mainly on spatial light modulation based on interferometric, dif-
fractive, or metaoptics to generate OAM beams. The one refractive element that will be discussed
in detail is the SPP, as it is often the starting point for designs carried out using these alternative
phase methods.

2.1.1 Generation using refractive spiral phase plate

An SPP is a refractive element with a spiral thickness profile, as shown in Fig. 6. This element
creates a complex wave with a spiral phase retardation.44–46 One of the main advantages of using
an SPP for generating a spiral wave is that the conversion efficiency can be close to 100%.
However, the challenge lies in manufacturing a refractive element with a smooth variation
in height. Therefore, in most implementations of the SPP, only an approximate version is
fabricated.47–52

Fig. 5 Polarization modulation of a light beam using a polarizer.

Fig. 4 Amplitude modulation of a light beam using a SLM with varying transmittivity across the
beam cross-section.
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Advances in focused ion beam milling technology enabled the fabrication of a refractive SPP
directly on the tip of an optical fiber.53 An electron beam microscope image of the fabricated
element on a single-mode fiber (SMF) is shown in Fig. 7. Recent measurements on OAM modal
purity using the modal decomposition method revealed that it is sufficient to have only three
phase levels (for l ¼ 1) instead of a continuous phase variation for the generation of a funda-
mental OAM mode (l ¼ 1, p ¼ 0) with a high modal purity.54 However, further studies are
necessary to understand the effect of such an approximation on other applications such as optical
trapping and communication. In addition, when the topological charge increases, the number of
phase levels required to achieve a good accuracy also increases, which brings back the fabri-
cation challenge. For these reasons, the SPP is usually modified using some technique into a
simpler version and fabricated, instead of the continuous spiral pattern. These methods will be
discussed in subsequent sections.

2.1.2 Generation using blazed and diffractive optical elements

Methods used to design complex light-generating elements always result in a continuous phase
pattern, which we have seen is hard to fabricate. Often the analog phase is converted to a blazed
structure using a modulo 2π operation. In other words, sections that change the phase of light by
2π are removed. Blazed elements still have smooth curved sides, as shown on the left of Fig. 8,
that are almost impossible to make with conventional lithography techniques.

One way of making approximate blazed elements is by quantizing the continuous phase into
n discrete levels, resulting in what are called DOEs. These quantized phase profiles needs to be
converted into GDSII format55 in order to be fabricated with lithography tool. Theoretically, an
eight-level quantization can give rise to an efficiency of 94.9% and a 16-level approximation to
98.7%.56 However, it is still highly challenging to fabricate DOEs with more than two levels,
as the process will require multiple lithography steps. The conversion from a blazed element to
a binary (two-level) DOE is depicted in Fig. 8.

Fig. 7 Electron microscope image of SPP fabricated on the tip of an optical fiber (reprinted from
Ref. 53).

Fig. 6 SPP for generation of LG beam with l ¼ 1.
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An SPP can also be created as a diffractive element. However, an SPP of charge 1 would have
only two levels and would not be an accurate representation of the actual element. In this case,
the azimuthal phase is split into sectors, with each sector being of constant phase, as shown in
Fig. 9, resulting in a multilevel phase element.

Binary DOEs are the easiest to fabricate and can also be mass-produced, which makes them
affordable. It should be noted that the binarizing procedure decomposes the incoming field into
its Fourier components in the Fourier plane resulting in the generation of several orders.43 In the
case of the SPP, the higher orders have higher topological charge values. This means that the
efficiency (the fraction of power that goes into forming the desired beam) is poor. The first order
will have at most 40.5% efficiency, for a binary element.

2.1.3 Generation using holographic optical elements

As mentioned in the previous section, fabrication of a refractive element can be challenging.
Holographic techniques can be used to overcome these challenges. Holography is the science
of recording and reconstructing three-dimensional (3-D) information of an object.57–59 When
used to generate complex light, interference is carried out between the desired (hard-to-fabricate)
phase distribution and a simple reference beam. The resulting pattern is usually simpler to

Fig. 9 (a) Top view of an eight-level SPP and (b) a 3-D view of a 16-level SPP.

Fig. 8 Conversion from a Fresnel lens to a diffractive lens by quantizing the phase levels to binary
levels (0 and π).
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fabricate. The hologram-recording process can be mathematically expressed as follows: two mutu-
ally coherent electromagnetic waves with complex amplitudesΨ1ðx; yÞ ¼ A1ðx; yÞ exp½jΦ1ðx; yÞ�
and Ψ2ðx; yÞ ¼ A2ðx; yÞ exp½jΦ2ðx; yÞ� are interfered to create a hologram, in which the
relative phase difference is converted into an intensity distribution given as I¼C1ðx;yÞþ
C2ðx;yÞexpfj½Φ1ðx;yÞ−Φ2ðx;yÞ�gþC2ðx;yÞexpf−j½Φ1ðx;yÞ−Φ2ðx;yÞ�g, where C1ðx; yÞ ¼
jA1ðx; yÞj2 þ jA2ðx; yÞj2 and C2ðx; yÞ ¼ A1ðx; yÞA2ðx; yÞ. The terms C1ðx; yÞ and C2ðx; yÞ con-
tain the information of the intensity of the two interfering waves, whereas the relative phase
information ½Φ1ðx; yÞ −Φ2ðx; yÞ� is encoded in the second and third terms.

Early holography involved the use of photopolymers, dichromated gelatin, and photorefrac-
tive materials, as these materials were required to store the intensity variation.57 The intensity
was created using an experimental setup. However, after the development of computers, holog-
raphy evolved into computer-generated and digital holography.57–62 In computer-generated
holography (CGH), the entire hologram-recording process is carried out computationally and
is, therefore, aberration-free. In addition, it is possible to create any exotic phase distribution
with only imagination being the limit. By creating complex amplitudes with uniform intensity,
the above intensity distribution can be reduced to I ¼ C1 þ C2 expfj½Φ1ðx; yÞ −Φ2ðx; yÞ�g þ
C2 expf−j½Φ1ðx; yÞ −Φ2ðx; yÞ�g. Consider the electromagnetic wave with a phase distribution
Φ1ðx; yÞ as the reference wave. When its conjugate illuminates I, the following beams are generated:
exp½−jΦ1ðx; yÞ� × ðC1 þ C2 expfj½Φ1ðx; yÞ −Φ2ðx; yÞ�g þ C2 expf−j½Φ1ðx; yÞ −Φ2ðx; yÞ�gÞ.
This reduces to Ψr¼C3 exp½jΦ1ðx;yÞ�þC4 exp½−jΦ2ðx;yÞ�þC4 expf−j½2Φ1ðx;yÞ−Φ2ðx;yÞ�g
upon simplification. If Φ1ðx; yÞ is a carrier wave given as exp½−j2πðλÞ−1ðsxxþ syyÞ�, where sx
and sy are the sines of the angle along the x and y directions, then the first term is the unmodu-
lated light from the hologram, the second term is the object wave, which has the necessary phase
distribution, and the last term is the conjugate of the object wave with twice the linear phase of
the reference wave. The hologram-recording process (carried out with a computer) and the opti-
cal reconstruction of the resulting phase distribution are shown in Fig. 10. The advantage of
the HOE is that it is possible to generate the 3-D phase as close as possible to the design
with both amplitude (efficiency ≃ 10%) and phase versions of the element with a penalty
on only the efficiency.43 In this section, we describe some of the most used flat HOEs to generate
OAM modes. Apart from these, volume holograms can also be used to generate OAM
modes.63–66

Fig. 10 Hologram recording within computer and reconstruction in free space.
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Spiral Fresnel zone plate. A spiral Fresnel zone plate is an HOE synthesized by the inter-
ference between a converging or diverging spherical wavefront with a spiral wavefront. The
element can either be fabricated as an amplitude or a phase element, depending upon the
efficiency requirement. It is necessary to convert the cosine modulation to a binary modulation
in order to simplify fabrication.43 The hologram formation can be mathematically expressed as
follows: an electromagnetic wave with a complex amplitude Ψ1ðx; yÞ ¼ exp½jðπ∕λzÞðx2 þ y2Þ�
is interfered with a mutually coherent spiral wavefront with a complex amplitude Ψ2ðx; yÞ ¼
exp½jlθ�, where l is the topological charge that indicates the number of azimuthal 2π phase
cycles. The phase image of the spherical wave and the spiral wave with topological charges
(l ¼ 1, l ¼ 3, and l ¼ 5) and the resulting interference patterns are shown in Fig. 11.

