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Abstract We explore the practical limits for wave optics simulations of plane-wave propaga-
tion in non-Kolmogorov turbulence using the split-step method and thin phase screens. These
limits inform two simulation campaigns where the relationship between volume turbulence
strength and normalized intensity variance for various non-Kolmogorov power laws is explored.
We find that simulation of power-law exponents near 3 are limited to turbulence strengths with
Rytov numbers of 7 when the simulation side-length sampling rate is limited to 8192. Under
these same conditions, it is possible to simulate volume turbulence strength out to Rytov num-
bers of 12 for Kolmogorov turbulence out to a power-law exponent of 4. We also demonstrate
that the peak scintillation and Rytov number where peak scintillation occurs increases approx-
imately linearly with the power-law exponent. Also, if turbulence strength is fixed, the relation-
ship between the scintillation index and power law depends on the operating regime. In weak
turbulence, the relationship is negative, and it is positive in strong turbulence. This work also
emphasizes the importance of properly scaling turbulence strength when comparing results
between different mediums with different power laws and the influence and importance of defin-
ing inner and outer scales in these simulations. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.61.10
.108101]
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1 Introduction

The propagation of optical waves in random media, including atmospheric turbulence, is gov-
erned by the stochastic Helmholtz equation. Applying weak perturbation theory, it is possible to
achieve closed-form expressions for most field statistics as outlined by Tatarski.1 Similarly,
asymptotic theory2,3 provides an excellent match to experiment when fluctuations are very large.
In between these two regions, extended Rytov theory4 (ERT) provides a heuristic analytical
model that has found a good match to some experimental data. Attempts at providing solutions
in this region that do not rely on approximations involve complex multi-dimensional integrals
and are difficult to generalize.5–8

While not analytical, wave optics simulations (WOS) are known to be an accurate approxi-
mation to the stochastic Helmholtz equation. 9 This approximation is achieved by discretizing the
propagation volume and collapsing the three-dimensional (3D) refractive index fluctuations in
each volume segment into a thin phase screen. The optical field is then propagated between
adjacent segments via a Fresnel propagation operator. The relative fluctuations at each screen
are weak such that the approximation is equivalent to the small perturbation approximation
used by Tatarski. The main strength of WOS is that it can provide insight into wave propagation
statistics and the performance of systems that attempt to compensate for the effects of the media,
and are relatively straightforward to execute.

Though the technique was previously described by others, relative to optical wave propa-
gation, Martin and Flatté10 were the first to explore the use of WOS for optical waves. Their
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studies10 of plane and spherical waves11 in random media described by power laws examines the
intensity scintillation as a function of fluctuation strength in the media. Since that time, WOS has
become the default tool used in modeling the performance of adaptive optics, beam projection,
and free-space optical (FSO) communication systems.12–16 Simulations involving phase screens
are also commonly used to create synthetic image data of scenes blurred by turbulence.17–19 Until
relatively recently, it has been common to model atmospheric turbulence in WOS as a power-law
medium described by a 3D energy spectral density defined only in terms of a spatial wavenum-
ber with a −11∕3 exponent. We would describe this as a purely Kolmogorov model in that it
lacks an inner and outer scale.

In 1994, Dalaudier et al.20 published evidence of turbulence in the upper atmosphere from
balloon-borne measurements described as non-Kolmogorov in nature. Soon after, Beland21

examined its implications to existing turbulence theory. Stribling et al.22 then extended those
results to weak fluctuation theory. In this context, non-Kolmogorov turbulence refers to deviation
of the power law away from the 2/3 power-law structure function description of turbulence in the
inertial subrange between the energy input (outer scale) and dissipation regions (inner scale). The
equivalent 3D energy spectral density of turbulent index of refraction fluctuations has an −11∕3
exponent as a function of spatial frequency. This latter quantity is more often found in modern
analytical models that begin with the refractive index fluctuation energy spectrum starting with
Toselli.23–26 These works define non-Kolmogorov turbulence as a deviation in the power-law
exponent, α, away from the Kolmogorov value of 11∕3 ¼ 3.66 over the range 3 < α < 4. In
this way, a shift toward 3 is said to be smaller and to 4, larger. Another common thread of all
the works cited below and the work that followed is the prominence of analytical methods as
opposed to numerical methods such as WOS in exploring phenomenology.

