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Abstract. In testing of high-numerical-aperture spherical lenses, conventional Fizeau interfer-
ometry with a mechanical phase modulator suffers from spatial nonuniformity of the phase steps
within the observation aperture. The amount of phase modulation decreases rapidly in the mar-
ginal region of the aperture due to a geometrical effect, which results in a systematic error of
several nanometers in the measured object profile. We propose a synthesis of phase-shifting
algorithms in which several algorithms designed for different phase steps operate on the same
set of interference fringes recorded in a single phase-shift sequence. Then, the object phase is
determined from each of the algorithms for each aperture division. The resultant phase distri-
bution showed minimal systematic errors. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.1.014101]
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1 Introduction

High-numerical-aperture (NA) spherical surfaces are required for wide-angle and high-
magnification industrial products, such as endoscopes, microscopes, and cameras, for metrology
references in optical interferometers for aspherical lens testing and for coordinate measuring
machines. Recently, spherical lenses have attained surface measurement repeatability by spheri-
cal Fizeau interferometers of better than 0.1-nm RMS. To further improve the repeatability and
accuracy of high-NA spherical surface measurement, both random noise and systematic errors of
the interferometers must be decreased. For the suppression of random noise, we have proposed
a dual phase-shift scheme for Fizeau interferometers to minimize noise from the internally
scattered light.1

Spherical Fizeau interferometers have a number of systematic error sources,2 including
nonuniformity3 and nonlinearity4 in the phase modulation, multiple reflections, residual aberra-
tions of converging optics, unstable source laser intensity,5 and air turbulence. Among these error
sources, spatial nonuniformity of the phase shift is common in mechanical phase modulation.
When a phase shift is introduced mechanically by a piezoelectric transducer (PZT), the phase-
shift increment decreases by a cosine factor in the marginal region of the observation aperture,
which is a purely geometrical effect.

Wavelength tuning5–9 is another option for high-NA spherical measurements because the
amount of phase shift is proportional to the air gap distance. This technique can achieve a spa-
tially uniform phase shift, but its accuracy suffers when the intensity of the light source varies,
which needs to be addressed.
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Iterative methods10–13 can detect not only the object phase value but also each phase shift
value or phase modulation value due to unexpected vibrations and feedback to the object phase
value using the spatial movement information, as well as the temporal variation of the interfer-
ence fringes. The iterative models were formulated first with a two-beam interferometer10,11 and
later with a white-light interferometer12 and spherical Fizeau cavity.13 The drawback of this tech-
nique is that the Fourier filtering of signals with higher harmonics is not appropriate, so that the
number of parameters increases in multiple-beam interferometry.

A number of phase-shifting algorithms have been proposed that can compensate for the
phase-shift increment errors.14–19 When the increment error becomes large, a coupling error also
occurs between the harmonic signals (or multiple-reflection light beams inside the Fizeau cavity)
and the phase-shift error.20 Typically, when the NA of the test surface is larger than 0.8 and the
phase increment error falls below −30%, these coupling errors become substantial (larger than
1 nm). With conventional techniques, multiple reflections can be suppressed by coating the refer-
ence surface with a partially absorbing thin film.21 However, the additional coating generally
degrades the sphericity of the reference sphere. Kim et al.22,23 proposed 4N − 3-frame and
6N − 5-frame algorithms to compensate for couplings of higher harmonics up to the N − 2nd

order, where N is the divisor of the phase-shift increment. These algorithms can be used for a
reflecting surface with a reflectivity higher than that of glass. However, these algorithms need to
modulate the interference signal for more than three or four periods, which introduces additional
deviations of the test surface from a confocal position, causing additional spherical aberrations.