It can be understood from the above discussion that if the interference pattern
I ¼ C1 þ C2 exp½jfðπ∕λfÞðx2 þ y2Þ − lθg� þ C2 exp½−jfðπ∕λfÞðx2 þ y2Þ þ lθg� is illumi-
nated by a conjugate of the spherical wave, the spiral wave can be generated. On the other hand,
if the interference pattern is illuminated by a plane wave with constant phase, then the spiral
phase will be generated at the focal plane of the spherical wave. Let us extract one of the
interference components, namely exp½−jfðπ∕λzÞðx2 þ y2Þ − lθg� (assuming C2 ¼ 1), which
upon multiplication with the quadratic phase function exp½jðπ∕λzÞðx2 þ y2Þ� will result in
F½expð−jlθÞ� in the Fourier plane, where F is the Fourier transform operator. Therefore,
depending upon the incident wavefront, interesting behavior can be obtained in the output.
Again, upon binarizing the hologram, the diffracted light consists of multiple complex fields
corresponding to the Fourier components. Interestingly, the Fourier components of the spiral
Fresnel zone plate occur along the optical axis, as shown in Fig. 12.67,68 However, the efficiency
of the various Fourier components are different depending upon the phase value of the binary
levels.

Fork grating. A fork grating is an HOE generated by interference between a spiral wave and
a tilted plane wave. The hologram formation can be mathematically described as follows: an
electromagnetic plane wave with a complex amplitude Ψ1ðx; yÞ ¼ exp½−j2πðλÞ−1ðsxxþ syyÞ�
is interfered with a mutually coherent spiral wavefront with a complex amplitude Ψ2ðx; yÞ ¼
expðjlθÞ, and the binary holograms for l ¼ 1 to 5 are shown in Figs. 13(a)–13(e), respectively.
The holograms can be described as I ¼ C1 þ C2 exp½jf2πðλÞ−1ðsxxþ syyÞ − lθg� þ
C2 exp½−jf2πðλÞ−1ðsxxþ syyÞ − lθg�. Upon illumination by a conjugate plane wavefront,
a spiral phase wave is generated, and if illuminated by a plane wave, then the spiral phase

Fig. 11 Generation of holograms from interference between a spherical wave and spiral wave
followed by binarization.
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wavefront is diffracted away at an angle corresponding to the tilt of the original reference plane
wave. When the fork grating is binarized and illuminated by a plane wave, the Fourier compo-
nents of the grating are distributed over different lateral locations in the Fourier plane. The
Fourier components with higher diffraction angles are associated with higher topological
charges.12,69–75 The diffraction of a plane wave by a binary fork grating is shown in Fig. 14.
Therefore, it is possible to generate spiral wavefronts with different topological charges from
the same element at the angles of the different diffraction orders. The orders will not have the
same efficiency, however. The spiral Fresnel zone plate and fork grating are the most widely used
HOEs for the generation of spiral wavefronts. Furthermore, both elements can be easily

Fig. 13 Images of the binary fork holograms with topological charges: (a) l ¼ 1, (b) l ¼ 2,
(c) l ¼ 3, (d) l ¼ 4, and (e) l ¼ 5.

Fig. 12 Generation of spiral phases at different axial distances of a binary spiral Fresnel zone
plate.

Fig. 14 Generation of spiral phase waves with increasing topological charges with increasing
order of diffraction.
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fabricated using lithography techniques or printed on transparent sheets using inkjet printers.76,77

An increase in the topological charge results in an increase in the number of lines in the fork in
case of an HOE, whereas in the diffractive version of the SPP, the thickness increases. For this
reason, the fabrication of an HOE is often easier for any value of the topological charge. In the
case of OAM generation from fiber lasers, it is possible to fabricate the forked grating directly on
the tip of fiber. This is very compact and avoids free-space coupling losses. An electron micro-
scope image of a forked grating fabricated directly on the tip of an optical fiber is shown in
Fig. 15.53

Trochoson. The name Trochoson is adapted from the Greek word “Trochos” meaning “ring”
and is given to a spiral axicon, as first studied by Khonina et al.78 The spiral axicon is a hologram
obtained by interference between a spiral wave and a conical wave, as shown in the Fig. 16.
The conical wave contains a distribution given as Ψ3ðx;yÞ¼exp½−jð2π∕λÞαðx2þy2Þ1∕2�, where
α is the base angle of the cone. Later, the synthesis of a spiral axicon for the generation of

Fig. 15 Electron microscope image of a fork grating fabricated using focused beam milling
(reprinted from Ref. 53).

Fig. 16 Formation of spiral axicon hologram from interference between a spiral wave and a
conical wave.
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higher-order Bessel beams was reported.79,80 As described earlier, it is possible to generate either
a spiral wave or a spiral conical wave using different reconstruction beams.

Based on the above three examples, there were numerous reports on the generation of spiral
beams carrying OAM using different types of carrier waves.81–83 The choice of the carrier waves
decides how the spiral beams are delivered in 3-D space. This same principle has been used to
generate a variety of exotic complex light with OAM, such as Mathieu beams,84 achromatic
vortices,85 modulated optical vortices,86 optical-vortex filaments,63 spiraling higher-order Bessel
beams,87 beams with fractional topological charges,88,89 and perfect vortex beam.90,91 The dis-
advantages of employing an HOE for the generation of special beams carrying OAM, such as
lower efficiency, are discussed in Ref. 7 and the references therein.

Implementation using active devices. It should be noted that all the phase techniques
and elements (such as the holographic technique and the forked grating) described in the pre-
vious section can be implemented using an active SLM such as LCoS.74,92,93 The required holo-
grams are calculated using the mathematical expressions described in earlier sections for
generation of OAM modes. Let us consider the generation of OAM modes of azimuthal order
ðlÞ equal 1 to 6. The resulting phase patterns will be similar to those shown in Fig. 13. By
illuminating the hologram with a reference Gaussian beam, the object is reconstructed and the
OAM beams are generated at the far field, as shown in Fig. 17.

The azimuthal phase structure encoded with a sinusoidal grating provides the necessary
phase structure to the diffracted orders. However, in this method, there is no control over the
amplitude structure of the beam. For example, the OAM phase encoded in the sinusoidal gratings
shown in Figs. 13(a)–13(e) generates additional intensity rings, which are not desirable. Scalar
OAM modes with desired beam waist w, azimuthal order l, and radial order p, have both ampli-
tude and phase structures. Such scalar modes can be generated using LCoS-phase-only SLMs by
employing the algorithms proposed previously.94–97 Among these, the Arrizón’s algorithm is
widely used because it has been demonstrated to provide relatively high SNR98 and requires
a phase range of only <1.17π.

In Arrizón’s algorithm, any complex field sðx; yÞ as expressed in Eq. (5) with amplitude
function aðx; yÞ ranging from 0 to 1 and phase function θðx; yÞ can be generated using
a CGH with the phase modulation function expressed in Eq. (6).

Fig. 17 OAM modes of azimuthal order l from 1 to 6 generated using the sinusoidal gratings
programmed in the SLM.
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EQ-TARGET;temp:intralink-;e006;116;735sðx; yÞ ¼ aðx; yÞ exp½iθðx; yÞ�; (5)

EQ-TARGET;temp:intralink-;e006;116;701Ψðx; yÞ ¼ fðaÞ sinðθÞ; (6)

where fðaÞ has to be accurately determined to generate the complex field, as explained below.
When a light beam with electric fieldU is incident on the LCoS device encoded with a phase

modulation function, the beam is spatially modulated and the reflected beam from the device can
be expressed in a Taylor–Fourier series expansion using the Jacobi–Anger identity99 as

EQ-TARGET;temp:intralink-;e007;116;644U exp½ifðaÞ sinðθÞ� ¼ U
X∞

m¼−∞
Jm½fðaÞ� expðimθÞ; (7)

where Jm is the Bessel function of first kind with order m. In the Fourier series expansion, the
phase of the first component (m ¼ 1) is identical to the phase structure of the complex field.
Hence, by equating the magnitude of the first component to the magnitude function of the com-
plex field, as shown in Eq. (8), fðaÞ can be determined:

EQ-TARGET;temp:intralink-;e008;116;548fðaÞ ¼ J−11 ½Aa�; (8)

where A is a constant. The maximum value of A for which Eq. (8) will be satisfied is 0.5819. This
corresponds to the first maximum of the first-order Bessel function J1. Since the corresponding
argument of the first-order Bessel function is 1.84, the required phase range of the SLM in this
case is −1.17π∕2 to þ1.17π∕2. Hence, by substituting Eq. (8) in Eq. (7), we generate a complex
function sðx; yÞ in the first harmonic of the above Fourier series. To achieve the spatial isolation
of sðx; yÞ from the other harmonics, a phase carrier 2πðu0xþ v0yÞ is added to the phase of the
encoded field θ [shown in Eq. (9)], where u0 and v0 are the spatial frequencies.98

EQ-TARGET;temp:intralink-;e009;116;432U expfifðaÞ sin½θ þ 2πðu0xþ v0yÞ�g ¼ U
X∞

m¼−∞
Jm½fðaÞ� exp½imθ þ 2πðu0xþ v0yÞ�: (9)

The resultant first-order diffraction from the SLM can be written, as shown in Eq. (10).

EQ-TARGET;temp:intralink-;e010;116;371Uaðx; yÞ exp½iθðx; yÞ þ 2πðu0xþ v0yÞ�: (10)

Fig. 18 Intensity profiles of zero-radial order OAM modes.
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By following this algorithm, CGHs for OAM modes of azimuthal order l ¼ 0 to 5 and radial
order p ¼ 0, 1 were generated. The corresponding intensity patterns were recorded with a cam-
era and are shown in Figs. 18 and 19, respectively.