While Martin and Flattè did use WOS to examine the effect of random media on intensity
scintillation, it lacks a connection to modern atmospheric propagation work. It is also useful to
understand the limitation of WOS and the effect of a change of power law on those limits. In
earlier work,27 we made an early attempt at making these connections and understanding the
relationship between the power-law exponent of a random media and scintillation as a function
of turbulence strength. Our conclusions were that an explicit inner and outer scale were neces-
sary to make such a connection.

In this work, we describe the results of a comprehensive WOS campaign, started in Ref. 28
for plane waves propagating in uniform non-Kolmogorov turbulence volumes. Results are pre-
sented here for intensity scintillation as a function of both Rytov number and power-law expo-
nent. Results are limited to a single propagation geometry featuring a finite inner and outer scale.
Recent results have shown that failure to account for these features can result in inaccuracies
when evaluating some quantities.29,30 We find that peak scintillation or normalized intensity vari-
ance (NIV) increases with power law. Similarly, the Rytov number where peak NIVoccurs also
increases. This confirms earlier results28 indicating a shift of the NIV curve up and to the right as
power law increases. Across the campaign, WOS is run to their practical limit for this propa-
gation geometry assuming an upper bound of 8192 × 8192 phase screen samples. Thus, this
work also describes the upper bound of WOS as a function of non-Kolmogorov power law using
Martin and Flatté’s sampling constraints. Interestingly, here smaller power exponents are limited
to Rytov numbers of 7 compared to 12 for Kolmogorov turbulence and larger power-law
exponents.

The remainder of this paper is outlined as follows; following this introduction, we provide
an overview of the WOS model and the sampling constraints used to define our simulation
campaign. In Sec. 3, we describe the campaign in detail and describe our scoring quantities.
Results are provided in Sec. 4 followed by conclusions and directions for future work in Sec. 5.

2 Background

A goal of this work is to understand the practical limits of WOS via phase screens generated by
filtering white Gaussian noise by the power spectral density (PSD) spectrum of the turbulence
fluctuations and using the split-step propagation method. Excellent descriptions of the split-step
propagation technique can be found elsewhere,12,13 and are not included here.
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In approaching this work, we use the sampling constraints outlined by Martin and Flatté10 for
plane waves to ensure that the constraints account for non-Kolmogorov power-law media. This
limit is based on the spatial bandwidth of the power-spectrum as sampled by the phase screen. As
pointed out indirectly by Martin and Flatté and elsewhere, the power law affects the prominence
of high versus low-frequency fluctuations in the media. For this reason, power-law random
media with smaller power-law exponents are likely to have more high-frequency fluctuations
and therefore require a higher sampling rate compared to the Kolmogorov default.

Before describing those constraints, let us first define the 3D PSD of the index of refraction
fluctuations for a turbulence volume described by a power law with an inner and outer scale31–33

EQ-TARGET;temp:intralink-;e001;116;628Φnðκ; α; zÞ ¼ AðαÞC̃2
nðzÞ expð−κ2∕κ2mÞðκ2 þ κ20Þð−α∕2Þ: (1)

In Eq. (1), AðαÞ ¼ ð1∕4π2Þ cosðπα∕2ÞΓ½α − 1�. In this description, the power-law exponent, α, is
restricted to values 3 < α < 4. ~C2

n is a generalization of the refraction structure constant,
C2
n, and has units of m3−α. The term κm ¼ c1ðαÞ∕l0, represents the inner scale of turbulence, l0,

and is defined as c1ðαÞ ¼ 2ð 8
α−2 Γ½ 2

α−2�Þ
α−2
2 In Kolmogorov turbulence, α ¼ 11∕3, AðαÞ ¼ 0.033,

c1ðαÞ ¼ 5.91, and Eq. (1) reduces to the modified von Karman spectral model. The term κ0 sets
the outer scale of turbulence, L0, and is either set directly as κ0 ¼ 1∕L0 or as κ ¼ 2π∕L0

It is common for WOS to use the Fried parameter, r0, to set turbulence strength for phase
screens. In previous work,34 one of us compared two methods of setting the phase screen
turbulence strength for studies of non-Kolmogorov turbulence. One method used the non-
Kolmogorov equivalent Fried parameter so that each screen has the same effective spatial coher-
ence properties. The other technique relied on first normalizing the spectral energy and then
scaling the energy in the screen by the equivalent fluctuation energy that would be found in
a Kolmogorov turbulence volume. A finding of this work34 was that the latter method provides
a better match to ERT when evaluating the scintillation index in terms of the plane-wave Rytov
number σR ¼ ð1.23C2

nk7∕6L11∕6Þ1∕2 where k is the optical wavenumber and L is the propagation
distance.