In this paper, we propose a phase determination over the entire observation aperture that,
instead of a single phase-shifting algorithm, uses several algorithms designed for different phase
increments.24 All the algorithms share the same set of interference images recorded with a single
phase-shifting sequence. The amount of phase modulation introduced by a mechanical phase
shifter decreases approximately proportional to cos θ, where θ is the angle between the illumi-
nating beam and the optical axis. We divide the circular observation aperture into several annular
regions and prepare an algorithm designed for a phase increment of 2π∕N 0 radians for each
region, where N 0 is the integer nearest the actual phase increment at the position. As an example,
a spherical concave glass surface of 0.86 NAwas compared to a reference transmission spherical
concave surface with the same NA. We divided the observation aperture into seven annular
regions and prepared seven algorithms with different phase increments with divisors N 0 distrib-
uted from 6 to 12. The phase-shift increment on the optical axis was equal to π∕3 rad (a trans-
lation of λ∕12), while the corresponding increment at the marginal region was ∼π∕6 rad. The
reference surface was translated stepwise 12 times, and 13 interference images were recorded
during the translation. The object phase distributions for the seven regions were then calculated
and finally synthesized to undergo phase unwrapping.

The phase increment error or detuning error for the test surface of 0.86 NA was originally
−49% at the marginal region. The present synthetic technique can make the phase-increment
parameter flexible and thus decrease the detuning error to less than −8%. Because the different
algorithms have different susceptibilities to the detuning error, the calculated phase is expected to
have a discontinuity at the boundary of each region. We evaluate the phase discontinuity at the
boundary and also discuss the residual errors.

2 Synthesis of Phase-Shifting Algorithms in a Fizeau Interferometer

2.1 Annular Sub-Aperture Division in a Spherical Fizeau Interferometer

Figure 1 shows the optical setup of our Fizeau interferometer. The source was a stabilized
633-nm He–Ne laser. The output from the source was transmitted through a rotating ground-
glass diffuser and a multi-mode fiber 200 μm in diameter to reduce the lateral coherence of the
beam. The output beam from the fiber was then collimated, transmitted through a polarizer, and
reflected by a polarization beam splitter. The beam was transmitted through a quarter-wave plate,
expanded by a relay lens to a diameter of 60 mm, and collimated to illuminate both a reference
transmission spherical surface and the surface of a test object. The reflections from both surfaces
returned along the original path were transmitted through the polarization beam splitter and were
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combined to form interference fringes on a CMOS camera (1024 × 1024 pixels). The test and
reference surfaces were positioned horizontally. The reference surface was translated along the
optical axis by a PZT to introduce phase modulation. During the phase modulation, 13 inter-
ference images were recorded at equal time intervals. The relative phase step between frames
was designed to be 60° at the center of the aperture. The object phase was calculated by 7 differ-
ent 13-frame phase-shifting algorithms, as described in Sec. 2.2.

Next, we discuss the detuning error, which depends on the NA in the spherical measurement.
Figure 2 shows a schematic diagram of the division of the observation aperture on the test object.
We divided the circular aperture of 0.86 NA into seven annular regions. The boundary between
two neighboring regions was chosen to make the phase-detuning error coefficients equal along
this boundary (see Sec. 2.3 for a detailed description of the boundary position.) The effective
phase-shift increment produced by the mechanical PZT decreases by a factor of cos θ, where θ is
the angle between the illuminating beam and the optical axis at the position. When the original
phase-shift increment is π∕3 rad (or 60°) on the optical axis, the increment at the outermost
annular region of the aperture decreases to ðπ∕3Þ cos θ ≈ π∕6 rad. The detuning is therefore
−49% at maximum. After the division, we assigned a phase-shift increment of 2π∕ð5þ iÞ, for
region number i ¼ 1;2; : : : ; 7, to each region. After these assignments, the maximum detuning
error of the phase modulation decreased from −49% to −7.7%.

2.2 13-Frame 2π∕N-Step Phase-Shift Algorithms for Phase Measurement

Here, we describe the sampling weights of the seven algorithms used for measurement and
briefly define the notation. We confine our discussion to a single sub-aperture region where
the divisor of the phase-shift increment is defined by integer N, although it is applicable to all

Collimator Reference Object

MO

Diffuser

Multimode fiber

POL

MO

CMOS camera PBS QWP

Relay lens

PZT

Imaging lens

He-Ne laser

Fig. 1 Optical setup for the phase-shift Fizeau interferometer, where MO, POL, PBS, QWP, and
PZT are the microscope objective, polarizer, polarization beam splitter, quarter wave plate, and
piezoelectric transducer, respectively.