Composite OAM modes, which are the co-axial superpositions of OAM modes, can also be
generated using active LCoS SLMs.100

2.1.4 Generation using all dielectric metasurfaces

Optical metasurfaces101,102 are artificial 2-D arrays of subwavelength meta-atoms that are
designed to modify the amplitude, phase, and state-of-polarization of light. These devices are
conceptually similar to the reflect-and-transmit antenna arrays,103 which have been studied for
decades in the microwave community. A typical meta-atom can have any shape that can support
some form of resonance. When an electromagnetic wave passes through a patterned metastruc-
ture, the transmitted field amplitude and phase are modified according to the geometric param-
eters, such as height, length, and width, of the resonator. The transmission phase can be varied
from 0 to 2π by changing one or more of these parameters. This results in the ability to fully
manipulate optical wavefronts. The idea of using different structured surfaces to achieve spatially
varying phase profiles has been used as early as 1993 in the microwave domain.104 Early meta-
surfaces were, in fact, descendants of their microwave counterparts and were implemented using
metallic meta-atoms. The major drawback of such metasurfaces is that they are made up of
metallic structures, which are significantly lossy in the visible spectrum due to the strong absorp-
tion in metals.105,106 However, these type of metasurfaces can be used in the infrared (IR) and
higher wavelength spectrum as metals do not suffer from such losses at those wavelengths.
Another popular method used in the design of metasurfaces is based on the Pancharatnam–

Berry (geometric) phase. However, this method works only when the incident light is circu-
larly polarized.101 On the other hand, dielectrics exhibit very low losses at optical frequencies
and support a magnetic resonance mode close to the electric resonance mode in the visible
and IR regions of the spectrum. These facts have steered the direction of metasurfaces
from metallic structures toward all-dielectric ones, whenever applicable. A more comprehen-
sive study on material platforms for optical metasurfaces can be found in the paper by
Choudhury et al.107

A typical meta-atom in a dielectric metasurface108 is made up of a material with a high dielec-
tric constant such as silicon or TiO2. When excited with light, the meta-atom can support electric
and magnetic dipole resonances. By varying one or more of the geometrical parameters of the
resonator, one can spectrally overlap the electric and magnetic resonances at the wavelength of
interest and obtain a 0 to 2π phase coverage.109 Some widely used geometries for meta-atoms
are V-shaped antennas,110 cylindrical disks,108 nanofin structures,111 and cross shapes.112 Other

Fig. 19 Intensity profiles of first-radial order OAM modes.
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shapes are also possible. Rational design thinking can be applied to come up with advanced
geometries for meta-atoms. Different conventional optical elements such as lenses, gratings,
beam splitters, and waveplates have already been successfully realized using metasurfaces.
In some cases, a single metasurface has provided the functionality that may only be achieved
by a combination of several conventional refractive optical elements.113

Another advantage of metasurfaces is that many of the techniques used to design the phase
are similar to that of DOEs. In essence, they both impart spatially varying phase to the incident
light. Identifying these key similarities is very useful for a metasurface designer. For example,
the procedure involved in designing a Fresnel zone lens (FZL) phase profile is identical for both
metasurfaces and DOEs. The only difference comes in the physical realization of the devices.
DOEs use spatially varying heights of a dielectric (such as glass or lithography resist) to emulate
the phase profile of the FZL, whereas the metasurface uses 2-D arrays of meta-atoms with
spatially varying dimensions to accomplish the same. Usually DOEs have only two-phase
levels making them less efficient. Their efficiency can be significantly improved by increasing
the number of phase levels, which increases the complexity of the fabrication process.
According to scalar diffraction theory, a phase profile with 16 levels can achieve almost
99% efficiency.56 Either multistep lithography or grayscale electron beam lithography would
have to be used and both of these processes can be difficult and hard to reproduce without
error. However, a metasurface with multiple phase levels is relatively easy to fabricate.
The reason being that metasurfaces produce spatially varying phase by changing the lateral
dimensions of the meta-atoms. This means no multistep or grayscale lithography is required.
Such metasurfaces can, therefore, create elements with much higher efficiencies than binary
DOEs.

Design and fabrication of a metasurface with a specific phase profile. Designing
a metasurface device can be divided into four main parts: (1) modeling meta-atom dimensions to
achieve 0 to 2π phase coverage for the wavelength of interest, (2) generating the phase profile of
the desired optical element, (3) converting the phase profile into metasurface GDSII layout, and
(4) fabrication. Modeling the meta-atom starts with the choice of the meta-atom, e.g., cylinder
and cross. After choosing an appropriate meta-atom, other geometric parameters of the meta-
atom such as height, length, and lattice periodicity need to be optimized. This task is generally
carried out using a commercial finite difference time domain (FDTD) solver such as Lumerical
FDTD Solutions or CST FDTD Solver. Usually these geometric parameters are much smaller,
compared to the operating wavelength. An initial rough simulation can be performed with
approximate values for the geometric parameters of the meta-atom to obtain its transmission
amplitude and phase. The next step in the design process is to vary one of the geometrical param-
eters over a range of values while keeping the remaining ones constant. The goal of this step is to
obtain 0 to 2π phase coverage with uniformly high transmission amplitude across this entire
range. This step can be thought to provide us with a lookup table containing the meta-atom
dimensions for a desired transmission phase. It is the most challenging part of the simulation
and this optimization usually requires several iterations to arrive at the final geometric param-
eters. It can typically take a few days to complete. Machine learning solutions are already making
their way into solving this problem,114,115 where models can predict the right geometrical param-
eters, given a desired operational wavelength. The second part in the design flow is the phase
profile design, which has been discussed earlier.

The next step is to convert the phase profile from an image format into a metasurface layout
in GDSII format. The phase profiles are usually generated as PNG, JPG or BMP files, where
each pixel represents the transmission phase at that location. Each pixel can be considered to
have a physical dimension when fabricated. On the other hand, in the metasurface layout, each
pixel will be a meta-atom or a group of meta-atoms. Therefore, the phase images are converted
into GDSII layout by a one-to-one mapping of the pixels in the phase profile to a GDSII layout,
using the lookup table obtained from the FDTD simulations. It should be noted that each pixel in
the layout is represented by a meta-atom that gives the desired transmission phase at that pixel
location. An example layout for a spiral phase profile is shown in Fig. 20. Finally, this layout file
is used to fabricate the metadevice using standard nanofabrication tools.
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Orbital angular momentum mode generation using metasurfaces. OAM gener-
ation in the IR region was first demonstrated by Genevet et al.116 in 2012, using a V-shaped
antenna-based metasurface SPP. In the next year, the same design concept was applied to the
THz region to fabricate OAM generators.117 Another modified version of the antenna was pro-
posed to generate LG beams in THz domain.118 Geometric phase metasurfaces that are com-
posed of periodic arrays of birefringent subwavelength meta-atoms with spatially varying
orientation have been used to generate both scalar119 and vector120 vortex beams. This type
of metasurface works on the Pancharatnam–Berry phase phenomenon. Recently dielectric meta-
surfaces composed of Silicon nanofin structures have been used for polarization-sensitive gen-
eration and modulation of OAM beams.121 A new concept of metasurface OAM holography has
also been demonstrated.122 This configuration is capable of reconstructing a range of distinct
OAM-dependent holographic images from a single metasurface hologram. The metasurface was
realized using gallium nitride (GaN) cylindrical pillars.

We have recently demonstrated a vortex beam generator112,123 operating at 8.8 μm in the mid-
IR spectral range using an all-dielectric metasurface composed of cross-shaped resonators. The
meta-atoms can support both Mie-type electric and magnetic dipole resonances to realize spatial
phase modulation and to completely suppress reflection losses. The schematic of the OAM gen-
erator is shown in Fig. 21(a). The length of the cross resonator is varied from 1 to 7.5 μm to
achieve complete 0 to 2π transmission phase, as shown in Fig. 21(b). This figure is nothing but

Fig. 21 (a) Schematic representation of the vortex generator layout, silicon cross meta-atom in
the inset. (b) Lookup table for IR cross resonators: the length L of the cross arm is varied from 1 to
6.5 μm to achieve 0 to 2π transmission for IR design (reprinted from Ref. 112).

Fig. 20 GDSII layout of an SPP for generation vortex beam (l ¼ 5) based on cylindrical-type
meta-atom. The increase in the size of the cross gives a transmission phase of 0 to 2π.
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the phase lookup table described earlier and can be used to construct the desired SPP element or
any phase element. The scanning electron microscope (SEM) image of fabricated SPP and the
experimentally captured vortex beam are shown in Figs. 22(a) and 22(b), respectively.