In this work, phase screens are generated using the technique described originally in Ref. 33
and extended to WavePy.35 The current version of WavePy uses the sub-harmonic method
described by Johansson and Gavel.15 In previous work,33 one of us noted a practical limit of
around α ¼ 3.8 for accurately modeling non-Kolmogorov phase screens with an infinite outer
scale. Anecdotally, we find that this new method improves phase screen accuracy in terms of a
structure-function match and allows us to explore out to α ¼ 3.9. Though, as we will discuss
later as α → 4, the turbulent disturbance becomes equivalent to a pure tilt.36 It follows that
improved subharmonic modeling would allow for larger power laws to be modeled more
accurately.

In determining sampling rates for our WOS campaign, we use the spatial bandwidth defi-
nition described by Martin and Flatté to determine the required spatial bandwidth, Rχ , in each
phase screen as

EQ-TARGET;temp:intralink-;e002;116;251Rχ ¼ 2

�
1−4

αþ 1
2þα

�
5

�
1

2þα

�
σ2∕α

�ð2þ αÞ sec�πα
4

�
αΓ

�
1þ α

2

�
�

2∕α
; (2)

here

EQ-TARGET;temp:intralink-;e003;116;191σ2R ¼ CðαÞβk1−α∕2L2þα∕2; (3)

and

EQ-TARGET;temp:intralink-;e004;116;147CðαÞ ¼ −
2Γ

�
− α

2

�
Γ½αþ 3�

ðαþ 2Þðα∕2þ 1Þ cos
�
πα

2

�
sin

�
πα

2

�
: (4)

In Eq. (2), power spectrum index has bounds 3 < α < 4. It is noteworthy that we have
used the more common 3D isotropic power spectrum representation as opposed to the one-
dimensional representation used by Martin and Flatté where 1 < α < 2 and have adjusted
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the expressions presented here accordingly. From Eq. (2), we can find the required spatial
sampling as Δx ¼ 1∕2Rχ . For the single simulation scenario considered in this work, we fix
the side length, D ¼ 1m, so that the required number of samples for each phase screen is
N ¼ 1∕Δx ¼ 2Rχ .

Another requirement described by Martin and Flatté10 and others12 limits the log-amplitude
variance to not exceed 0.1% or 10% between propagation steps. This is effectively a forward-
scattering requirement or the Rytov approximation and can be set in terms of α as

EQ-TARGET;temp:intralink-;e005;116;650ΔL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðαÞβk2−α∕2σ2R1þα∕2

q
: (5)

With the consequence that the minimum number of screens for a fixed propagation distance, L, is
nscr ¼ ceilð L

ΔLÞ þ 1. Having laid out these requirements, we can now define a set of propagation
parameters for our fixed scenario laid out in the next section.

3 Methods

The main result of this work is an extensive WOS campaign that evaluates the scintillation index
as a function of the plane-wave Rytov number in non-Kolmogorov turbulence. Here, we intend
to hold the path length fixed and vary only the turbulence strength of the volume in terms of the
plane-wave Rytov number, σR, with the goal of performing simulations out to the limit allowed
by the sampling constraints described in Sec. 2. For the purposes of this work, the maximum
number of samples per screen will be 213 ¼ 8192 square. While 214 ¼ 16384 is feasible, for the
scenario considered here that sampling is required only for conditions well within the saturation
region and where wall-clock executions times are considerable.

The WOS campaign was run in two batches, the first was completed out to the maximum
Rytov number allowed for one of three power laws, α. Power laws values of 3.1 and 3.9 cover the
lower and upper limits of practical simulation, while the Kolmogorov power value of 11/3 (3.66)
was included as a baseline. A second, more limited, campaign was conducted for 25 values of α
between 3 and 4. Values started at α ¼ 3.02 and increased increments of 0.02 up to a value of
α ¼ 3.2. From there, α was incremented in steps of 0.1 up to 3.8 over the regime including the
Kolmogorov value (α ¼ 3.66) included as a special case. From α ¼ 3.8 to 3.98 steps were
reduced again to 0.02. The objective here being to identify values of power-law exponent where
the simulation is no longer valid, or fidelity is reduced.