13-frame 2π/6-step algorithm
13-frame 2π/7-step algorithm

13-frame 2π/12-step algorithm

Observation aperture at NA = 0.86

Fig. 2 Annular sub-aperture division in the observation aperture on the test object and the cor-
responding phase-shift increments for each region.
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other regions. The object phase in the region is a function of position ðx; yÞ on the observation
aperture and is calculated by an M-frame algorithm as

EQ-TARGET;temp:intralink-;e001;116;711φ ¼ arctan

�XM
r¼1

brIðαrÞ∕
XM
r¼1

arIðαrÞ
�
; (1)

where ar and br are the r’th sampling amplitudes, IðαrÞ is the fringe intensity, and αr is the phase
shift. If we define the sampling window as wr, the sampling amplitudes are denoted by

EQ-TARGET;temp:intralink-;e002;116;638ar ¼ wr cos α0r (2)

and

EQ-TARGET;temp:intralink-;e003;116;595br ¼ wr sin α0r: (3)

The phase-shift value for the N-division region can be described with error coefficient εi by

EQ-TARGET;temp:intralink-;e004;116;552αr ¼ α0r

�
1þ ε1 þ ε2

�
α0r
T

�
þ ε3

�
α0r
T

�
2

þ · · ·

�
; (4)

where the unperturbed phase shift is defined by

EQ-TARGET;temp:intralink-;e005;116;495α0r ¼
2π

N

�
r −

M þ 1

2

�
; (5)

and the half-width of the total phase shift is defined by

EQ-TARGET;temp:intralink-;e006;116;438T ¼ π

N
ðM − 1Þ: (6)

The phase-shift errors are caused by nonlinearity of the PZT response and the spatial nonun-
iformity of the mechanical phase shift. Because the algorithm is designed for a phase-shift incre-
ment of 2π∕N rad, while the actual increment expected from the geometry is ðπ∕3Þ cos θ, the
first-order error coefficient ε1 approximately equals

EQ-TARGET;temp:intralink-;e007;116;351ε1 ¼
�
π cos θ

3
−
2π

N

�
∕
�
2π

N

�
¼ N

6
cos θ − 1; for N ¼ 6; 7; 8; : : : ; 12; (7)

where θ is the angle between the illuminating beam (or surface normal) and the optical axis at the
position. In practical experiments, the coefficient ε1 also includes the gain error of the PZT.

The measurement error in the calculated phase Δφ ¼ φ − φ0 is a function of these error
coefficients and the object phase φ0, and can be expanded using coefficients Ji, Ki, and Fi as

EQ-TARGET;temp:intralink-;e008;116;258Δφ ¼ J1ε1 sin 2φ0 þ K0ε2 þ K1ε2 cos 2φ0 þ F1Rε1 sin φ0 þ F2Rε1 sin 3φ0: (8)

Table 1 shows the sampling weights wr of the seven algorithms for N ¼ 6;7; : : : ; 12.
All algorithms are designed to share 13 interference images (M ¼ 13). The first algorithm with
divisor N ¼ 6 is the algorithm we used in the random noise suppression, as discussed in Ref. 1.
The last algorithm with divisor N ¼ 12 is identical to the Schwider–Hariharan 5-frame algo-
rithm,2,25 which has a phase increment designed for π∕2 rad. The other five windows with divisors
N ¼ 7;8; : : : ; 11were created by a convolution of three windows, as described later. Convolutions
of rectangular windows generally reduce the cross-talk from the harmonic signals26 and thus are
expected to reduce the magnitudes of error coefficients F1 and F2 in Eq. (8).

We started with a convolution between N-frame and 12 − N-frame rectangular windows to
produce an 11-frame trapezoidal window B ¼ ðb1; : : : ; b11Þ. The trapezoidal window was then
convoluted with a 3-frame window GN ¼ ð1; gN; 1Þ to generate a final 13-frame window, where
parameter gN is defined by
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EQ-TARGET;temp:intralink-;e009;116;735

gN ¼
8<
:

0; if N ¼ 8;

−2
P

M−2
s¼1 bsαs sinð2αsÞP

M−2
s¼1 bsαsþ1 sinð2αsþ1Þ

otherwise
¼ −2 cos

�
4π

N

�
: (9)

This parameter was chosen so that coefficient J1 becomes 0 [see Eq. (8)].18 In the case of N ¼ 8,
because the J1 coefficient is inherently 0, the parameter gN was chosen to have a coefficient of
0 for K1.