2.1.5 Miscellaneous generation techniques

Q-plate. A Q-plate is a liquid crystal (LC) device having an azimuthal pattern of the LC
molecular director around a central point, as shown in Fig. 23,125 and works based on the
spin–orbit interaction (SOI) of light in anisotropic-inhomogeneous medium. TheQ-plate pattern
is characterized mainly by the topological charge q of the central singularity, which can be an
integer or half-integer number. TheQ-plates of topological charge q allow the generation of light
beams carrying an OAM of�2qℏ per photon, with the OAM sign controlled by the input polari-
zation state. A Q-plate with q ¼ �1∕2 transforming right circularly polarized beam into left
circularly polarized beam with an azimuthal phase expðiϕÞ is shown in Fig. 23. Applying a
suitable voltage across the device can reorient the LC molecules and hence modify the conver-
sion condition leading to the generation of Hermite–Gaussian (HG) and LG beams, covering the
whole “higher-order Poincaré sphere.”

S-waveplate. This waveplate is a super-structured half-waveplate polarization converter
created by femtosecond laser nanostructuring of glass.126 It works on the principle of the SOI
of light in a medium with form-birefringence. A beam of light without OAM but with right-
circular polarization, when transmitted through the S-waveplate, changes to a left circular
polarized beam with OAM, as shown in Fig. 24. While this generation method results in optical
beams with fixed OAM, its main advantage is that it can be used for high-power and high-energy
laser applications, in which other devices would be damaged.

Fig. 23 (a) Structure of the segmented q ¼ 1∕2 plate, with indication of the LC director orientation.
(b) Q-plate transforms right circularly polarized beam into left circularly polarized beam with
an azimuthal phase expðiϕÞ (reprinted from Ref. 124).

Fig. 22 (a) SEM image of meta-SPP for l ¼ þ1 topological charge; the inset shows the single
building block. (b) Vortex beam image captured on the 64 × 64 pixel FPA detector (reprinted from
Ref. 112).
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2.2 Amplitude Modulation Approach

In the previous section, we discussed the generation of OAM modes using a phase modulation
approach. Similarly, we can potentially generate OAM modes using an amplitude modulation
approach as well. For example, OAM mode generation is possible using a DMD. A DMD con-
sists of a 2-D array of pixels, which can only be turned ON or OFF. It is capable of projecting
both binary and grayscale images at high frame rates. Phase patterns cannot be generated directly
using a DMD. Therefore, the most common methods of generating such patterns use phase-only
SLMs or fabricated DOEs. Special techniques have been developed by which a DMD can be
used to create phase patterns.127,128

In this section, we look at methods that generate complex amplitude patterns using binary
amplitude modulation through the mirrors of a DMD. Several techniques based on holographic
approaches have been explored in Sec. 2.1.3 of this paper. These principles are applied in the
techniques used when DMDs are employed for generation of phase patterns. The slight mod-
ifications that need to be made as the DMD is a binary amplitude device are discussed in this
section. For example, Brown and Lohmann60,129 demonstrated binary holography and Lohmann
and Paris130 demonstrated binary computer-generated Fraunhofer holograms. While the paper
was published in a pre-DMD era, the technique is of particular interest as they used binary ampli-
tude-only holograms and produced desired phase patterns. This was achieved using a technique
known as the “detour phase” technique. A seminal review on CGHs done by Tricoles62 discussed
not only these holographic techniques but also their importance in applications such as medical
diagnostics, imaging, data processing, and high energy physics. It should be noted that the
desired patterns are generated in the far field of the holograms, using these techniques.

In a study published by Piestun et al.,131 on-axis CGHs were used to modulate phase in the
Fresnel plane, using a Fresnel transform and progressive binarization. In 2010, Ren et al.132

succeeded in generating LG beams using a DMD. In this case, the DMD was loaded with com-
puter-generated fork-like patterns of different topological charges. The patterns were first cor-
rected for intensity because the gamma curve of the DMD is not linear. Goorden et al.133 reported
the superpixel method in 2014. We look at three of the most commonly used techniques for
phase generation using a DMD. An LG beam of charge 1 is used as a test intensity and phase
pattern to compare the various methods. It should be noted that the DMD can only generate the
desired phase pattern if it is placed in the relevant experimental setup.

2.2.1 Superpixel method

In this method, square matrices of pixels were combined into superpixels. By controlling the
index and number of the pixels in a superpixel that are turned ON, the required amplitude and
phase values can be achieved. The experiment is set up such that each individual pixel in a
superpixel possesses a phase prefactor. The field at all points can be represented in phasor form
using this approach. The method requires a typical 4f system, as seen in Fig. 25(a). The DMD
(with required pattern) lies in the input plane. A spatial filter in the back focal plane filters out

Fig. 24 (a) Light with right circularly polarization and no OAM transmitted through the S-waveplate
changes to left circularly polarized OAM beam. (b) Measured intensity profiles of left circularly
polarized OAM beam (reprinted from Ref. 21 with the permission of AIP Publishing).
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a particular order, which will form the image in the output plane.133 The pattern on the DMD
consists of several superpixels, with each superpixel representing the intensity and phase of one
point at the output plane. In an n × n superpixel, each individual pixel contains a phase prefactor,
as a result of the optics following it [see Fig. 25(b)].

The field at any point on the output plane can be represented as a vector sum considering each
ON pixel as a vector of intensity 1∕16 and phase as the complex angle. Turning certain pixels ON
will give a resultant field Esuperpixel, whose intensity and phase will depend, respectively, on how
many and which pixels are ON.

The aperture in the back focal plane in the 4f system plays a major role in this method. Its
position is calculated such that the pixels within each superpixel contain specific phase prefac-
tors. For an n × n superpixel, the location of the aperture is given as ðx; yÞ ¼ ð�a;�naÞ, where
a ¼ λf∕n2d. Here λ is the wavelength of light used, f is the focal length of the first lens in the
4f system, and d is the pixel dimension [micromirror pitch of the DMD (Texas Instruments 6500
evaluation module), ∼7.6 μm].

Away by which to use this method is described. Initially, the value of n is chosen, say n ¼ 4.
Then, we generate a lookup table that contains all 6561 possible vectors and the pixel combi-
nations for them. The correct combination is pulled out of the table for each desired value of the
field at each point in the target plane. We use these calculations to generate a 400 × 400 pixel
LG10 beam. One limitation is the trade-off between the size of the desired field and resolution.

Figure 26(a) shows the DMD pattern generated using the superpixel method for LG10 beam.
We conducted an experiment to verify and obtained the output shown in Fig. 26(b). The first
image is that of an 400 × 400 pixel LG beam interfered with a reference beam. The second
image is a zoomed-in version of the same interference pattern near the phase singularity. We
can clearly see the fork pattern, confirming the spiral phase.

Fig. 26 Superpixel pattern and output: (a) pattern generated for LG1 beam and (b) interference
of LG1 beam generated using the superpixel method and a Gaussian beam.

Fig. 25 Superpixel method: (a) setup for superpixel method and (b) superpixel with phase
prefactors.
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2.2.2 Lee method

This is essentially a holographic technique, where the hologram is generated using the desired
pattern, and it is binarized on the basis of the intensity and phase at each point.134,135 The setup is
similar to that of the superpixel method, i.e., a 4f setup with an aperture in the Fourier plane to
select a particular order of interest. The equation used to generate the binary hologram is given
below. The binary hologram thus generated is shown in Fig. 27(a).

EQ-TARGET;temp:intralink-;e011;116;483hðx; yÞ ¼ mod2π½ϕðx; yÞ þ 2πðkxþ kyÞ� − π

2π
<¼ sin−1fabs½Eðx; yÞ�g

π
2

: (11)

In this equation, hðx; yÞ is the binary value of each point on the DMD pattern; Eðx; yÞ and ϕðx; yÞ
are the normalized amplitude and phase at each point in the desired pattern, respectively; k is the
carrier frequency that determines both the fringe width of the pattern and the separation of the
different orders in the Fourier plane. The mod or modulo operation of the phase term with respect
to 2π gives the remainder of the phase term when divided by 2π, or, in other words, we wrap the
phase. Hence, we subtract π from it to make the average value 0.

All these techniques are very susceptible to alignment of both the pinhole and the DMD.
This is clear as seen by the experimentally generated LG10 beam using this method shown in
Fig. 27(b). The nonuniformity of intensity along the azimuthal direction is an artifact of the
misalignment stemming from the aperture positioning and the way the DMD is held.

2.2.3 Binary Fraunhofer holography

This method is best explained by referring to a simple explanation of binary diffraction gratings.
Two rays leaving two adjacent grating slits and going into the first diffraction order at the far field
have a path difference of one wavelength.60 Their detour phase is 2π. However, if a slit is slightly
out of position, the emerging wavefront will diffract differently, thereby creating a different
intensity and phase pattern in the far field. It is this principle of detour phase that is used to
generate any phase pattern.130

In Fig. 28(a), uðx; yÞ is the desired LG10 pattern, which will be obtained by the Fourier trans-
form of Uðνx; νyÞ. This expression is encoded as a hologram by interfering the pattern with
a reference wave. The resultant pattern is binarized Hðνx; νyÞ and this is what is loaded on the
DMD or holographic plane. To simulate a 2-D grating, whose slits are adjustable, the DMD is
divided into groups of pixels that we call cells. While this may seem similar to the superpixel or
Goorden technique, it should be noted that those techniques are 4f methods, whereas the binary
Fraunhofer technique is a 2f one. A cell in the holographic plane represents each element in
Uðνx; νyÞ. And in turn, each element in Uðνx; νyÞ will be represented by say n × n pixels.
Figure 28(b) is a representation of a cell. As with the Goorden technique, there is a clear
trade-off between the number of pixels within a cell and the overall resolution with which
a pattern can be generated.

