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Abstract. We argue for the integration of the statistical models already widely used in radar
technology into lidar technology. The aim is to assess the validity or degree of confidence of an
alert to be issued in view of not overloading the pilot with nuisance alerts. We present the basics
of the detection theory. We give three examples of simulations illustrating the use of these
statistical models either for designing lidars or for preparing lidar missions. We describe the
simulator having been developed and used. We also present the idea of developing mixtures of
statistical models as an approach to thresholding and object classification at mission time. Some
experimental data are presented to validate both the simulator output and the use of mixtures of
models for object segmentation or classification. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in
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1 Introduction and Related Work

False alarm rates (FAR), constant FAR (CFAR), and receiver operating characteristic (ROC)
curves are words more familiar to the radar technology than to the lidar’s. For radar, statistical
models are commonly used for assessing the validity or degree of confidence of an alert to be
issued to a pilot or to a commander. The detection theory, akin to the decision-making theory,
has been under development in the radar community since World War II. Reducing the level of
nuisance alerts is of utmost importance in the time-pressured aircraft cockpit where decisions
must be made rapidly and constantly for the safety of crew or passengers. A document dated
2020 for the radio technical communication for aeronautics reported that there have been several
controlled flight into terrain accidents where the terrain awareness and warning systems had been
manually inhibited due to the frequent occurrence of nuisance alerts during routine operations.1,2

In a mission, the level of engagement must rely on information whose degree of confidence must
have been assessed somehow. The same can actually be said of the decisions made based on
Traffic Collision Avoidance Systems in the air or by air traffic controllers on the ground. The
detection theory relies on statistical models of both the radar pulse and the physical environment
that it interrogates. Those models in turn assist the engineer in the design of new radar equipment
or in the preparation for a mission.3,4

Now that it can be said that lidar technology is coming of age and that it is being integrated in
advanced driver assistance systems (ADAS) for the automotive industry, in unmanned vehicles
of all sorts, and even claims to assist helicopter pilots in the risky task of landing,5 the same level
of rigor is expected from it. The same use of statistical models for FAR, CFAR, and ROC curves
has already started its migration to the lidar world over the last 20 years or so, though over a
small scale. We found seven papers in our research that explicitly referenced statistical models.
In five of them, explicit development of probability distribution functions (PDF) and ROC curves
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were made in view of predicting instruments’ performances, which will be our main goal in this
paper. It has been used for the planning and hardware implementation of the data processing to
be made on-board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) mission,6 where it guided the selection of range dependent thresholds (CFAR) for
selecting between the signals from molecules only or from molecules plus particulate contribu-
tion. Statistical models have been developed for predicting the effect of rain on the lidar signal in
ADAS in the automotive industry,7 or for the effect of fog on the quality of lidar 3D imagery.8 A
fourth paper used the full statistical approach to predict the performance of a fluorescence lidar in
the detection of biowarfare aerosol9 and a fifth one to evaluate different strategies to mitigate the
effect of cross-talk between different signals coming from different vehicles.10 Two other
research papers in the field of lidar only used the concept of ROC curves as a quality metrics
for the results obtained from experiments.11,12 Our team has recently issued a paper in which a
statistical model is developed for predicting the effect of snow on the lidar signal, model further
used to develop a filtering algorithm to remove the clutter due to snow from the 3D image.13 This
filtering algorithm has been experimentally tested since and we will discuss in this paper the fact
that it can be seen as an application of the CFAR technique. Radar and lidar technologies will
become the rule for comprehensive data fusion from numerous interconnected vehicles in global
intelligent transportation systems14 and the detection theory must be rigorously used in view of
not overloading the data processing systems with nuisance alerts.15

In Sec. 2, we will present a brief review of the detection theory essentials. In Sec. 3, we will
present our application of this theory to three cases of simulations, one for reporting detections of
men overboard in a search and rescue helicopter mission and two for reporting detections of
obstacles to a helicopter pilot in the process of landing. In Sec. 4, we will discuss CFAR and
we will introduce and demonstrate the possibility of developing mixtures of models, even during
a mission, to be used for object segmentation or classification. As far as we know, this will be a
novel use of these statistical models. We will then show how accounting for the laser divergence
in the simulation of a lidar mission points at 3D scanning lidar statistical models being of a
Swerling IV case (a Chi-2 PDF), which again will illustrate how close the lidar and radar tech-
nologies are to each other.

2 Review of the Detection Theory

The detection theory that will be used is the same as has long been applied in the field of radar,
more recently in the field of ladar16 and also of data fusion.14 We will briefly present the basic
ideas of that theory. We can refer to Appendix A as well as to two important books by Kay17,18

for the specific mathematical details.
The most important terms are: probability of detection (Pd) and probability of false alarms

(Pfa). The relation between Pd and Pfa is shown in Fig. 1, inspired from Kay.18 We can see two
Gaussian PDFs that could represent the voltage of an oscillating signal: the left one represents the

Fig. 1 Two Gaussian PDFs and two types of errors.
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PDF of a white Gaussian noise with zero mean and the right one represents the PDF of the
expected “signal plus noise.” In the design of those PDFs, the designer will include all that
is known about the physics of the sensor and of the environment it is meant to interrogate.
Or, at mission time, the histogram of the already acquired signals could be used to build those
PDFs as will be discussed in Sec. 4.