As mentioned in the previous section, we fixed the side length D ¼ 1 m and varied the sam-
pling rate N as required. For the other WOS parameters, the wavelength is set to λ ¼ 1 μm, and
the path length to L ¼ 5 km. For Kolmogorov turbulence, these parameters allow for a full
exploration of the various propagation regimes described by theory without resorting to values
of C2

n unlikely to be measured in the field, in the range from 10−17 to 10−12 m−2∕3.
Using Eqs. (3) and (5) in Sec. 2, we are able to evaluate the maximum Rytov number that

can be evaluated for a given sampling rate, N. Simultaneously, for a given value of α, we can
find the minimum sampling rate needed to evaluate a specific Rytov number to ensure accu-
rate results. As outlined in Ref. 27, it is possible to model atmospheres with power laws very
near to the lower-bound of α ¼ 3 via WOS. However, as the value of α approaches 3, the
number of samples required to simulate even weak turbulence is very large. This both unnec-
essarily limits the range of volume turbulence strengths we can explore and increases wall-
clock simulation time. Using a value of α ¼ 3.1 as our lower-limit case provides some relief in
these regards while allowing a detailed examination of the behavior at smaller power-law
exponents.

In our previous related works,29,30 we found that it is likely that WOS simulations without
finite inner, l0, and outer, L0, scales are likely not valid. For this work, the outer scale size was set
to L0 ¼ 1 m and the inner scale to l0 ¼ 0.005 m. The former matches the fixed screen size, D,
while the latter is slightly larger than the largest spatial sampling rate of D∕N for N ¼ 256

of Δx ¼ 0.0039 m.
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3.1 Limits on WOS in Non-Kolmogorov Turbulence

In Fig. 1, we evaluate Eqs. (3) and (5) to visualize the limits on WOS in non-Kolmogorov tur-
bulence as described in this paper. In Fig. 1(a), the maximum Rytov number allowable for each
screen size of N ¼ 2n where n ¼ 1;2; : : : ; 14 is presented. Of note here is that the maximum
Rytov number that can be simulated with a screen size of N ¼ 214 is close to σR ¼ 24. Also, that
for all values of sampling rate, the power law allowing the highest turbulence strength is close to
α ¼ 3.8 it is also at this point where additional sampling most increases the range of Rytov
numbers covered. While as α → 3, the same benefit is not conveyed and the maximum turbu-
lence strength is σR ¼ 6 for N ¼ 213 and σR ¼ 7 for N ¼ 214. Though not captured in our cam-
paign, we also note that as α → 4 the max Rytov number drops to zero. Again, this is because
media with a power law of exactly 4 are pure tilts and cannot be described via a structure func-
tion. This also explains the difficulty observed in Ref. 18 of generating accurate phase screen
statistics at larger values of α and further underscores the practical limit of α ≈ 3.9 for WOS
modeling.

3.2 Simulation Banding

Figure 1(b) shows the maximum σR for the three values of α considered in the first batch of
simulations as a function of sampling rate. In Table 1, we lay out the banding for the first batch
of our campaign. For each value of α and N, the range of Rytov numbers is indicated. The
number of WOS steps is indicated in parentheses. In the focusing region, approximately bound
by 1.2 < σR < 2. for α ¼ 3.66; 3.9, a total of 200 Monte-Carlo runs were executed for each value
of σR specified. Runs in the weak turbulence regime and saturation region required only 100 runs
to achieve statistical convergence.

Fig. 1 Limits on the maximum plane-wave Rytov number, σR , that can be simulated for a specific
power-law exponent, (a) α or (b) screen size, N . (b) The three values of α indicated are those
chosen for detailed evaluation.

Table 1 Range of turbulence strengths σR for each set of screen sizes, N , and (nscr) per propa-
gation. For each σR , 100 turbulence volumes were modeled for most cases. In the focusing
regions, 200 runs were performed in some instances.