As an example, we follow the calculation of a window with N ¼ 8. We first took a convo-
lution of an 8-frame rectangular window with the 4-frame one to produce an 11-frame trapezoi-
dal window, which was calculated to be

EQ-TARGET;temp:intralink-;e010;116;613ð1; 1; 1; 1Þ � ð1; 1; 1; 1; 1; 1; 1; 1Þ ¼ ð1; 2; 3; 4; 4; 4; 4; 4; 3; 2; 1Þ; (10)

where the asterisk (*) denotes a convolution. Finally, we convoluted the trapezoidal window and
the ancillary window G8 ¼ ð1; 0; 1Þ and obtained the 13-frame window in Table 1 as

EQ-TARGET;temp:intralink-;e011;116;562ð1; 0; 1Þ � ð1; 2; 3; 4; 4; 4; 4; 4; 3; 2; 1Þ ¼ ð1; 2; 4; 6; 7; 8; 8; 8; 7; 6; 4; 2; 1Þ: (11)

The frequency transfer function (FTF) of the algorithm can visualize the Fourier filtering
specification and impart robustness to the phase-shift error. The FTF is defined by27

EQ-TARGET;temp:intralink-;e012;116;510HNðνÞ ¼
X
r

wr expf−iα0rðν∕ν0 − 1Þg; (12)

where ν0 is the sampling frequency of the image acquisition. Figure 3 shows the FTFs for the
algorithms with (a) N ¼ 6, (b) N ¼ 7, (c) N ¼ 8, (d) N ¼ 9, (e) N ¼ 10, (f) N ¼ 11, and
(g) N ¼ 12, whose sampling weights are given in Table 1. The functions are zero at negative
frequency ν∕ν0 ¼ −1 and in its vicinity, which shows robustness against the phase increment
error. All algorithms except for the seventh have no sensitivity to harmonic frequencies of 2ν0 to
4ν0, which can filter out the multiple-beam interference noise.

The sensitivity to random additive noise for the algorithm is estimated by a signal-to-noise
ratio (SNR) gain28 (also called the “process” gain29). It is a ratio of the coherent signal gain to
incoherent noise gain, and is defined in terms of the response function and the weight by

EQ-TARGET;temp:intralink-;e013;116;368SNRgain ¼ jHðυ0Þj2RNυ0∕2
−Nυ0∕2 jHðυÞj2dυ

¼ ðPr wrÞ2P
r wr

2
: (13)

Table 1 Sampling windows for the seven phase-shifting algorithms used during measurement
and their SNR gain values.

N Step Reference SNRgain Sampling weights wr of the algorithms

6
2π
6

1 9.35 ð1 3 6 9 12 15 16 15 12 9 6 3 1 Þ

7
2π
7

9.61 ð1 2.445 4.890 7.335 9.780 11.225 12.225
11.225 9.780 7.335 4.890 2.445 1Þ

8
2π
8

10.14 ð 1 2 4 6 7 8 8 8 7 6 4 2 1 Þ

9
2π
9

10.85 ð 1 1.653 3.305 3.958 4.958 4.958 4.958
4.958 4.958 3.958 3.305 1.653 1Þ

10
2π
10

11.66 ð 1 1.382 1.764 2.764 2.764 2.764 2.764
2.764 2.764 2.764 1.764 1.382 1Þ

11
2π
11

11.52 ð 1 0.169 1.169 1.169 1.169 1.169 1.169
1.169 1.169 1.169 1.169 0.169 1Þ

12
2π
12

2 4.57 ð 1 0 0 2 0 0 2 0 0 2 0 0 1 Þ
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Table 1 also shows the SNRgain for the seven algorithms. The maximum SNRgain equals 13
(frame numberM) when the sampling window is rectangular. In the seventh algorithm (N ¼ 12),
the SNRgain yields a poor value because only five samples are used.