In Fig. 1, the noise only hypothesis (left Gaussian PDF) is called the H0 hypothesis or null
hypothesis. The signal plus noise hypothesis (right Gaussian PDF) is the H1 hypothesis or alter-
native hypothesis. The green line represents the threshold placed to decide between the two
hypotheses. For simplicity, the signal is represented also by a Gaussian but other PDFs can
be used as best fits.

The grayed area under the H1 hypothesis represents Pd and the black area under the H0

hypothesis represents Pfa. In most cases of interest, the two hypotheses will be partly overlap-
ping, as shown in Fig. 1, so that increasing Pd by lowering the threshold will increase Pfa. In
Fig. 1, the yellow zone at the left of the threshold represents missed detections (false negatives).

As the figure illustrates, Pd and Pfa are the right-tail probabilities (of H1 or H0): probability
of exceeding a certain value [QðxÞ of Appendix A]. Appendix A gives the main equations for the
specific case of Gaussian PDFs.

The type I error is to have decided that the hypothesis H1 was right while the truth was H0 or
PðH1;H0Þ: a false alarm. The type II error is to have decided that the hypothesis H0 was right
while the truth was H1 or PðH0;H1Þ: a missed detection.

Moving the threshold to the right would decrease Pfa but would also increase the probability
of missing a detection or, said otherwise, it would decrease Pd. Once a tolerable value has been
decided for Pfa, equations are given to determine the value for the threshold. The equations for
Gaussian PDFs will be found in Appendix A and Kay.18

The important point here is that, if we have a priori knowledge about the statistical models of
both theH0 andH1 hypotheses, we have an objective means for fixing the threshold. The thresh-
old is determined by the rate of false alarms, which is deemed tolerable in view of decreasing the
rate of missed detections. The H0 and H1 hypotheses may be about any quantifiable feature of
the system output. In the simulations of Sec. 3, we will address two distinct features: one is
received optical power and the other is height above the ground.

It must be stated here that other PDFs could have been used instead of the Gaussian, and they
all lead to associated versions of theQðxÞ functions [Appendix A and Kay18]. It is the case of the
Swerling IV PDF, which actually is a non-central Chi-2 PDF. It must be noted though that only
the Gaussian PDF also leads to its inverse Q−1ðxÞ. For other PDFs, the designer will have to go
the other way around: first, to decide for a certain value of threshold and, second, to see the
resulting value for Pfa.

The Neyman–Pearson theorem yields a more objective way to fix the threshold using the
likelihood ratio (LR) (Appendix A). The LR will allow to attribute a quantitative level of con-
fidence to each and any of the individual detections. The higher a particular LR is above thresh-
old, the more reliable is the decision that has been made to declare a detection. It could be used
either to remove nuisance alerts from a report or to convey the meta-information about the cer-
tainty or uncertainty of the report using icons or color charts. This may be a help in the process of
decision making.

The relation between Pfa and FAR in a real system under operation would have to account for
the pulse repetition frequency (PRF) in the following way:

EQ-TARGET;temp:intralink-;e001;116;195FAR ¼ Pfa � PRF: (1)

In a plan position indicator containing 2000 × 2000 points, a Pfa in the order of 10−8 would
mean that 0.04 false alarms could occur. For a Pfa of 10−4, that number could climb to 400 in
the scan.

Finally, the ROC curve is simply a graph of Pd versus the choice of Pfa. The best detector is
the one whose Pd climbs the most rapidly with respect to Pfa: the highest probability of detecting
targets of interest at the lowest cost in false alarms (see Figs. 4 and 10 of Sec. 3). The best
detector is the one that maximizes the area under the ROC curve.
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3 Modeling Three Lidar Missions

Three simulated lidar missions will be discussed. The simulator has been developed over the last
six years for investigating the capabilities of a 3D lidar scanner based on the technology of a
double pair of Risley prisms.19 It can emulate the operation of an airborne 3D lidar scanner over
flat ground or over digital elevation models of terrains. Those terrains can be populated with
rectangular boxes or cylindrical objects with their associated reflectivities. The user enters a
choice of physical parameters for the lidar, including the parameters for the Risley prisms scan-
ner, as well as information about the optical properties (e.g., reflectivity) of the objects in the
scene. A definition of the altitude and flying path, including the possibility of it being defined by
sequences of latitude, longitude, altitude coordinates, must also be entered by the user. Then,
while the vehicle is moving, and upon each laser firing, ray tracing is applied to the laser pulse
propagation and interaction with the scene. It is to be noted that the simulator accounts for the
possibility of multiple returns, for the interaction with either snow, dust, rain or fog, as well as for
the divergence of the laser source. It also includes an algorithm for a first stage of segmentation
in the points cloud. The results of the calculations are graphically overlaid on the scene.

3.1 Simulating a Search and Rescue at Sea Mission

This simulation has led to a typical application of the statistical model: to determine the appro-
priate threshold value for the detector output. Figure 2 shows a scenario for a helicopter flying at
an altitude of 500 m. The red dots are for models of retro-reflectors. Their size is made equal to
the diameter of the laser beam at their respective range from the sensor when the sensor passes
above the retro-reflector at angle 0 deg. The green dots are for targets of reflectivity 1. The blue
dots for targets with reflectivity 0.3. Both green and blue targets have size 1 m × 1 m. All targets
extend up to 20 cm above the sea surface. The sea is represented as a flat surface (no waves) with
reflectivity 0.02 because a low water reflectivity is characteristic of a lidar operating at the eye-
safe 1.56-μm wavelength. The helicopter is flying at the constant speed of 100 knots. The simu-
lated lidar is based on one single pair of Risley prisms with a 45-deg field-of-view (FOV) and is
kept pointing at nadir.