N∕α 256 512 1024 2048 4096 8192

3.9 0–1.6 (10) 1.8–2.8 (15) 2.9–4 (20) 5 (20) 6,7 (25) 8,9 (35), 10–12 (60)

3.66 0–1.8 (10) 2–3 (15), 3–4 (25) 4,5 (25) 6 (30) 7–9 (40) 10–12 (60)

3.1 0–2.6 (15) 2.6–3 (20) 3.2–3.8 (25) 4,5 (35) 6 (60) 7 (60)
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3.3 Calculation of NIV

As defined by Andrews and Phillips,37 the scintillation index, σ2I , is defined as the normalized
variation in intensity such that

EQ-TARGET;temp:intralink-;e006;116;692σ2I ¼
< I2 >
< I >2

− 1; (6)

where the angle brackets indicate an ensemble average. In our simulations here, we wish to
evaluate the scintillation index in the receiver plane for a plane-wave source. The outcome of
each simulation Monte-Carlo trial is an intensity distribution in the receiver plane. The question,
then, is how and where to evaluate scintillation in each case.

For a plane wave, defined as uniform in amplitude and infinite in extent, propagating in a
vacuum the expected intensity profile in any receiver plane is similarly uniform in amplitude, and
therefore, intensity. Consequently, we can evaluate the scintillation index at any point in the
receiver plane over the ensemble of turbulence volumes or runs. Doing so increases the amount
of averaging allowing evaluation of the fluctuation statistics with fewer Monte-Carlo trials.
Practically, though, we must account for the fact that our propagator35 incorporates a super-
Gaussian absorbing boundary to prevent wrap-around artifacts. For this reason, and to avoid
the influence of wraparound or boundary effects we evaluate scintillation index for each point
inside a circle with a radius of D∕4 ¼ 0.25m from on axis center of the receive plane.

4 Results

Figure 2 shows the results of the first of our two WOS campaigns. Each specified value of α
scintillation as measured in our WOS is plotted out to the maximum Rytov number allowed
according to Eq. (2) for a screen with N ¼ 8192 samples. As described in Table 1, α ¼ 3.1

is limited to a maximum of 7 while α ¼ 3.66 and 3.9 go to σR ¼ 12. The results here are similar
to those presented elsewhere and previously,23,27,28 but in this instance include, an explicit inner
and outer scale in the turbulence spectrum sized based on the simulation geometry.

Examining Fig. 2, we see that the curves shift up and to the right relative to power-law expo-
nent. Earlier onset of saturation for the α ¼ 3.1 case is also observed though without the sharp
peak in the focusing region9,37 observed in Ref. 28. We attribute this difference to the explicit,
finite, inner-scale in the turbulence spectrum in Eq. (1). This spectral feature filters, or limits, the
degree of small-scale fluctuations that drive scintillation and loss of spatial coherence resulting

0 2 4 6 8 10 12

R

0

0.5

1

1.5

2

2.5

I2

 = 3.66
 = 3.1
 = 3.9

Fig. 2 Plane-wave simulation of scintillation index, σ2I , as a function of Rytov number, σR , for
α ¼ 3.1; 3.66; 3.9. For each power law, simulations were conducted out to the maximum Rytov
number specified for a sampling rate of N ¼ 8192. In this scenario, the path length was 5000m
and the wavelength was μm. Error bars indicate the variance about the mean at each data point.
For all values of α, the outer-scale size was L0 ¼ 1 m and inner-scale was l0 ¼ 5 mm.
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in saturation. It is worthy note that even if an inner scale is not an explicit feature of the turbu-
lence power spectrum one is included, implicitly, by the simulation sampling rate. In WOS cam-
paigns, like ours, where the sampling rate increases with turbulence strength, the inner scale
would decrease with each change in sampling rate. Analytic theory indicates37 that this change
should hasten onset of saturation and reduce peak scintillation. Here, our chosen value of l0 ¼
5 mm is larger than the largest sampling rate, Δx, used in the WOS to avoid this complication.

In some previous works,23,28 it was noted that scintillation may increase without bound as
α → 4. We observe that this behavior is missing in Fig. 2. Here, also, the inclusion of an explicit
finite outer scale likely plays a role by limiting the relative energy in large-scale fluctuations.25

However, the observation holds that, all things being equal, peak scintillation increases with
power law and occurs at higher equivalent turbulence strength. So that, relative to Kolmogorov
turbulence, an increase the value of the power-law exponent increases peak scintillation and
results in relatively higher scintillation in the saturation region. Conversely, if the value of the
power-law exponent of the medium is decreased peak scintillation in the focusing and saturation
regions are smaller.