Fig. 27 Lee pattern and output for a 400 × 400 pixel LG1 beam: (a) pattern generated using Lee
holography and (b) experimental output of Lee holography.
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Figure 29(a) shows the pattern generated for an LG10 beam using the binary Fraunhofer
holography method, and Fig. 29(b) shows the output in the Fourier plane. The zeroth order
is bright and contains no phase information, just like a regular hologram. A zoomed version
of the interference pattern obtained with one of the orders is shown as an inset. The fork pattern
shows that the beam generated contains a spiral phase.

Three techniques for using an amplitude element such as a DMD to generate complex ampli-
tude patterns have been discussed. All these methods typically have a poor efficiency compared
to direct phase modulation achieved using an active LCoS device. However, the DMD offers
much faster switching, and the device itself is much cheaper than the LCoS device. Of the three
techniques described above, the Lee method is most commonly used. However, the binary
Fraunhofer method is simpler to set up due to the fact that it is a 2f method.

2.3 Hybrid Approach

So far, a variety of active and passive approaches for generating OAM modes have been dis-
cussed, including diffractive elements, holographic elements, and DMDs. The serious drawback
of all the methods described so far is that the OAM mode is generated in free space and is not
amenable for coupling into an optical fiber. In this section, we discuss an all-fiber technique for
the excitation of an OAM mode using a fused fiber coupler. Such an approach would be quite
valuable for applications such as optical fiber communication.

The fused-coupler approach is based on selective coupling between different modes in two
dissimilar fibers. Previously, such a technique has been used to achieve coupling between the

Fig. 29 Experimental output of binary Fraunhofer holography: (a) pattern for LG1 beam and
(b) interference of LG10 beam and a reference beam.

Fig. 28 Binary Fraunhofer holography method: (a) schematic representation of binary Fraunhofer
holography method and (b) cell.
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fundamental HE11 mode in an SMF and a selected higher-order LP mode group in a few-mode
fiber (FMF).136 However, the selective excitation of OAM modes within a mode group in typical
step-index FMFs cannot be achieved using such couplers. This is due to the fact that the targeted
modes in the FMF nearly degenerate with other OAMmodes of the same jlj (l > 1) consisting of
even/odd HE or EH eigenmodes, or, in the case of l ¼ 1, with the transverse electric (TE01)/
transverse magnetic modes (TM01Þmodes. Since breaking such degeneracy in FMFs is essential
for the excitation as well as stable propagation of the OAM modes,137 a solid core fiber may be
used. The solid core fiber breaks the degeneracy between the desired HE21 modes and neigh-
boring TE01 or TM01 modes, thereby allowing the preservation of the excited OAM mode with-
out significant intermodal coupling.137 Phase matching between the HE11 mode in the SMF and
the desired mode in the solid core fiber can be achieved by pretapering the SMF and then fusing
both fibers.136 As such, it provides a promising alternative pathway to directly couple the tradi-
tional Gaussian beam to the desired OAM modes with high purity and good stability in an
entirely integrated scheme. In addition, this all-fiber device could potentially generate OAM
modes with higher charge as the above phase-matching technique could be extended to other
OAM modes supported by the solid core fiber138

Based on simulations, the fused coupler described above is fabricated using the modified
flame-brushing technique.139 A schematic of the experimental setup used for characterization
of the fabricated fused coupler is shown in Fig. 30. Light from a 1550-nm laser source (spectral
width ≈0.08 nm) is split into two arms using a commercial 3-dB coupler. Light from one arm of
the 3-dB coupler is used as a reference for the interference setup to analyze the OAM beam at the
output of the fused coupler. The output beam from the solid core fiber is collimated with a lens
(f ¼ 6 mm) and imaged using a CCD camera (MicronViewer-7290A). The output beam from
the reference SMF and solid core fiber (cleaved at ≈40 cm beyond the interaction region of
coupler) are combined using a free-space beam splitter to form the interference pattern. The
interference setup (shown in the dotted box) is used to determine the charge �1 of the generated
OAM mode by observing its characteristic fork and spiral patterns.

The above fused fiber coupler technique has been extended by different groups for exciting
the OAM modes in fibers with different index profiles and also in photonic lanterns. Heng
et al.140 reported the generation of an OAM mode of charge 1 in a graded index FMF with
a mode purity of 95% over 100 nm (1500 to 1600 nm) bandwidth. Wen et al.141 reported ampli-
fication of OAMmodes generated using fused couplers, which have an 160-nm bandwidth (1480
to 1640 nm). This technique was further scaled for exciting the higher-order circularly polarized
OAM modes ðl ¼ �2Þ using a ring core fiber,142 and a modal power extinction ratio of 12.9 dB
was reported with respect to the neighboring modes. The fused coupler technique is employed in
making mode-selective photonic lanterns (MSPLs) exciting five OAMmodes in a ring core fiber
with a bandwidth of 500 nm (1000 to 1500 nm).143 More recently, Li et al.144 have reported on
the simulation of MSPL for three OAMmodes with a modal cross talk of less than −24 dB. Such
results help in highlighting the immense potential of the mode-selective fused fiber coupler
approach for the generation of desired OAM modes.

Fig. 30 Experimental setup for characterizing the generated OAM beam: solid lines are propa-
gation path of light through the fiber; dashed lines are that of light through free space. PC, polari-
zation controller; L1 and L2, collimating lens; FBS, free space beam splitter; QWP, quarter
waveplate; and PBD, polarization beam displacer.
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2.4 Generation of Optical Vector Beams

The fact that the state of polarization (SoP) across an optical beam need not be uniform at differ-
ent spatial locations at the same time or at different times led to the realization of vector optical
beam (VOB). VOBs are a class of solutions to the vector wave equation in the paraxial limit.
These solutions along with axial symmetry around the beam axis are known as cylindrical vector
beams (CVBs). Radial and azimuthal polarization can be considered as special cases of CVBs.
The spatial inhomogeneity of the SoP of the optical beams can be cylindrically symmetric or
asymmetric, leading to unconventional polarization states depending on the generation method.
An authoritative review of this area of research presented previously 145–148 provides details from
fundamental aspects to emerging applications. The exploration of CVB capabilities is still
largely limited to optical physicists and has recently been used as a tool to access electromagnetic
properties of matter, including a novel way of studying and controlling edge currents in topo-
logical materials and for Floquet engineering of nonequilibrium states of matter.149

In addition to the spatial variation in the SoP, it is possible to modify the phase front of the
optical beam either independently or together. In the first situation, the wavefront can be made
helical or in some alternate shape determined by a polynomial or special mathematical functional
form. For example, this could be used to generate optical beams with vortices or beams that are
Airy, HG or some other exotic form with unique phase structure. Such demonstrations have
proved to be useful for several obvious and unforeseen applications in the classical and quantum
domains. The following discussion provides a detailed, current status account of the generation,
detection, and manipulation of optical vortex beams (OVB) with an OAM DoF.

Ensuring that the SoP and the phase DoFs of an optical beam are nonseparable results
in beams that embed both characteristics. Such beams are known as “vector-vortex” beam
(VVB),150,151 polarization singular (PS) beams,152,153 Poincaré beam (PB),154 spin–orbit
beams,155 or classically entangled beams.156 In all these paraxial optical beams, the SoP shows
spatial variation due to the underlying variations in the phase structure. Under special circum-
stances, the spatial variation can also lead to the appearance of geometric phase due to variations
in the SoP and can be understood as arising due to optical SOI.157 SOI refers to the nonseparably
coupled spin and OAM of a paraxial light beam. Mapping the phase-polarization structure on the
Poincaré sphere, these beams are also known as PBs, a 2-D projection of the Poincaré sphere on
any given plane. For example, a projection of the top half of the Poincaré sphere onto the (S1–S2)
Stokes parameter plane leads to a beam, whose SoP in the beam cross section varies radially
outward with different ellipticities from the axial (S3) point. Such a construct leads to the appear-
ance of “C-point” and “L-line” polarization singularities, corresponding, respectively, to a point
where the orientation of the polarization ellipse is undetermined and a symmetric ring around
which the spin direction is undetermined. The C-point corresponds to purely circular polariza-
tion state (S3 ¼ 1), also known as polarization vortex, and the L-line is where the SoP is linear
(S3 ¼ 0). The appearance of C-point and L-line polarization singularities and spatially varying
(vector) SoP gives the optical beams the appropriate names mentioned.

