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ABSTRACT   

Cerebral perfusion computed tomography (CPCT) imaging provides a rapid and accurate noninvasive measurements of 
the acute stroke by generating hemodynamic parameter maps with a qualitative and quantitative way. However, due to it 
performs a multiple consecutive scanning protocol at one area of the head, the radiation exposure is relatively higher than 
a routine protocol. And lowering radiation dose in CPCT protocol would increase the amount of noise and hence influence 
hemodynamic parameters for patients with acute stroke. Some advanced methods have been proposed and show a great 
potential in noise suppression for low-dose CPCT imaging. And most of them assume that the embedded noise obeys an 
independent and identically distribution (i.i.d), but the noise may be more complicated in practical scenarios. In this work, 
we first analysze the noise properties in low-dose CPCT images. And then present a novel perfusion deconvolution method 
with a self-relative structure similarity information and a mixture of Gaussians (MoG) noise model (named SR-MoG) to 
accurately estimate the hemodynamic parameters directly at the low radiation exposure. Experiments implemented on 
digital brain perfusion phantom verify that the presented SR-MoG method can achieve promising gains over the existing 
deconvolution approaches.    
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1. INTRODUCTION  

Cerebral stroke is an acute cerebrovascular disease, it has a high incidence rate, high mortality rate, and high disability 
rate1. Cerebral perfusion computed tomography (CPCT) is an imaging modality that provides detailed information about 
blood flow to the brain in a rapid, noninvasive, and quantitative way for cerebral stroke diagnosis. Specifically, the CPCT 
measures the temporal changes for each voxel through a series of repeating CT scanning, which is used to improve 
detection of acute infarction and help assess the degree of collateral circulation by providing hemodynamic parameters 
maps (HPMs), i.e., cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT)2. However, 
CPCT performs repeated scans on the same region, so it is associated with high radiation dose. And lowering radiation 
dose in CPCT imaging would increase the amount of noise and hence influence HPMs’ accuracy. 

To reduce radiation dose in CPCT imaging while maintaining HPMs’ accuracy, various algorithms have been proposed. 
Generally, related algorithms can be grouped into two categories. The first category is to reduce noise in the reconstructed 
CPCT images at low-dose measurements and to estimate HPMs via standard deconvolution process3-5, e.g., image-based 
restoration algorithms, statistical iterative reconstruction algorithms. However, since noise distribution characteristics are 
not considered accurately, these methods might suffer from resolution loss, thereby degrading the HPMs’ accuracy. The 
second category is to directly calculate HPMs via design strong prior information to stable the residue function with an 
iterative deconvolution procedure6,7. These models can improve the HPMs’ accuracy in the case of low-dose measurement. 
However, most of models are based on the assumption that the embedded noise in the CPCT images is an independent and 
identically distribution, and this would deviate from the practical scenarios wherein the noise distributions among different 
frames could be significantly different from each other.  
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Therefore, supposing the noise in CPCT imaging is complex and does not obey an i.i.d, in this work, we present a novel 
framework to estimate HPMs by characterizing the noise distribution properly. Specifically, a non-independent and 
identically distributed mixture of Gaussians (MoG) noise model is utilized to modeling the residue function in the perfusion 
deconvolution procedure.  In addition, we introduce the self-relative structure similarity information of CPCT images as a 
prior term, which can be easily integrated into the MoG model to further improve the HPMs’ results. Finally, the fast 
iterative shrinkage-thresholding algorithm (FISTA) 8 is developed to solve this model. The experimental results of the 
digital brain perfusion phantom simulation demonstrate the presented algorithm can greatly achieve promising gains over 
the existing deconvolution approaches.  

2. METHODOLOGY  

2.1 The noise properties for low-dose CPCT image 

Fig. 1 shows the normal-dose CPCT images, the low-dose CPCT images, and the corresponding difference maps at three 
different frames (the 1st, 12th, and 20th frames, respectively). As depicted in Fig. 1(d), it shows the corresponding 
histograms of the noise maps in Fig. 1(c). It can be observed that the peak of histogram at the 12th frame is lower than 
those at the 1th and 20th frames. The possible reason is that the 12th frame contains more contrast than the other frames, 
and it would suffer much more noise-induced artifacts due to the contrast agent. Fig. 2 further illustrates the different types 
of noise at different areas at a single frame. It can be observed that different areas contains different noise distribution at a 
single frame. Therefore, it can be concluded that the noise distribution in low-dose CPCT images is complex, and in this 
work, we exploit the mixture of Gaussian (MoG) to model the noise E of low-dose CPCT image as follows: 

𝑃 (𝐸|Π, Σ) = 𝜋 𝒩(𝐸|0, Σ ) , 

                   (1) 
where 𝜋 ≥ 0 is the mixing coefficient with ∑ 𝜋 = 1. And 𝒩(⋅ |0, Σ ) represents a Gaussian distribution with zero 
mean and variance Σ . 