The theoretical values of Pfa and Pd have been calculated with Eqs. (5) and (6) of Appendix
A at the different values of threshold to be discussed. The calculation of the theoretical Pfa is
based on a Gaussian model for the return from water (H0 hypothesis) with mean power 6 nWand
standard deviation 15 nW due to the addition of a zero mean Gaussian noise. The theoretical
values of Pd are based on Gaussian models for the return from targets (H1 hypotheses) with
mean powers from 10 to 200 nW and standard deviation 15 nW due to the same noise being
added. Implicitly, no dispersion of the optical powers was designed to be due to the targets

Fig. 2 Illustration of the parameters for a search and rescue at sea mission.
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themselves, only to the noise. We will discuss later in Sec. 4 that this is not accurate in regards to
the real response of the targets. The Gaussian PDFs for the H0 and the multiple H1 hypotheses
are shown in Fig. 3. It is worth noting that out of the actual lidar electronic detection chain, no
negative signal should occur.

In the figure, we have arbitrarily set a threshold (green dashed vertical line). In Fig. 3, we can
see that the 10-, 35-, and 45-nW H1 hypotheses for the targets have some overlapping with the
H0 noise hypothesis centered at 0 nW. For those, there will be a non-null FAR. But for the other
H1 hypotheses, the FAR should be very low, even null, being given the location of the threshold.

In Table 1, we show the theoretical values of Pd for each H1 hypothesis being given six
different values of Pfa corresponding to six pre-selected values of threshold. These were calcu-
lated using Eqs. (5) and (6) of Appendix A.

In Table 1, we see that, for each value of Pfa, there corresponds only one value of threshold.
However, for those values of Pfa and threshold set in accordance with the model for the noise, we
see that there correspond different values of Pd, one for eachH1 hypothesis since their respective
distance away from the threshold varies as illustrated in Fig. 3. The numbers in the column
“simulation results” are actual values of Pd and will be explained later, along with the numbers
in Table 2.

The calculated ROC curves, one for eachH1 hypothesis, are shown in Fig. 4. In it, we see that
the ROC curve always remains very low for theH1 10-nW hypothesis. This happens because the
lowest value of threshold (10 nW) for the highest value of Pfa (39.49%) already leaves behind, as
missed detections, half of its Gaussian PDF centered at 10 nW. These ROC curves are very
representative of what the mission designer may expect as system performance but only if all

Fig. 3 PDFs for the H0 and various H1 hypotheses for the search and rescue at sea mission.

Table 1 Values of Pd (%) for all H1 models for six different values of threshold and Pfa.

Pfa (%) Threshold (nW) H1 − H10 H1 − H35 H1 − H45 H1 − H70 H1 − H100 H1 − H200 Simulation results

39.49 10 50 95.2 99 100 100 100 98.7

2.66 35 4.8 50 74.8 99 100 100 94.9

0.47 45 1 25.2 50 95.2 99.9 100 92.3

9.9E−4 70 3.2E−3 1 4.8 50 97.7 100 88.5

1.8E−8 100 9.9E−8 7.3E−4 0.01 2.3 50 100 79.5

0 200 0 0 0 0 1.3E−9 50 48.7
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targets correspond to the H1 10 nW or to the H1 35 nW or to only one of the other various H1

hypotheses. In the figure, a curve has been added: it displays the actual results of the simulations.
It corresponds to none of the theoretical predictions, though closely to theH1 70 nW, and we will
proceed to explain how it has been obtained. It corresponds to the numbers in the last column of
Table 1.

If no or a very low threshold is set (0.01 nW in Table 2), during the full flight, the simulation
reports 1.63 × 106 points from the sea surface and 78 points from targets: all possible returns are
recorded as raw data before the detection process. To obtain the numbers shown under the title
simulation results in Table 1, we counted how many of the 78 target points were recorded for
each level of threshold being set in the raw data. Table 2 gives the results of the counting
procedure.

All calculation examples to follow refer to the 10-nW threshold line in Table 2. The FAR has
been counted as the number of alarms due to the sea surface (653,277 returns/1,623,183 possible
returns from sea = 40.25%). The detection rate has been counted as true positives from targets
(77 returns/78 possible returns = 98.7%). The missing rate has been counted as missing target
points (1 miss/78 possible returns = 1.28%). FAR is the level of false alarms (nuisance) when
water was reported above threshold as if a target. We see from Table 2 that, if we let Pfa (FAR) go
up, so also does Pd (Det. Rate), whereas missing rate goes down: this corresponds to pulling the

Fig. 4 ROC curves for all H1 hypotheses for the search and rescue mission at 500 m.

Table 2 Simulation results at altitude 500 m.