2.3 Numerical Calculation of the Phase Measurement Errors

Here, we numerically evaluate the phase measurement errors during measurement testing of a
spherical glass surface of 0.86 NA and reflection index R1 ¼ 3.5% and compare it with a refer-
ence transmission surface of R2 ¼ 7.9%. The irradiance signal of the Fizeau interferometer is
given30 by

EQ-TARGET;temp:intralink-;e014;116;198IðαÞ ¼ I0

�
1 −

ð1 − R1Þð1 − R2Þ
1þ R1R2 − 2

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
cosðα − φ0Þ

�
; (14)

where R1 and R2 are the reflection indices of the test and reference surfaces, respectively,
φ0 is the object phase to be measured, and α is the phase shift parameter. For simplicity, we
assume that the phase-shift error is only caused by the geometrical effect of the NA and
neglect the nonlinearity of the PZT. The error coefficient ε1 for each sub-aperture region is
then simply given by Eq. (7). The phase shift at each position in the observation aperture is
reduced to

Fig. 3 FTFs of the seven algorithms, where the sampling weights are shown in Table 1: (a) N ¼ 6,
(b) N ¼ 7, (c) N ¼ 8, (d) N ¼ 9, (e) N ¼ 10, (f) N ¼ 11, and (g) N ¼ 12. The ordinate is com-
pressed as ð1∕2Þ log10½jHðνÞj þ 1�, where the sampling weights are normalized with Σwr ¼ 99 for
clarity of viewing.
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EQ-TARGET;temp:intralink-;e015;116;568αr ¼ α0rð1þ ε1Þ; ¼ π

3

�
r −

M þ 1

2

�
cos θ; (15)

where sin θ is the NA at each position and is a function of the coordinates ðx; yÞ.
First, we evaluated the phase measurement errors in the conventional techniques, that is, we

calculated the object phase over the whole aperture with only a single algorithm. We used five
conventional algorithms: Schwider–Hariharan 5-frame,2,25 Hariharan–Novak adaptive 5-
frame,19,25 de Groot 13-frame,26 Servin 9-frame,27 and Kumagai 13-frame.1 The corresponding
sampling windows and phase-shift increments are shown in Table 2. The Hariharan–Novak algo-
rithm is defined by

EQ-TARGET;temp:intralink-;e016;116;448φ ¼ arctan

�
2ðI2 − I4Þ

I1 − 2I3 þ I5
sin ψ

�
; (16)

where ψ ¼ ðπ∕2Þ cos θ is an adaptive correction factor depending on the position and equals the
real phase-shift increment.

The phase measurement error φ − φ0 is a function of the object phase φ0 [see Eq. (8)]. We
therefore define the standard deviation of the error by averaging the square of the error over the
2π period as

EQ-TARGET;temp:intralink-;e017;116;343Δφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

ðφ − φ0Þ2dφ0

s
: (17)

Figure 4 shows the standard deviations of errors as a function of the phase-shift error
ε1 ¼ cos θ − 1 for the central region and the corresponding NA ¼ sin θ. It can be observed
that the phase errors are small as long as the NA is smaller than 0.6; however, they increase
rapidly when the NA approaches 0.85. The maximum error is around 4 nm with a single
algorithm.

Second, we calculated the phase error for the present synthetic technique by applying the
seven algorithms shown in Table 1 to the intensity signal of Eq. (14) with the phase shift of
Eq. (15). Figure 5 shows the overlapped standard deviations of the phase errors for the seven
algorithms as functions of NA ¼ sin θ and ε1 ¼ cos θ − 1. We can observe that the errors
increase very rapidly, especially when the NA is high.

Now, we discuss the sub-aperture division. The intersection between every pair of neighbor-
ing error curves in Fig. 5 indicates the optimum position of the boundary for dividing the aper-
ture into sub-aperture regions. However, the actual error curves are also affected by the PZT
nonlinearity. For simplicity of calculation, we define the boundary as the position along which
the error coefficients ε1 of the two regions are equal. To be more specific, the first-order error
coefficients for the divisor-N and divisor-N þ 1 regions are equal in magnitude along their boun-
dary as described by

EQ-TARGET;temp:intralink-;e018;116;87ε1;N ¼ −ε1;Nþ1; (18)

Table 2 Sampling windows for the five conventional phase-shifting algorithms.