On the other hand, for plane waves propagating in weak-to-moderate strength turbulence
volumes (σR < 1) the situation is reversed. In this regime, the relationship between turbulence
strength and intensity scintillation is driven by the power law of the medium. Consequently, we
observe that mediums with smaller power laws experience higher fluctuations in intensity.
Likewise, mediums with smaller power laws experience less focusing and enter saturation sooner
as a function of turbulence strength.

The results of the second batch of our WOS campaign are shown in Fig. 3 and confirm these
results further. All parameters are the same as those in Fig. 2, but the value of σR is limited to
a maximum of 4 while α was varied as described in Sec. 2. Figure 3(a) can be compared directly
to Fig. 2 and confirms that the behavior observed there is approximately continuous and
increases monotonically as a function of α.

In Fig. 4, the peak value of scintillation index [Fig. 4(b)] and the plane-wave Rytov number
where the peak scintillations were observed [Fig. 4(a)] are plotted as power law, α, is varied. In
both figures, the least-squares linear fit to the data is also plotted. The relationship between α and
maximum scintillation is observed to have a slope of 0.9 while the slope of the Rytov number
where peak scintillation occurs and α is 1.8. In this latter case, values necessarily are restricted to
the specific values of Rytov number simulated during the campaign resulting in binning or quan-
tization errors. In both cases, as we noted earlier, WOS accuracy is not certain as we exceed the
bounds of 3.1 < α < 3.9 also contributing some uncertainty to these results. Regardless, the evi-
dence of a positive linear relationship between power law and both peak intensity scintillation
and the volume turbulence strength at which that peak scintillation occurs is clear. For this propa-
gation scenario, it is also clear that the turbulence value of peak scintillation moves to the right
at about double the rate of the peak scintillation increases.

Fig. 3 (a) Result of the second WOS campaign for 25 values of α in the range 3 < α < 4 between
0 < σR < 4. (b) Surface plot of (a).
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To our knowledge, this quasi-linear, positive, monotonic relationship between power law of
the medium and peak scintillation in terms of Rytov number has not been reported elsewhere.
Toselli et al.23 used ERT to generate analytical models of plane-wave scintillation as a function of
power law and Rytov number. However, this model does not include finite inner and outer scales.
Though, that work is consistent with these findings and our previous work.27,28,34 In subsequent
works by Toselli et al.38 and others24–26,39,40 on non-Kolmogorov turbulence findings are often
reported for a fixed value of ~C2

n in the weak to moderate regime while varying propagation
distance instead of normalized volume turbulence strength as is done here. As pointed out by
Charnotskii41 because the units of ~C2

n, vary with α it is not possible to use a common length scale
for comparing results in any meaningful way. As far as we can ascertain, all previous works
report a relationship similar to Ref. 38 where peak scintillation occurs at a α < 11∕3 in the region
of 3.2 < α < 3.3 and is lower on either side of the peak going to zero as α → 3 and to a small
value as α → 4.

To place our work in this context, in Fig. 5, we have plotted the normalized scintillation
index, σ2I∕MaxðσI;αÞ2, as a function of power-law index, α. As pointed out earlier, we see that
in the weak turbulence regime, for a fixed volume turbulence strength, scintillation decreases
with α. In contrast, scintillation increases if the volume is characterized as strong or deep

Fig. 4 (a) Value of σR where maximum scintillation occurs and (b) peak value of σ2I as a function
of power-law index α.
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R
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Fig. 5 Scintillation index for three fixed values of integrated turbulence strength in terms of σR
as a function of α. Each trace is normalized to the maximum value of scintillation index over all
values of α.
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(σR ≫ 1). However, in this figure, when σR ¼ 1.5 scintillation peaks near the center of the range
at α ¼ 3.5 and decreases if α is increased or decreased.