 

Figure 1. Installation of (a) the normal-dose CPCT images at frame 1, 12 and 20, (b) the low-dose CPCT images at frame 
1, 12 and 20, (c) the difference images from (a) and (b), and (d) the histogram map of the difference images from (c).. 
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Figure 2. (a) Illustration of the noise at the 12th CPCT frame and its histogram. (b)-(d) Illustration of three different 

Gaussian components and their histograms, obtained by MoG model with three Gaussian components of the noise in (a). 

2.2 SR-MoG deconvolution model 

The CPCT images can be considered as the combination of the background component with temporal similarity and the 
foreground component with spatial contiguity and noise 9. Meanwhile, the concentration maps are obtained by subtracting 
the baseline image wherein the baseline image equals the average of early CPCT frames before the contrast agent enters 
the blood vessel actually. Moreover, the residue function data reflects the relative concentration of contrast agent in the 
blood vessels over time. Therefore, it can be concluded that the residue function can also be considered as the combination 
of the background component and foreground component as well. Motivated by these observations, the residue function 
data X consists of background component U, foreground component F, and embedded noise component E, which can be 
modeled as follows: 

𝑋 = 𝑈 + 𝐹 + 𝐸 
                                 (2) 

According to Eq. (2) and the noise model in Eq. (1), we can obtain following likelihood distribution for 𝑈 and 𝐹: 

𝑃 (𝑋|𝑈, 𝐹, Π, Σ) =  𝑃 (𝑋 − 𝑈 − 𝐹|Π, Σ) 

= 𝜋 𝒩(𝑋 − 𝑈 − 𝐹|0, Σ )

&

 

       (3) 

To estimate the underlying variable 𝑈, we introduce a we introduce self-relative information B to provide prior information 
for U, , then, we provide following prior distribution for 𝑈: 

𝑃 (𝑈) =  𝒩(𝑈|𝐵, 𝜎 ) 
(4) 

where 𝜎  denotes the variance of the inevitable noise in 𝛣.  

Moreover, since the foreground component 𝐹 is variant and sparse over time, it is rational to introduce a sparse prior 
distribution 𝑃 (𝐹) on it. This prior can be express as a regularization term when estimating 𝐹. By combining the priors 
and the likelihood in Eq. (4), it can be then expressed as following posteriori distribution: 

𝑃(𝑈, 𝐹, Π, Σ|𝑋) ∝ 𝑃 (𝑋|𝑈, 𝐹, Π, Σ) × 𝑃 (𝑈) × 𝑃 (𝐹) = 𝜋 𝒩(𝑋 − 𝐹 − 𝑈|0, Σ ) × 𝒩(𝑈|𝐵, 𝜎 ) × 𝑃 (𝐹) 

         (5) 

Therefore, by integrating the perfusion deconvolution procedure with the likelihood model as aforementioned, the 
perfusion deconvolution model can be rewritten as: 

𝑋 = argmin
1

2
‖𝐴𝑋 − 𝐶‖ + log 𝜋 𝒩(𝑋 − 𝑈 − 𝐹|0, Σ ) + log𝑁(𝑈|𝐵, 𝜎 ) + 𝛽log𝑃 (𝐹) 
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𝑠. 𝑡. 𝑋 = 𝑈 + 𝐹 + 𝐸  
(6) 

where the  log𝑃 (𝐹) = ‖𝐷(𝐹)‖  and the operator 𝐷(∙) is the first order difference matrix. Then we can estimate the 
underlying background and foreground, as well as other involved parameters. By incorporating the self-relative 
structural similarity information and MoG noise distribution latent in CPCT images into a perfusion deconvolution 
model, we can define the self-relative structural-information-induced mixture of Gaussian (SR-MoG) model. 