The lowest-order polarization singularities and the associated topological structure in the
ellipse field typically classified as lemon, star, and monstar158,159 are shown in Figs. 31(a)–
31(f) along with the first higher-order spiral, node, and saddle structures. They are characterized
by their index Ic ¼ �1∕2, �1, denoting the rotation of the disinclination around the C-point.
Extending beyond the half-turn around the C-point, higher-order disclination indices
ðIc ¼ �2; 3Þ have also been investigated and were recently experimentally demonstrated.
Such optical beams are represented in higher-order spherical space, also known as the C-point
sphere.160,161

Fig. 31 Topological structures associated with singular points: (a) lemon, (b) monstar, and (c) star
of index �1∕2 and (d) spiral, (e) node, and (f) saddle of index �1.
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The C-point singularity and the surrounding elliptical-linear SoP in the beam cross section
are formed by superposing a helical-phase optical vortex (LG) beam and a plane wave Gaussian
beam in two orthogonal circular SoPs.162 Alternatively, they may be formed via superposition of
two LG beams in orthogonal circular SoP.161 Mathematically, they are represented as161,162

EQ-TARGET;temp:intralink-;e012;116;687Ψðr;ϕÞ ¼ fðrÞ½ðcos βeil1ϕ þ sin βei−l1ϕe
iγ ÞêR þ eil2ϕeiδêL�; (12)

where β, γ, and δ are phases; r and ϕ are the polar coordinates in the plane perpendicular to the
propagation direction; l1 and l2 are the topological charges of the spatial modes with radial
variation fðrÞ, and êR and êL are the unit vectors of right- and left-circular SoPs, respectively.
The topological charges of the beam l1 and l2 can take any arbitrary integer or noninteger value
to obtain different patterns, and with l2 ¼ 0 we obtain the lowest-order PS pattern with
Ic ¼ �1∕2. These topological phase-polarization structures can be used to engineer the total
Poynting vector density arising due to the combination of the SAM and the OAM. One can
expect many exciting possibilities for new fundamental studies and applications, based on these
concepts.

2.4.1 Generation methods

As described above, one of the characteristic features of vector wave fields is the appearance of
C-point and L-line polarization singularities and disclinations163–166 in the transverse cross sec-
tion due to on-axis or off-axis superposition of two or more wave fields with different phase-
polarization structures. In a field of elliptical polarization, C-point singularities are locations
where the elliptical SoP degenerates to circular SoP, wherein the azimuth of the circular
SoP is undefined. On the other hand, the L-line singularities correspond to locations where the
polarization ellipse degenerates to linear SoP with undefined ellipse handedness. It is important
to note that the C-point and L-line singularities are fundamental features of vector wave fields,
where the SoP of the beam field is spatially inhomogeneous and elliptically polarized. These are
an important source of information to explore a variety of fundamental aspects of light, light–
matter interaction, and their applications.166,167 These unique signature field patterns were first
observed in the microwave region168–170 and were subsequently measured and studied in several
optical systems, including in speckle fields, in polychromatic fields, and in scattered radiation.167

The speckle beam fields with a large number of randomly oriented polarization singularities are
generated by propagation of polarized light through an inhomogeneous and weakly birefringent
medium such as a multimode optical fiber. This results in an elliptically polarized field in the
output rich in polarization singularities.171 Such elliptically polarized light fields with myriad of
randomly located PS C-points and L-lines act as markers in a number of applications, including
characterization of rough surfaces and biological tissues.167

Awell-defined optical beam field containing an elementary polarization cell embedded with
one C-point bounded by an L-contour has also been demonstrated and applications using such
beams are emerging. The polarization singularity features in a beam are associated with the
optical AM of beam fields and appear due to the simultaneous presence of both the spin and
OAM DoF in a beam. Optical beams with components of both SAM (�σ ¼ 0, 1) and OAM
(�l ¼ 0, 1, 2) attributes present simultaneously, contribute to the total angular momentum
(TAM) (�σl) of the beam. Such beams have been generated using different methods and tech-
nology platforms.150–157 Known initially as VVBs, the optical singularities are formed around a
point where a scalar vortex is centered in at least one of the scalar components of the vector wave
field. Propagating a polarized light beam through a two-mode optical fiber (TMF) instead of a
multimode optical fiber generates a well-defined and controllable optical beam containing an
elementary polarization cell embedded with one C-point bounded by L-contour.152 Such beams
are formed due to the linear superposition of a collinearly propagating vortex mode and the
fundamental mode in the optical fiber. Such beams have also been generated using geometric
phase elements, such as subwavelength gratings,172,173 wherein the Pancharatnam phase was
shown to play a critical role in the AM of the beam.174 The role played by the geometric phase
in such beams is indicated by its evolution during propagation, which indicates that VVBs carry
OAM. This led to the realization that VVBs can also be identified by the presence or absence of
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TAM carried by the beam, and geometric phase has been shown to play a critical role in this
beam attribute. In addition to TMFs,150–153,162 VVBs have also been generated using a variety of
methods, including interferometry,145–147,175 LC Q-plates,125,176 optical crystals,177–179 stressed
optical element,154,180 and, more recently, using structured metasurfaces181–183 and in plasmonic-
fields.184

Generation of the family of VVBs using LCoS devices74,185–187 and their recent off-shoot the
DMDs132,188 were notably missed in the above discussion as they belong to active and flexible
generation methods. DMDs are finding more and more uses in research labs for the generation of
a wide variety of complex beams. They are cheaper and faster than LCos devices. Though LCoS
devices are considered expensive compared to other optical elements used in this area of
research, the flexibility they bring to generating a large variety of phase-polarization structured
optical beam far outweigh the cost. Moreover, they have almost become a staple in all optics-
photonics research laboratories involved in the above research activity, which is rapidly pushing
the cost down. Having been around for more than a decade now, a number of research articles
have been reported on the use of LCoS SLMs to generate vortex beams, vector beams, VVBs,
and a large number of phase-polarization-intensity-modulated complex light beams with custom
purpose. Most of these are reviewed authoritatively in the references.74,185–187 More interestingly,
the spatially inhomogeneous polarization and helical-phase wavefront can coexist in the same
light beam and thus form cylindrical VVBs or PBs of different orders.189 Its perfect version190

generated using SLMs provides additional DoFs with a large variety of patterns and offers an
almost unlimited experimental flexibility for beam and thereby material manipulation. In addi-
tion to manipulation of the phase-polarization pattern of the light beam, the underlying geometric
phase aspect of the beam has also been modified to generate PBs.191 Needless to emphasize,
several alternate methods are being actively pursued as well.

Based on the formalism given in the introduction part of this section, we have generated the
lowest order and the first few higher-order VVBs using a superposition of vortex (LG) beams
and a Gaussian beam with suitable spin and orbital AM (Figs. 32 and 33). The Poynting vector
density and the total AM192 of such beams are quite complex in the cross-section. In addition to
integer charges, we were able to generate fractional charge VVBs, which could find potential
application elsewhere. Decomposition of the beams into their fundamental constituents is typ-
ically carried out via interferometry, polarimetry,150–153,192 or vector decomposition using LCoS
SLMs.74,185–187

A brief overview of the current status of vector-vortex optical beams generated with con-
tributions from both spin and OAM DoFs has been presented in this section. The lower, higher,
and fractional order VVB results presented here are generated using LCoS SLMs. In all cases,
the appropriate circular polarization of the input beam and phase mask are projected on the LCoS
SLM to generate the vector beam. The spatial polarization characteristics of the beams are
obtained using imaging Stokes parameter measurements. Such phase-polarization structured
optical beams are beginning to find applications in optical microscopy, communication, and
material characterization.

Fig. 32 PS beams generated using LCoS SLM and measured using polarimetry. Topological
pattern of (a) star, (b) lemon, (c) fractional charge, and (d) node. The SoP of the beams measured
(red and green colors) are plotted overlaying the beam intensity (yellow color); white color dots are
the C-points and white color dotted rings are the L-line in the beam cross section. Inset shows
the phase map of the beams highlighting helical phase structure, with yellow and blue colors
corresponding to 0 and π phases, respectively.
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3 Detection of Optical Beams Carrying Orbital Angular Momentum

Modal weights of a complex beam can be calculated either by mode sorting or by modal decom-
position. Mode sorting methods result in the physical separation of eigenmodes using active or
passive techniques. Modal decomposition, on the other hand, quantifies the different modes
present, without necessarily separating them. Avariety of methods, involving interferometers,193

holograms,54 and Q-plates194 have been used to carry out mode sorting. However, all these meth-
ods are limited by their throughput, i.e., they can detect only one mode at a time.