N Step Reference Sampling weights wr of the algorithms

4 2π
4 2 ð 1 2 2 2 1 Þ

4 2π
4 19 and 25 ð 1 2 2 2 1 Þ

4 2π
4 27 ð 0.5 ffiffiffi

2
p þ 1 2

ffiffiffi
2

p þ 3 3
ffiffiffi
2

p þ 5 4
ffiffiffi
2

p þ 5
3

ffiffiffi
2

p þ 5 2
ffiffiffi
2

p þ 3
ffiffiffi
2

p þ 1 0.5Þ
8 2π

8 26 ð3 4
ffiffiffi
2

p
12 12

ffiffiffi
2

p
21 16

ffiffiffi
2

p
24

16
ffiffiffi
2

p
21 12

ffiffiffi
2

p
12 4

ffiffiffi
2

p
3Þ

6 2π
6 1 ð1 3 6 9 12 15 16 15 12 9 6 3 1 Þ
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where we note that the signs of the error coefficients are opposite. After the coefficient values of
Eq. (7) are substituted into Eq. (18), this condition can be rewritten as

EQ-TARGET;temp:intralink-;e019;116;218

N
6

cos θ − 1 ¼ 1 −
N þ 1

6
cos θ: (19)

The boundary position for the sub-aperture region with divisor N is then defined by

EQ-TARGET;temp:intralink-;e020;116;165 cos θ ¼ 12

2N þ 1
; for N ¼ 6;7; : : : ; 11: (20)

The resultant sub-aperture division based on Eq. (20) is shown in Fig. 2.
We then addressed the object phases corresponding to the sub-aperture division shown in

Fig. 2. Figure 6 shows the resultant phase errors by the present synthetic method. We can observe
that the maximum standard deviation of the error caused by the spatial nonuniformity of the
phase shift is decreased from 4 to 0.2 nm or 1/20th of that caused by a single algorithm.

Fig. 5 Overlapped standard deviations of the phase measurement errors for the seven algorithms
as functions of NA ¼ sin θ and ε1 ¼ cos θ − 1.

Fig. 4 Standard deviations of the phase measurement errors in for a spherical surface of 0.86 NA
and R1 ¼ 3.5%, compared with a reference surface of R2 ¼ 7.9% as functions of the phase-shift
error and corresponding NA calculated by five conventional algorithms: Schwider–Hariharan 5-
frame, Hariharan–Novak 5-frame, Servin 9-frame, de Groot 13-frame, and Kumagai 13-frame.
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3 Experiments

A spherical concave glass surface with 17-mm diameter, R ¼ 3.5%, and 0.86 NA, shown in
Fig. 7, was compared to a reference transmission concave surface with 38-mm diameter,
R ¼ 7.9%, and the same NA. The optical setup of the measurement system is shown in
Fig. 1. The reference surface was translated along the optical axis by a PZT to introduce phase
modulation. Thirteen interference images were recorded with an equal phase-shift increment of
π∕3 rad. The object phases were calculated by the seven different algorithms discussed in
Sec. 2.2. The synthetic object phase was calculated by determining the result of the phase cal-
culation in each of the regions shown in Fig. 2.

As a comparison, the object phase over the entire aperture was calculated by the single algo-
rithm shown in Table 1 for N ¼ 6. Figures 8(a) and 8(b) show the object phases calculated by the
single algorithm. The alignments of the objects in Figs. 8(a) and 8(b) were the null condition and
slightly tilted in the horizontal direction, respectively. In each panel, the raw interferogram is
shown in the right bottom corner. From Eq. (8), we know that the systematic error caused by the
phase-shift error depends on the object phase φ0. Therefore, if we introduce a slight tilt modu-
lation in the object phase, we can observe a similar modulated error in the final object phase. In
Fig. 8(b), we can observe a systematic error with an apparent magnitude of 6 nm in the marginal
region. From this result, we can see that the phase measurement by a conventional single algo-
rithm suffers from a significant phase error.

Fig. 7 Spherical concave test object 17 mm in diameter, with a 10-mm radius of curvature
(NA ¼ 0.86).