Pfa (%) Threshold (nW) Points from Water Points from Targets FAR (%) Det. rate (%) Mis. rate (%)

N/A 0.01 1.6E+6 78 N/A N/A N/A

39.49 10 6.5E+5 77 40.3 98.7 1.3

2.66 35 4.8E+4 74 2.95 94.9 5.1

0.47 45 8.7E+3 72 0.54 92.3 7.7

9.9E−4 70 30 69 1.9E−3 88.5 11.5

1.8E−-8 100 3 62 1.9E−4 79.5 20.5

0 200 2 38 1.2E−4 48.7 51.3
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threshold to the left in Fig. 3. We can also see that the FAR (%) values out of the simulator are
very close to the theoretically predicted ones in the first column. Finally, we note that by increas-
ing the threshold level above 45 nW, we remove almost all nuisance alerts without losing too
many points on the targets. The same target can be hit multiple times, from different ranges and
angles, while the helicopter is moving.

In Fig. 4, the fact that the experimental ROC curve shows higher detection rates than most of
the theoretical ROC curves will be explained in Sec. 4 by the fact that most targets actually had a
non Gaussian PDF with large dispersion in the levels of power returned, the highest returns thus
led to rates of detection higher than predicted. In Sec. 4.2, a histogram of experimental data will
show that such behavior of the targets is not an artifact due to our simulator but can be obtained
in real situations.

Hence, a threshold set at 45 nW would be a good choice while preparing the mission if we
have documented confidence in the statistical models we have at hand both for the sea reflectivity
(noise) and for the targets of interest. We will discuss and demonstrate in Sec. 4 how processing
of raw data histograms could have led to setting the threshold properly at mission time when we
have no such a priori information. The new generation of lidars with full waveform recording
and on-board FPGA data processing allows that to be done.

3.2 Simulating a Helicopter Landing

The aim was to provide information to a helicopter pilot concerning the safety of a landing zone
(LZ). The LZ was to be 20 m × 20 m large and, in it, six posts of dimensions 5 cm × 5 cm ×
1 m and reflectivity 0.3 were randomly distributed. The roughness of the terrain was simulated
by adding on the ground a randomly generated “height” noise. Two cases of roughness were
tested: 0 to 5 cm and 0 to 10 cm. The posts would emerge out of the roughness. The reflectivity of
the terrain was also set to 0.3. Figure 5 shows the scene. The helicopter motion is modeled as
coming along the Y axis direction, from a distance of 1200 m, a starting height of 500 m and a
descending rate of 152 m∕min (500 ft∕min). The starting speed is 100 knots at distance 1200 m
from the LZ and is uniformly decreasing.

Two scenarios were tested: one with a generic (GENR in Fig. 6) 3D lidar scanner based on a
single pair of Risley prisms, the other with a double pair of Risley prisms (DRP in Fig. 7). As
described in our 2015 paper,19 in the DRP, the inner pair rotates and samples a high resolution
FOVof 30 deg. The outer pair rotation (90-deg FOV) is constantly adjusted in order to keep the
inner pair FOV pointing at the LZ while the helicopter approaches. For the case of GENR, the LZ

Fig. 5 Schematics of the LZ with obstacles.
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is within its FOVonly under some circumstances during the mission while, for the DRP, the LZ is
constantly being sampled. Figure 6 shows the number of points detected in the LZ with the
GENR as a function of distance for a ground roughness of 10 cm. Figure 7 does the same for
the DRP. The sharp drop around 300 m is due to the laser PRF passing from 200 kHz down to
25 kHz, with higher energy, at larger distances from the LZ.

In Figs. 6 and 7, the blue line with legend 0 to 10 cm gives the number of points detected on
the ground within the LZ (right vertical scale in the figures); 10 to 20 cm, the points detected on
posts between 10 and 20 cm and so on for the other lines. The DRP scheme of scanning promises
an improved job at starting sampling the LZ and mainly the obstacles in the LZ from much
further away, thus giving the pilot more time for decision making.

The threshold to be fixed in this application was a height threshold in a point cloud in which
local models of the ground were first developed, following a random sample consensus approach
(RANSAC), by fitting planes of different heights and angles, which would best match the rough-
ness locally. The aim is now to decide on the presence of obstacles above the ground rather than
on optical power thresholds.

The model for theH0 hypothesis was a Gaussian with mean 0 cm and standard deviations 2.5
and 5 cm for the 5 and 10 cm roughness cases, respectively. The model for theH1 hypothesis was
a Gaussian with mean 50 cm and standard deviation 33 cm. This is shown in Fig. 8 for a terrain
roughness of 10 cm.

Table 3 gives the selection of values for Pfa and the thresholds that were calculated from them
with Eqs. (5) and (6) of Appendix A.

Figure 9 shows the false alarms that were generated (vertical axis) when compared to those
predicted (horizontal axis).

Fig. 6 Performance of a GENR lidar scanner for sampling the LZ as a function of distance.
Numbers of detections at various heights on the posts from all ranges.

Fig. 7 Performance of a DRP lidar scanner for sampling the LZ as a function of distance. Numbers
of detections at various heights on the posts from all ranges.
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If the model had predicted correctly, the experimental false alarms should have made straight
lines at 45 deg with respect to the horizontal axis. Instead, we see that the FARs for both the
GENR and the DRP at the 5-cm roughness remain almost constant and low. To explain that, we
need to return to the definition of Pfa as given in Eq. (5) in Appendix A: it is the right-tail
probability for the hypothesis H0. It does give a maximal value, which will be realized the more

Table 3 Selected values of Pfa and the thresholds (m) for the landing scenario.