Thus, relative to those other works the relationship between α and σ2I varies with integrated
turbulence strength in the volume. Also, because of the ambiguity introduced via a fixed C2

n, this
behavior may change depending on the power law so that any of the behaviors observed in Fig. 5
may apply. For example, if λ ¼ 1.55 μm, L ¼ 1000 m, and C̃2

n ¼ 7 × 10−14 m3−α, as in Ref. 38,
the Rytov number varies from 3.8 to 1.18 to 0.73 for α ¼ 3.1; 3.66, and 3.9. Consider, then, that
for this one example all three of the behaviors in Fig. 5 may be observed. This observation further
emphasizes that some measure of equivalent volume turbulence strength must be used when
trying to understand the impact of turbulence power-law exponent on beam propagation and
imaging.

5 Conclusions and Future Work

In this work, we explored the limits of WOS plane waves propagating in non-Kolmogorov tur-
bulence and with power-law exponents in the range 3 < α < 4. At the upper bound, the medium
becomes a pure tilt, and therefore, WOS is limited by the size of the screen or the fidelity of the
low-spatial frequency compensation mechanism; sub-harmonics for example. Conversely, as the
power law approaches the lower-bound the medium become spatially uncorrelated, and the spa-
tial bandwidth required to properly simulate the medium becomes very large. Accordingly, the
number of samples required by the simulation is also large. Both WOS requirements can be
ameliorated by the inclusion of a finite inner and outer scale. Indeed, as we have shown else-
where,30 if these values are not defined explicitly in the power-spectrum model they are implicit
in the simulation model. Finally, if we take the practical limit of WOS to limited to N ¼ 16384

samples, the maximum plane-wave Rytov number that can be simulated in any power-law
medium is σ ¼ 24 when α ¼ 3.8.

The results of our analysis on the limits of WOS inform two simulation campaigns exploring
the interplay between Rytov number, α, and scintillation index. The first campaign aimed to
evaluate scintillation as a function of Rytov number for values of power law α ¼ 3.1; 3.66;
3.9. For each value of α simulations were undertaken out the maximum σR allowed for a screen
size of N ¼ 8192. Consistent with other results, the maximum scintillation observed and the
Rytov number where the peak occurs increase with power law. At small power-law exponents,
scintillation quickly saturates as the volume turbulence strength increases. In this work, we did
not observe a strong focusing peak seen in our previous works as α → 3. We attribute this to the
use of a finite inner scale larger than the sampling rate. Similarly, in previous works scintillation
appeared to increase without bound at power laws near α ¼ 4. However, if we include an explicit
outer scale on the order of the screen size peak scintillation increases but eventually rolls off into
saturation. These findings are consistent with theory that attributes small-scale fluctuations
to scintillation strength and large-scale fluctuations to the peak of intensity fluctuations in the
focusing region.

Our second simulation campaign aimed to empirically evaluate the effect of medium power-
law index on scintillation. We found here that, in contrast to some previous works, intensity
scintillation increases monotonically with the power law. Likewise, the σR where peak scintil-
lation occurs moves to the right at twice the rate peak scintillation increases. We assert that the
differences between these results and previous works are due to the proper scaling of turbulence
strength with the power law used here. The aforementioned inner and outer scale may also be
contributing factors.

Over the course of this work, the contradictory nature of our findings and previous works led
us to revisit our results to ensure our WOS parameters were correct. As a result of these explo-
rations,27 we were led to conclude that, at least for the simulation scenario explored here, these
parameters are a mostly a second-order effect. That is to say, the overall trends remain as long
even if the sampling rate or number of screens changes. This finding has been recently confirmed
by Wijerathna.42 In one of his last works, Flatté and Gerber9 indicated that WOS is an exact
solution to the stochastic Helmholtz equation over all bounds when properly configured. Much
has been made of the qualification, but based on this work and others, we feel WOS will usually
provide accurate results even if they are not precise.27
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There is more work to be done in this area. For example, it may be worthwhile to further
explore Fresnel zone effects by varying wavelength and path length. This work looked only at
plane-wave propagation. Therefore, it may be interesting to see if further accommodations12 are
needed to account for beam expansion and beam-wander for diverging sources. This work also
explicitly does not include a Hill bump or other features in the dissipation range. This exclusion
is purposeful as it is not at all clear the nature of this feature when the medium is non-
Kolmogorov. Finally, a straight-forward extension would be to explore the effect of larger values
of l0 and smaller values of L0 for different power laws as α is varied.
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