Cascaded beam splitters and photonic integrated circuits14 are some of the existing methods
that simultaneously identify multiple azimuthal mode components of an input beam but are not
efficient and often require careful alignment. For example, the work carried out by Leach et al.195

looked at sorting at the single-photon level, using a Mach–Zehnder interferometer (MZI). The
interferometer was modified such that each arm contained a Dove prism. Sorting was achieved
by maintaining an angle θ between the two Dove prisms. This resulted in a phase difference of
2lθ between the two arms of the interferometer, where l is the charge of the incoming beam.
This setup was able to separate the even and odd modes since a value of θ ¼ 90 deg resulted in
constructive interference at one of the interferometer output ports for all even values of l and
similar constructive interference at the other port for all odd values of l. By using several
cascaded interferometers with different phase differences between each interferometers pair
of Dove prisms, a finer sorting could be carried out. Theoretically, this could be achieved with
high efficiency. However, the large number of interferometers makes this system both error-
prone and cumbersome. The MZI–Dove prism combination was also used by Gao et al.196

However, instead of cascading interferometers, they used a binary amplitude grating in each
output arm of the MZI. The gratings were designed such that if the diffractive order and the
angular quantum number were the inverse of each other, the incident helical beam was converted
to a Gaussian beam (i.e., it focused to a spot, rather than a ring). From the location of the focus
spot along a plane, one could tell the charge of the mode. However, this worked only for a small
range of l values. Lavery et al.193 also extended the idea of cascaded interferometers to finely
sort the OAM modes. Each interferometer was constructed in a robust manner that eliminated
several of the alignment issues of the original work.

Q-plates have also been used to sort OAM states.194 Q-plates of topological charge q allow
the generation of light beams carrying an OAM of �2qℏ per photon, with the OAM sign con-
trolled by the input polarization state. Two input OAM states to be sorted (say, l ¼ �2) are
generated using an SLM and are propagated through a (quarter waveplate (QWP) to generate
two orthogonal polarizations, say the right and left circular states. The four photons states thus

Fig. 33 (a)–(c) Higher-order PS beams generated using LCoS SLM; (a’)–(c’) corresponding phase
maps.
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generated (jL; 2 >; jL;−2 >; jR; 2 >; jR;−2 >) are passed through a Q-plate, q ¼ 1, converting
them into the states ðjR; 4 >; jR; 0 >; jL; 0 >; jL;−4 >Þ. A second QWP converts the states to
ðjH; 4 >; jH; 0 >; jV; 0 >; jV;−4 >Þ, and a polarization beam splitter directs the horizontal and
vertical polarization components into transmitted and reflected paths, respectively.

The two modes are separated in the far field by taking advantage of the different radial dis-
tributions of them ¼ 0 and 4 modes. This method allows the sorting of only four modes obtained
by combining two OAMmodes and two orthogonal polarization modes at a time. Also, the radial
mode overlap leads to some energy of each mode going into the “wrong” OAM mode.

3.1 Geometric Transformation Method

One sorting technique that is used to find the weights of individual modes present in the incident
beam is based on a Cartesian to log-polar transformation.197,198 While this is an elegant method,
it has some drawbacks, such as the limited range of azimuthal order modes that it can sort at a
time and its inability to determine the weights of radial order modes. Owing to the use of two
active LCoS devices, the overall efficiency was also quite poor. However, it is one of the most
popular techniques used currently, with the lossy LCoS devices replaced either by diffractive or
by refractive elements. The method is described in detail below.

This method is based on the fact that a set of superimposed plane waves propagating with
different wave vectors can be focused into distinguishable spots at the focal plane of a convex
lens, provided that each sees an additional phase shift that is a multiple of 2π across the lens. This
is to ensure that the difference in spot position is comparable to the Rayleigh resolution
limit.199,200 The location of the spot depends on the topological charge of the OAM mode
(Fig. 34).

The basis of this sorting technique is the conversion of OAM into linear momentum. The
method requires two elements. The first unwraps the phase profile of an OAMmode azimuthally
along the ring-shaped nonzero intensity region. Modes with higher azimuthal index number
correspond to plane waves with larger wave vector.

The unwrapping operation is carried out by an optical log-polar transformation.201 The ampli-
tude of the unwrapped beam is obtained at the Fourier plane of the transformation element. The
residual phase distortion introduced by the transformation element is compensated by a second
element that provides the required phase correction at the Fourier plane to retrieve the phase
ramp of the unwrapped beam. The setup is completely reversible, which means that a spatial
array of Gaussian focal spots at the focal plane of the lens will be converted into superimposed
plane waves with different tilt. These beams then pass through the phase corrector and the trans-
formation element to produce multiplexed OAM beams. The phase profile of the transformation
element θ1ðx; yÞ and phase correction element θ2ðu; vÞ are given as202,203

Fig. 34 Configuration of an optical log-polar transformation-based mode sorter and its working
principle. The leftmost image indicates the input, which could be the superposition of a number
of OAM beams of different charges. This goes through the first element of the log-polar transfor-
mation, which unwraps the azimuthal phase profile of the OAM mode. The second phase element
lies at the Fourier transform plane and provides the necessary phase correction that allows focus-
ing of the beam into spots for each OAM present in the incident beam. This is indicated on the
rightmost part of the figure. The color map of the two phase elements indicates the phase variation
across the elements, with blue being 0 and red having the value 2π.
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θ2ðu; vÞ ¼ −2π
λ

ab
f ½expð−u∕aÞ cosðv∕aÞ�: (14)

The parameter d defines the length of the unwrapped beam and is selected such that the
unwrapped beam covers 80% of the width of the corrector. The parameter a ¼ d∕2π ensures
that the unwrapped beam is fully mapped on the width of d. The parameter b allows independent
control of the translation of the unwrapped beam in the u direction. The f is the focal length of
the Fourier transforming lens used. Figure 35 illustrates the results of simulation carried out to
demonstrate the demultiplexing process.

One limitation of this method is that there will be a slight overlap of OAM mode content in
the output, especially while sorting consecutive OAM modes. This limits the use of this system
for single-photon applications. However, the resolution can be improved by incorporating a fan-
out element at the output of unwrapper and phase corrector element, followed by a fan-out phase
correction element. Therefore, four optical elements are required to improve the resolution.
Recent research work204 has demonstrated that the fan-out element can be integrated along with
the phase profile of the transformation element that creates multiple coherent copies of the
unwrapped beam at the Fourier plane of the unwrapper. The second element has to correct
the relative phase between these copies at the Fourier plane of the fan-out element.205–207

Recent research work has also demonstrated that performing a spiral transformation instead
of a log-polar transformation can also improve the resolution of the mode-sorter output.208

However, all these methods improve resolution at the expense of making the setup more
complex.

The log-polar technique has proved to be one of the most used methods of carrying out mode
sorting. While refractive elements are the most efficient, most researchers use phase diffractive
elements. These elements are either LC SLMs or elements fabricated using a variety of lithog-
raphy and etching techniques. Although the log-polar optical transformation is efficient, the need
for two elements to complete the demultiplexing still makes the entire operation occupy a large
footprint. Extensions to this work, therefore, focused on miniaturing the setup, by integrating the
two optical components into a single DOE.204,209 This was achieved with a neat but simple trick.
As the geometric transformation element acts on a ring of light, the central part of the element is
unused. This region was filled with the second element structure. In other words, the first
element occupied the outer ring of the new combined DOE, whereas the second one lay at the
center. The light that had traversed the first element (outer ring) was reflected and made to travel
through the second element (central region).

Fig. 35 The simulation results for various OAM mode inputs.
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3.2 Optical Correlation Technique

In contrast to the mode-sorting techniques outlined above, modal decomposition techniques
create a representation of the complex beam as a linear summation of the eigenmodes.
Some of the modal decomposition techniques include the spatial and spectral ðS2Þ imaging
technique,210 numerical methods,211,212 phase extraction methods,213,214 and the optical correla-
tion technique.74,215,216 The relative merits of these techniques are mentioned below.

The S2 imaging technique involves a complex experimental setup (broadband source or
tunable laser, optical spectrum analyzer, and a two-axis mechanical shifter) and requires a
long measurement time.210 The crucial element of numerical method-based modal decompo-
sition is the optimization algorithm such as the Gerchberg–Saxton algorithm,211 stochastic
parallel gradient descent algorithm,212 and hybrid genetic algorithm.217 These optimization
algorithms easily suffer from initial value sensitivity and local minima problems. The ring
technique is one of the modal decomposition techniques, which does not use any optimization
algorithm.218 However, the drawback of this technique is it works only for the zero radial order
OAM modes.

Phase extraction methods, such as phase-shifting digital holography,213 require a reference
beam to extract the phase structure of the complex field. Primary limitations of this technique are
that it requires a stable interferometric setup and a coherent laser source at the receiver end. On
the other hand, optical correlation-based modal decomposition has been demonstrated to address
a wide range of the spectrum, although the accuracy may be limited by the specific algorithm that
is used. For example, Xie et al.219 experimentally demonstrated the 15-dB power extinction
between the zeroth and first radial order LG modes using an optical correlation technique.
The power extinction in their demonstration is limited by the fact that they have used only the
phase structure of the LG modes in the decomposition process. Optical correlation-based modal
decomposition considering both amplitude and phase structures gives accurate modal weights of
the complex beam. Such a technique has been employed to find the modal weights of the optical
fiber output in the LP basis.215 This optical correlation technique can also be used to find the
weights of an optical fiber output in OAM basis having both azimuthal and radial order modes.
As discussed previously, OAM and SAM are coupled together for fiber modes. Hence, in order
to implement optical correlation, OAM and SAM have to be decoupled.