Pfa 5-cm roughness (m) 10-cm roughness (m)

0.001 0.1545 0.309

0.01 0.1163 0.2326

0.05 0.0822 0.1645

0.1 0.0641 0.1282

0.15 0.0518 0.1036

0.2 0.0421 0.0842

Fig. 9 False alarms reported versus false alarms predicted during helicopter landing simulation.

Fig. 8 Illustration of the Gaussian PDFs for the heights of the terrain and the obstacles in the LZ.
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the two hypotheses are overlapping. With the 5-cm roughness terrain, this is less the case as both
hypotheses are more separated. In the case of the 10-cm roughness, the very lowest parts of the
H1 hypothesis come in more overlap with the highest thresholds of the hypothesis H0.

Last, it is important to note that, in the analysis of data, we found effective values of LR
anywhere between 2 and 1000, thus much above the threshold: in a real mission, this LR value
can be used either to remove nuisance alerts from a report or to convey the meta-information
about the certainty or uncertainty of the alerts.

Figure 10 shows the experimental and theoretical ROC curves for the scenarios of helicopter
landing.

In Fig. 10, we observe that the predicted ROC curve is always closer to the experimental
one for the GENR case than for the DRP case. When looking at the details of the detections,
it was observed that the mean of the heights of the points detected on the posts is 0.497 m
for the case of GENR while it is 0.741 m for the case of the DRP. In the case of the DRP, the
detection is dominated by the two targets at the very center of the LZ (T1 and T4 in Fig. 5), where
the scanner is tracking, and those two targets yield heights close to or above 0.9 m toward the end
of the scan, when the helicopter is almost hovering above them. Such highly elevated points are
further away from the model of the ground, thus yielding an enhanced detection rate. The use of
simulations along with the statistical analysis of results allow a better mission preparation.

ROC curves can be a powerful tool both for designing a lidar instrument and for preparing a
mission. By inserting in the statistical models all knowledge about the environment and objects
to be interrogated as well as all the design parameters to be tested, the engineer can get a quick
grasp at what best choice to make. The best choice is the one that maximizes the area under the
ROC curve. This is what was done in some of the Refs. 6–12. For the cases presented here, in
Figs. 4 and 10, we have been able to explain the differences between the theoretical predictions
and the results of simulation via imperfections in the models for the targets. We will discuss this
topic in Sec. 4 and a possible remedy to that in our Conclusion.

4 Discussion

The theory and results presented above let us foresee at least two problems: (1) what can we do if
we have no a priori knowledge of the scene and (2) what can we do if the threshold to be set
varies in the scene? The discussion of the first problem will have us introduce the idea of mix-
tures of models while, along the way, discovering that Gaussian PDFs may not always be the best
statistical models for a 3D scanning lidar. Discussion of the second problem will allow us to
introduce briefly the concept of CFAR.

Fig. 10 Experimental and theoretical ROC curves for the simulation of a landing helicopter.
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4.1 Why and How a Mixture of Models?

The novel idea to be put forward and developed in this section is an adaptation of the Gaussian
decomposition procedure used by Wagner et al20 or Li21 for retrieving individual lidar returns
under an enlarged envelope signal. This happens when, for instance, a lidar laser pulse encoun-
ters successive closely packed reflections in a tree foliage. The idea is to find, under the envelope
signal, the number, location, and width of Gaussian shaped laser pulses whose additive super-
position best reproduces the envelope signal, thus yielding spatial super-resolution in the data.

Making an analogy between a lidar waveform and the histogram of raw data, each cluster of
occurrences in the histogram could be seen as the image of one specific statistical model, thus
eventually representing one class of objects. Raw data acquired during a mission could be thus
analyzed and be used (1) for setting an appropriate threshold or even (2) for starting a process of
segmentation and classification in a scene. The abundant literature in segmentation shows that
there is no one-fits-all tool. The procedure presented here would just add one more tool. We first
use the setup of Sec. 3.1 to illustrate the method with the helicopter speed reduced from 100 to
20 knots.

Figure 11 shows the histogram of the raw data of the scenario at altitude 500 m. Figure 12
shows the powers returned by each target or by water, and their dispersion. From Fig. 12, it can
be said that the targets 7, 8, and 9 (blue targets with reflectivity 0.3 in Fig. 2) are accounted for by
the peak, which has been surrounded in orange in the histogram of Fig. 11; however, some of
their returns are under the large peak for water. The targets 4, 5, and 6 (green with reflectivity 1 in
Fig. 2) have their values mostly under the peak surrounded in green; however, many of their
values also go under the orange peak while low values for targets 1, 2, and 3 (red retro-reflectors
in Fig. 2) are also under that same green peak.

Fig. 11 Histogram of the raw data of the search and rescue at sea mission (altitude 500 m).

Fig. 12 Illustration of the dispersion in the power received from each target and from water during
the full mission at altitude 500 m (nW).

Bernier et al.: Statistical models for the lidar technology: false alarms, receiver operating characteristic. . .

Optical Engineering 063105-11 June 2022 • Vol. 61(6)



4.2 Which Statistical Model for a Scanning Lidar?

The concept is thus to try to reproduce the histogram of Fig. 11 with a mixture of statistical
models. However, before choosing one type of model, we need to take a closer look at the histo-
grams of the individual targets. Figures 13 and 14 show some of those at 0 deg and at maximal
20 deg: they are representative of all nine targets.