Fig. 6 Standard deviation of the error in measurement of a spherical surface of 0.86 NA and
R1 ¼ 3.5%, compared with a reference surface of R2 ¼ 7.9% by the synthetic method.
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Figures 9(a) and 9(b) show the object phases calculated by the present synthetic method
using the same set of 13 interference images as in Figs. 8(a) and 8(b), respectively.
Comparing the results of Figs. 8(a) and 8(b), we can see that the calculated phases do not depend
on the initial tilt bias of the phase. We estimate the magnitude of the systematic error to be less
than 1 nm, which is much smaller than the result shown in Fig. 8(b). From these results, we
conclude that the present synthetic method can significantly suppress phase errors caused by
spatial nonuniformity of the phase modulation in high-NA spherical measurements.

Finally, we discuss the residual systematic error that is characteristic of the present synthetic
method. By subtracting the phase of Fig. 9(a) from the phase of Fig. 9(b), we can observe a
systematic error that depends on the phase φ0. Figure 10 shows the difference phase after remov-
ing the 36 Zernike components. In the figure, the broken lines show the boundaries of the seven
annular regions. We can observe discontinuous phase gaps of approximately 1 nm along a couple
of boundaries. On opposite sides of each boundary, the error coefficient ε1 has a different sign.
For example, at the boundary between the regions for N ¼ 11 and N ¼ 12 [see Eq. (7)], the

Fig. 9 Measured phase distributions of a 0.86 NA spherical surface obtained by the seven algo-
rithms using the same interference images of Fig. 8 (after removing tilt and defocus): (a) null align-
ment and (b) slightly tilted in the horizontal direction.

Fig. 8 Measured phase distributions of a 0.86 NA spherical surface obtained by a single 13-frame
algorithm (after removing tilt and defocus): (a) null alignment and (b) slightly tilted in the horizontal
direction.
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coefficients for both ends have similar magnitudes but different signs (ε1 ¼ �0.043).
Then, the resultant phase-shift errors for both sides caused by the coefficient ε1 are also expected
to have different signs, which appeared in the phase gap in the residual errors of Fig. 10.
The different signs can cause a discrete change in the correlated errors, including ε1R [see
Eq. (8)].

We also need to address the nonlinear response of the PZT. The PZT used in the present study
was an open-loop type, which typically has a nonlinear response of 2% (ε2 ¼ 0.02). However,
the error coefficient K0 in the second term of Eq. (8) has a magnitude of several tens of nano-
meters and varies greatly from algorithm to algorithm. The nonuniformity in K0 can also cause a
discrete change in the phase error. It is considered that these two effects appeared in the phase
gap in the residual errors of Fig. 10. The sign difference cannot be seen directly in the error
variation of Fig. 5, because this figure shows only the error magnitude.

4 Conclusions

In spherical Fizeau interferometers with mechanical phase modulation, spatial nonuniformity in
the phase-shift increment within the observation aperture causes a systematic error in the mea-
sured phase. In particular, error-compensating phase-shifting algorithms do not provide suffi-
cient compensation for the error in high-NA spherical surface tests. We propose a synthesis
of phase-shifting algorithms in which the observation aperture is divided into several annular
regions and the object phase for each region is calculated by a different algorithm. The algo-
rithms are designed with different ideal phase steps, but they can operate on the same set of
interference fringes that are recorded during an ordinary single measurement. Therefore, the
measurement time necessary for a single measurement is similar to that for an ordinary
phase-shift measurement. A spherical concave surface of 0.86 NAwas compared to a reference
transmission concave surface. The observation aperture was divided into seven annular regions,
each with a different algorithm, in phase steps of 2π∕N rad, where the integer N is distributed
from 6 to 12. Selecting these different phase steps decreased the spatial nonuniformity of the
phase increment from 49% to 7.7%. The resultant systematic error in the measured phase
decreased to less than 1 nm. Because the sensitivity of the algorithm to the phase-shift error
differs depending on the algorithm, a discontinuous error of approximately 1 nm was observed
at each border between neighboring regions.
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Fig. 10 Phase difference between Figs. 9(a) and 9(b) that depends on the object phase after
removing the 36 Zernike components.
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