In this section, we discuss optical correlation techniques for scalar OAM modes. It should be
noted that any scalar light beam (U) can be represented by a superposition of LGl;p modes with
corresponding complex weights Wl;p, as shown in Eq. (15). The complex weight of a mode is
calculated by optically correlating the input beam with the complex conjugate of the mode, as
shown in Eq. (16).

EQ-TARGET;temp:intralink-;e015;116;309U ¼
X
l;p

Wl;pLGl;p; (15)

EQ-TARGET;temp:intralink-;e016;116;253Wl;p ¼
ZZ

l;p
ULG�

l;pWl;prdr dϕ: (16)

Equation (16) is essentially a dot-product operation between the input beam and the complex
conjugate of the mode. This operation is performed experimentally by using an SLM and
a convex lens.220

The input beam LGl;p is multiplied with its complex conjugate mode using an SLM by
encoding necessary holograms. To perform the integral operation, the reflected beam is propa-
gated through the convex lens. The electric field corresponding to the reflected beam at the
Fourier plane of the convex lens is given in Eq. (17).57,220

EQ-TARGET;temp:intralink-;e017;116;144Ufðu; vÞ ¼
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�
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, Θ ¼ tan−1ðu; vÞ, u, and v are the spatial frequencies, f is the focal length

of the convex lens, λ is the wavelength, and k is the propagation constant of the beam.
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The center of the Fourier plane Ufð0; 0Þ, which is commonly referred as the DC component,
gives the weight of the LGl;p mode. Since the camera captures the intensity, the square root of the
observed intensity is calculated to obtain the field weight. However, it should be noted that the
phase information of the beam is lost in this process and, as such, the relative phase between
different modes is not considered.

Based on the above optical correlation algorithm, modal decomposition of azimuthal, as well
as radial order LG modes, is performed. The schematic of the experimental setup used for imple-
menting the optical correlation technique is shown in Fig. 36.220 One half of the SLM is
programmed to generate the required LG beam and the other half is programmed to perform
the dot-product operation as part of the modal decomposition.

In the above experiments, high extinction (27 dB, limited by the camera bit resolution)
between the matched and the orthogonal cases are achieved when two radial order modes
(p ¼ 0, 1) with two azimuthal order modes (l ¼ 0, 1) are used. To explore the scalability to
higher-order modes, the above optical correlation experiments are extended to higher azimuthal
order modes (l ¼ −4 to þ4). The observations from such experiments are summarized using a
parity plot, as shown in Fig. 37.220 For simplicity, a constant decomposition CGH radius R of
1.0 mm is used for these experiments. The diagonal elements of the parity plot represent the
power measured when the generated and decomposition CGH corresponding to LG modes are
matched and the off-diagonal elements represent the power coupled to neighboring modes. The
observations from Fig. 37 are the following: when LG modes with p ¼ 0 and l ¼ −4 to þ4 are
generated and correlated with matched decomposition CGH patterns (corresponding to diagonal
values in Q1 quadrant), the normalized power is uniform and maximum. However, a finite
amount of power is observed when correlated with the orthogonal p ¼ 1 decomposition
CGH patterns (corresponding to diagonal values in Q2). For l ¼ 0 mode, an extinction of
≈23 dB is observed. This degradation of extinction compared to an expected value of 27 dB
is due to the nonoptimal decomposition CGH radius of 1 mm used in the above measurements.
Furthermore, an increase in the power measured is observed as we increase the azimuthal num-
ber (l). For example, when LG−40 is generated, we noticed only 15.5 dB extinction between
LG−40 and LG−41 modes. This degradation in extinction for higher-order azimuthal modes
is once again attributed to the wavefront aberration introduced by the SLM, as well as the asso-
ciated optics, for a beam of higher-order transverse mode such as the LG modes studied
here.221,222

Interestingly, when LGmodes with p ¼ 1 are generated, the power coupling to the p ¼ 0 LG
modes is much lower (extinction of 27 dB, corresponding to diagonal values in Q4). Specifically,
when LG−41 is generated, 27-dB extinction between LG−41 and LG−40 modes is observed
(which is better than the converse case). This is not surprising since the optimal decomposition
CGH radius is used for this case compared to the above case.

It should be noted that a similar optical correlation technique has been reported recently by
other groups. A collinear phase-shifting holographic method213 is reported with a modal extinc-
tion ratio of 24 dB between LG10 and LG11. Another optical correlation technique based on

Fig. 36 Experimental setup for implementing the optical correlation technique. DFB, distributed
feedback laser; L1 (focal length ¼ 10 cm) and L2 (focal length ¼ 20 cm), convex lens; PH,
pinhole; P, polarizer; SLM, spatial light modulator; M, mirror; LLF, laser line filter at 1064 nm;
CCD, charge-coupled device camera.
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a phase-retrieval method223 is reported for decomposing LGlpðl ¼ 0; 0 ≤ p ≤ 2Þ modes with
<10 dB modal extinction ratio between the mode of interest and the neighboring modes.
An optical correlation technique based on intensity flattening224 is reported for decomposing
LGlpðl ¼ 0; 0 ≤ p ≤ 7Þ radial order modes. Unfortunately, modal extinction ratios of the
decomposed modes are not presented in the article. A maximum visibility (ratio of the power
in the desired mode to the power in all the modes) of 99.1% is reported. Finally, a radial mode
sorter225 has been reported for decomposing LGlpð−2 ≤ l ≤ 2;0 ≤ p ≤ 1Þ modes with a maxi-
mum modal extinction ratio of 10 dB.

In comparison to the above methods, our method is tested for LGl;pð−4 ≤ l ≤ 4; 0 ≤ p ≤ 1Þ
modes having both azimuthal and radial orders.220 A modal extinction ratio of 27 dB is obtained
(limited by our camera resolution), irrespective of the input mode, which is greater than any of
the extinction ratios of the above-mentioned schemes. A visibility of 99.9% is obtained in our
experiments,220 which is also greater than the visibility obtained in the optical correlation tech-
nique based on intensity flattening.224

So far, modal decomposition using an optical correlation algorithm is discussed for the case
wherein only a single mode is generated. In several practical applications, including MDM sys-
tems, modal decomposition has to be performed for composite (two or more) modes. As such,
the above investigation is extended to the case of a composite beam consisting of 10 different LG
modes (azimuthal mode indices l ¼ −2 to þ2 and radial mode indices p ¼ 0, 1). A sample
modal distribution is chosen such that the generated mode weights (denoted as markers in
Fig. 38220) are halved for consecutive azimuthal mode index (both positive and negative values).
As in the above case, the decomposed modal weights agree well with the generated modal
weights across the entire mode spectrum. The relatively high error observed for the LG−20 and
LG20 modes are due to the nonoptimal radius of the decomposition CGH, as explained previ-
ously. However, the intensity structure of the reconstructed beam [illustrated in Fig. 38(c)] based
on the experimentally obtained modal weights closely resembles the generated composite
beam of Fig. 38(a).

Fig. 37 Normalized power measured from optical correlation technique for different combinations
of generated and decomposition LG modes with radial mode order p ¼ 0, 1 and azimuthal mode
order l ¼ −4 to þ4. Diagonal elements represent parity and the off-diagonal elements represent
the magnitude of coupling to neighboring modes. Q1–Q4 corresponds to the different quadrants
in the above plot.
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4 Summary and Conclusions

Light beams with spin and OAM and arising due to SOI are so diverse and are emerging so
rapidly that an overview once every few years has become a norm and well deserving. This
review article is an attempt to classify this area of research from a point of view that addresses
the needs of scientists and engineers who want to generate/detect AM modes and are looking
for the best technique for their desired application. Such applications may be in microscopy,
classical-quantum optical communications, or simply to explore light–matter interactions in
different physical–chemical–biological and engineering systems, wherein this new DoF of light
beam can provide additional and so far hidden information. To this end, we presented several
passive and active spatial light modulation techniques to generate or detect optical beams with
AM through manipulation of amplitude, phase, and polarization across the optical beam.

In this review paper, we have elucidated the various approaches previously reported for
generating light beams with OAM through spatial light modulation. One class of SLMs relies
on manipulating the phase across the optical beam. Examples of such an approach include the
use of refractive SPPs, blazed and DOEs, HOEs, and more lately, the use of all-dielectric meta-
surfaces. Manipulation of the amplitude across the optical beam through SLMs, such as DMDs,
is another important approach that has been discussed in our paper. Recently, there has been
significant interest on the use of OAM modes for high capacity MDM optical communication
systems. For such an application, a hybrid all-fiber fused coupler approach may provide a robust
platform, and we have discussed the key principles for this approach. Finally, we have discussed
the generation of vector-vortex modes, which once again is attractive for classical and quantum
optical communication applications.

In many of the above applications, a key issue is the detection of the OAM mode spectrum at
the optical receiver. From this perspective, we have presented a couple of promising approaches,
including sorting using geometric transformation and decomposition using optical correlation
technique. Although it is difficult to identify a particular approach as the best for any given
application, the discussion presented in this review is intended to provide interested scientists
and engineers the key information required to make a wise choice on the approach best suited for
their application.
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