In all the nine histograms, a clear cut is observed between low level returns and higher level
returns with dispersion factors going from a minimum at 9.8 to a maximum at 313 (45 and 25 for
targets 7 and 9 in Figs. 13 and 14, respectively). During the full mission while the helicopter is
first approaching and then receding from a target, looking at some from angles varying between
0 and þ∕ − 22.5 deg, the dispersion of power due to the varying distances and angles could
account for a maximum dispersion factor of 3 approximately. Something else must cause such
large values of dispersion.

Our simulator does account for the divergence of the laser beam. The beam is constructed as
one central ray comprising 50% of the energy surrounded by eight peripheral rays each carrying
6.25% of the energy. Our analysis of this feature has shown that, when the laser beam hits a
target, it may be sometimes with only the central beam plus one peripheral beam and sometimes
by only one peripheral beam. Another part of the beam may hit the water. This effect can also be
seen in real experimental data and may have as a result a distortion of the objects 3D shapes.

In an experiment set up rightly to evaluate this effect of the laser divergence,22 a 3D target was
installed in an aerosol chamber. As seen in Fig. 15, the target is made out of white painted
wooden planks laid at 30 deg in front of a vertical white wooden board. The front planks and
the intervals between them are 10-cm wide.The lidar equipment used to scan the target was a
Lumibird OPAL3 with a 45-deg full FOV.

Figure 16 is a typical histogram of the range corrected intensities collected along any of the
front planks: range correcting the intensities means multiplying them by the square of their range
from the sensor. In it, we see the same split of intensity values as reproduced by our simulator,
showing that this effect is not an artifact of the simulator. The splitting is caused by some fraction
only of at least some laser beams hitting the front plank and the other part hitting the back board.
It is important to note that, due to this split in intensity values, the actual working of the elec-
tronics or software process in view of finding the range at which the threshold is crossed may
produce a jitter in the range bin location of the plank, thus inducing a distortion of the 3D shape.

Various statistical models were tested for matching the cumulative histogram of raw data for
each target in Fig. 2, including a Gaussian, a Rician, and a Swerling IV. In the case of radars, the
Swerling models are used to describe the statistics of fluctuating targets, the fluctuations being
caused by the variation of the target cross section caused by the variation of the target aspect.

Fig. 13 Histogram of power returned by target 7 at 0 degree (in Watts).

Fig. 14 Histogram of power returned by target 9 at 20 deg (in Watts).
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Swerling models are instances of Chi-2 PDFs. The Swerling IV model is for a target having one
main scattering element that predominates together with many smaller independent scattering
elements.4 This model could reproduce the case where either the full ray or only the central ray or
only a peripheral ray would impact the target at different incident angles. In Figs. 17 and 18, we
show the results of the Gaussian and of the Swerling IV models, which were the only ones close
to matching the raw data cumulative histograms and only for the same targets as for Figs. 13 and
14, but the results are representative of all nine targets of the simulation.

Fig. 16 Histogram of power returned from the 3D target of Fig. 15.

Fig. 17 Cumulative histograms of Gaussian and Swerling IV statistical models with cumulative
histogram of raw data for target 7 at 0 deg.

Fig. 15 White triangular shape 3D target in aerosol chamber.
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For the Gaussian model, we used the standard equation [Ref. 18, Eq. (2.1), p. 20]

EQ-TARGET;temp:intralink-;e002;116;540pðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

1

2σ2
ðx − μÞ2

�
; (2)

where μ and σ are the mean and standard deviation of the powers returned by the target,
respectively. For the Swerling IV model, we used the Chi-2 (non-central) equation [Ref. 18,
Eq. (2.15), p. 26]
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�
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2
þ k
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where ν is the number of degrees of freedom (here ν ¼ 2), λ is the sum of the square of the mean
of the low values and the square of the mean of the high values of power for the target, and Γ is
the Gamma function and we limited k at N ¼ 10.

In Figs. 17 and 18, we see how well related to a scanning radar a 3D scanning lidar may be:
the Swerling IV models always better reproduce the cumulative histograms. This is one more
reason for integrating in the lidar technology the same general statistical approaches, which have
been customary to the world of radar for decades now.

4.3 Mixture of Models and Its Use for Segmentation/Classification

In its approach to Gaussian decomposition, Li21 adapted the algorithms for unsupervised learn-
ing developed by Oliver et al.23 We ourselves adapted those equations to a situation where
Gaussian models are replaced by Swerling IV models. The equation we used is as follows:

EQ-TARGET;temp:intralink-;e004;116;242Qij ¼
pj � fjðxiÞPj¼N
j¼1 pj � fjðxiÞ

: (4)

In Eq. (4), pj is the probability associated to model number j, fjðxiÞ is the value of Eq. (3) for
the Swerling IV model number j, with its associated value for λ, at the power xi associated to the
bin number i in the histogram. N is the number of models (number of clusters of occurrences
found in the histogram). A peak searching algorithm found the number and location of peaks in
the histogram of Fig. 11 and arrived at N ¼ 6 models. The value of pj was arbitrarily set at 1/N
for each model.

Qij is the likelihood for the specific power xi to belong to the statistical model number j.20,21

In Fig. 19, we show the results of applying Eq. (4) to the histogram of all raw data out of the
simulator for the search and rescue at sea mission at altitude 500 m. Though six models were
found by the peak searching algorithm, only the first three are shown since the last three were
more than 10 orders of magnitude lower in their likelihood.

Fig. 18 Cumulative histograms of Gaussian and Swerling IV statistical models with cumulative
histogram of raw data for target 9 at 20 deg.
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If the meaning of Qij is really as written above, then anytime any return power is found in a
scan, it should be associated to the model that shows the largest likelihood for that power in our
Fig. 19. These three models here could thus be said to define classes of objects interrogated by
the lidar. Referring to Fig. 12, we can think model 1 of Fig. 19 to represent returns from the sea
surface as well as low levels in Targets 7, 8, and 9. Model 2 would represent the targets 4, 5, and 6
as well as higher returns from targets 7, 8, and 9, and model 3 would represent mainly targets 1,
2, and 3. We have applied this classification scheme in our simulator and the results are shown in
Fig. 20. In Fig. 20, model 1 (sea) is painted in dark gray, model 2 in red, and model 3 in green
(the detected points have been pictorially enlarged for better visual inspection by the reader). In
Fig. 20, all “nuisance alerts” of model 1 are painted in gray but they have rightly been rejected by
the classification/segmentation process, which thus acted as a threshold setting. In a real display
for pilot, they would have been painted in black for the pilot to concentrate on the targets only.
They are shown in gray in Fig. 20 to illustrate that they have been recorded by the sensor but
rejected by the method.

In Fig. 20, two white rectangles surround the targets 7 and 8 to show they are fading. Since
the dispersion of power was great in all targets (Fig. 12), the targets could appear in one scan and
disappear from another (missed detection) or upgrade from model 2 to model 3. Also, three
yellow rectangles drive our attention to the fact that parts of targets 1, 3, and 6 have been asso-
ciated to model 3, whereas other parts of them had been associated to model 2 in the previous
scans, or vice versa going from 2 to 3. Enlarged views of these detections are shown at the
bottom of Fig. 20, again for ease of visual inspection.

In Sec. 3.1, we described the simulation for the preparation of a search and rescue at sea
mission. With good a priori models of what there will be to look for, the appropriate setting

Fig. 19 Mixture of three Swerling IV models for the histogram of the raw data from the search and
rescue at sea mission at altitude 500 m.

Fig. 20 Classification/segmentation of the raw data from the search and rescue at sea mission at
altitude 500 m using three Swerling IV models with model 1 (mainly sea) in dark gray.
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for the threshold can be fixed beforehand. When no a priori knowledge is available, we can think
of the process just described as something that could be done during the mission as the new
generation of lidars allow. First, one pass over a region of interest could be done to gather raw
data for a histogram and produce the models mixture. It would be followed by a second pass with
the appropriate thresholding or classification, the classification deduced from the statistical mod-
els built out of the raw data from the first pass.

The method was also applied to the results of the landing helicopter of Sec. 3.2. Gaussian
PDFs (not Swerling IV) were used to represent the distributions of heights of hits on posts. For
the case of the DRP, where Fig. 7 showed that many more points were detected in the LZ than for
the case of the GENR of Fig. 6, the method found 6 different models for heights, each repre-
sented by different colors in Fig. 21. For the case of GENR, with less points in the LZ, the
method found only two models: one for the ground (black in Fig. 22) and the other for the
targets (white in Fig. 22). The method however conduced to properly segmenting all posts
in the LZ in both scenarios.

Many segmentation methods have been developed over the years. Our knowledge and hands-
on experience of many of them is that most require some degree of human supervision as well as
much computing power. The results we have displayed in the Sec. 4.3 have been obtained with
basic mathematical analysis and computing methods, which can be achieved quickly at mission
time in an unsupervised manner, which may prove a great advantage. We show at the end of
Sec. 4.4 its application to real data in a complex scene degraded by snow.

4.4 Case of CFAR

We now address our second problem: what can we do if the threshold to be set should vary in the
scene? We discuss the topic of CFAR, which is simply the result of letting the threshold vary in
the scene in order to keep constant the value of FAR everywhere in it. This method is widely used
in the field of radar often to compensate for large signals at close ranges due to antennae side-
lobes. The technique has also been used for the CALIPSO lidar mission.6

Fig. 21 Classification/segmentation of the raw data from the two scenarios of landing helicopter:
scenario DRP.

Fig. 22 Classification/segmentation of the raw data from the two scenarios of landing helicopter:
scenario GENR.
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In our work on the physical model of snow,13 we have developed a method of filtering the signal
from snow. What we are doing is to reject any return with an intensity lower than would have been
the case for a 0.02 reflectivity target at the same range. This is not different from raising the detec-
tion threshold so that these returns will now be rejected, whatever their range from the sensor.

The filter method has since been tested in a real experimental setup. Targets were set up at
distances about 56 and 58 m from the sensor. Three targets with known reflectivities were used as
reference as shown in Fig. 23. The tests were performed in the parking lot of Lumibird Canada,
formerly Neptec Technology Corporation in Kanata Ontario. The Lumibird lidar equipment
OPAL3 with a 45-deg full FOV was used. A calibration of the values of intensities of the instru-
ment in terms of incident optical power was used, in the standard lidar equation, to compare all
returns from all ranges to the return from a hypothetical target of reflectivity 0.02 at the same
range: all intensities below reflectivity 0.02 were filtered out.

Figures 24–26 show the results: in Fig. 24, the unfiltered image with a red cone due to snow
around the sensor; in Fig. 25, the filtered image; in Fig. 26, a rendering of all the points having
been correctly or incorrectly removed by the filter. Figure 25 shows a marked improvement due
to filtering. The application of the filter results in cars and trees now appearing in Fig. 25 (bottom
right), which were buried under the snow returns in Fig. 24. Figure 26 however shows that
information has been lost on the ground at the left of the building and on the building itself.
This would have been a nice case of applying a CFAR approach. Our physical model of snow
shows that the effect of snow decreases rapidly with range. As a consequence, instead of raising
the threshold for all ranges, we should have raised it only for a few tens of meters in front of the
sensor or, better still, making it high close to the sensor and decreasing it as a function of range in
accordance with our physical model. Lidars providing multiple returns information, as is the case
of the OPAL3 for instance, could approximate such a filter by simply removing the nearest
returns or processing them differently.

Fig. 23 Experimental setup for testing a filter against snow.
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The segmentation/classification method of Sec. 4.3 has been applied there on simulation data
only. We will use the points cloud of Fig. 24 to show that the same method can be usefully
applied to real experimental data. The intensities in the points cloud of Fig. 24 have first been
range corrected.

The histogram of these range corrected intensities was produced and the six Gaussian models
calculated from it with Eq. (4) are shown in Fig. 27.

If images of only one class at a time were produced, the user could scroll down through at
least six different images and look for objects of interest. For instance, in Fig. 28, we show the
points cloud of the scene when the points associated to class 1 (mainly snow) are removed from

Fig. 24 Snow filtering model experimental verification: unfiltered image with red cone due to snow.

Fig. 25 Snow filtering model experimental verification: filtered image.

Fig. 26 Snow filtering model experimental verification: showing the points removed by the filter
including points on solid targets.
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Fig. 27 Mixture of six Gaussian models for the histogram of the range corrected version of Fig. 24.

Fig. 28 Scene with points of class 1 (mainly snow) being removed.

Fig. 29 Scene with only points of class 5 (mainly cars) being displayed.
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it. We observe that almost all the snow has been filtered out of the points cloud. In Fig. 29, we
display only the points associated to class 5 and we observe that almost only the cars have been
singled out of the points cloud.

The method is thus shown to work on real complex scene data degraded by snow. It could be
seen as a quick first step into a segmentation/classification process, which could be pressed
forward after selecting points of one or the other class.

5 Conclusion

We have integrated into the lidar technology the statistical models already much in use in the
radar technology. We have presented the basics of the detection theory: FAR, CFAR, and ROC
curves. We have given three examples of simulations illustrating the use of these statistical mod-
els either for designing lidars or for preparing lidar missions. In view of making the preparation
for a mission as adequate and realistic as possible, a simulator has been developed over the last
six years. We have seen in Sec. 4 that the analysis of the simulation data shows that the simple
Gaussian models developed for the targets were somehow defective.

Improved rendering of the overall environment for the mission may be obtained by using
more sophisticated simulators such as one from the company Cognata for ADAS or the Ondulus-
Lidar simulator developed by the Canadian company Presagis for helicopter pilots. A thorough
analysis of results out of simulators could help develop more accurate statistical models for the
scenes to be visited prior to a mission.

We have also introduced the idea of developing mixtures of statistical models as an approach
to thresholding and object classification at mission time. In this last topic, much remains to be
done mainly for the accurate location of the peaks (clusters of occurrences) in the histogram,
which may easily get more complex as was the case for the scene of Fig. 24 with snow.

6 Appendix A

In the case of a Gaussian PDF with zero mean, which is the PDF of the noise, the right-tail
probability is the Pfa and is given by the equation:

EQ-TARGET;temp:intralink-;e005;116;362Pfa ¼ QðxÞ ¼
Z

∞

x

1ffiffiffiffiffi
2π

p exp
−1
2
t2dt: (5)

For theH1 hypothesis, where the mean μ is different from zero, the equivalent ofQðxÞwould
be the Pd and would be given by the equation:

EQ-TARGET;temp:intralink-;e006;116;293Pd ¼ QðxÞ ¼
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The relation between the threshold γ and the Pfa for Gaussian PDFs is given as

EQ-TARGET;temp:intralink-;e007;116;236Pfa ¼ QðγÞ ¼
Z

∞

γ

1ffiffiffiffiffi
2π

p exp
−1
2
t2dt: (7)

This equation can be inverted to decide the value of the threshold for a tolerable Pfa:

EQ-TARGET;temp:intralink-;e008;116;178γ ¼ Q−1ðPfaÞ; (8)

where Q−1ðxÞ is the inverse function of QðxÞ and is said to always exist for Gaussian PDFs
[Ref. 18, p. 21]. These two functions are the error function erfcðxÞ and its inverse ierfcðxÞ.
Hence, for the case of Gaussian PDFs, solutions are easily found.

If we call pðx;H1Þ the probability that the value x belongs to theH1 hypothesis and pðx;H0Þ
the probability that the value x belongs to the H0 hypothesis instead, the Neyman–Pearson theo-
rem claims [Ref. 18, p. 65] “To maximize Pd for a given Pfa, choose H1 if
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EQ-TARGET;temp:intralink-;e009;116;735

pðx;H1Þ
pðx;H0Þ

> γ; (9)

where the threshold γ is set as per Eq. (8).
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