3. EXPERIMENTS 

3.1 Data 

To validate and evaluate the performance of the presented SR-MoG perfusion deconvolution model at low-dose cases, a 
digital brain perfusion phantom package 10 was used in this work. The specific digital brain perfusion phantom consists of 
infarct core and ischemic penumbra in the white and gray matters, as well as the healthy tissue with 40 temporal frames at 
size 256 × 256. Fig. 3 shows the phantom and the corresponding time-density curves of penumbral, strike core, tissue and 
vessel. Additionally, to simulate low-dose CPCT images under different dose levels, the simulate strategy is based on the 
previous study 11, and two dose levels were simulated with 50% and 25% of normal-dose. 

 
Figure 3. Illustration of digital CPCT phantom (a) and the corresponding TDCs (b). The display window is [10, 65] HU. 

3.2 Comparison methods 

To validate and evaluate the performance of the presented SR-MoG method, five deconvolution methods were compared 
against: block-circulant truncated SVD (bSVD) 12, Tikhonov regularization 13, the tensor total variation regularized 
approach (TTV) 6, the structure total variation regularized approach (STV) 7 and the SR-MoG with a single Gaussian noise 
component (SG). Extensive experiments with different parameter settings were conducted for all competing methods, and 
the appropriate parameters are selected based on the optimal visual inspection. 

4. RESULT 

Fig. 4 shows the estimated HPMs, i.e., CBF, CBV, and MTT generated by different algorithms of digital brain perfusion 
phantom with 50% dose level. The reference HPMs obtained by the digital brain perfusion phantom package directly, thus 
it can be as the “golden standard” in this comparison. The remaining HPMs all estimated from the FBP reconstructed low-
dose CPCT images by the competing deconvolution methods for comparison. It can be observed that several noise is 
evident in the traditional deconvolution methods, i.e., bSVD, Tikhonov, especially in healthy region of brain. And for the 
TTV and STV algorithms, the results shows more improvement by visual inspection, while the detailed structure of the 
stroke-core region is still corrupted by the noise-induced artifacts, as shown by the red arrows at CBF maps in Fig. 4. 
Moreover, the results from SG and SR-MoG are remarkable over that from TTV and STV in terms of noise reduction and 
structure information preservation. However, by careful visual inspection, the values of SG at penumbra region, indicated 
by yellow arrows in Fig. 4, are lighter than that in reference, and results of SR-MoG are closer than other deconvolution 
approach.  

Fig. 5 illustrates the performance of all competing methods on digital phantom with 25% dose, respectively. With the 
radiation dose further reducing, all compared methods fail to remove all noise, especially at 25% dose. While the presented 
SR-MoG performed better than other compared methods in terms of noise suppression, structure preservation and value 

Proc. of SPIE Vol. 12304  1230422-4



 
 

 
 

 
 

consistency, especially for the penumbra and stroke-core regions. 

 
Figure 4. Perfusion maps of the digital brain perfusion phantom estimated by bSVD, Tikhonov, TTV, STV, SG and SR-

MoG approaches, respectively, under the 50% dose. CBF in unit of mL/100 g/min, CBF in mL/100 g, MTT in sec. 

 
Figure 5. Perfusion maps of the digital brain perfusion phantom estimated by bSVD, Tikhonov, TTV, STV, SG and SR-

MoG approaches, respectively, under the 25% dose. CBF in unit of mL/100 g/min, CBF in mL/100 g, MTT in sec. 

Table 1. RMSE and SSIM for HPMs (CBF, CBV, MTT) estimated using the different competing methods at 25% and 50% 
of normal dose. Bold font indicates the best performance. 

  
CBF CBV MTT 

Methods Dose RMSE SSIM RMSE SSIM RMSE SSIM 

bSVD 

25% 

2.9152 0.9123 0.4537 0.9955 2.4328 0.9213 

Tikhonov 4.6676 0.9143 1.8534 0.9790 3.4193 0.8510 

TTV 2.8414 0.9236 0.4288 0.9960 2.3473 0.9301 

STV 2.9210 0.9502 0.5705 0.9944 1.7319 0.9564 

SG 2.0843 0.9978 0.5974 0.9946 2.9620 0.9321 

SR-MoG 1.9456 0.9963 0.1405 0.9990 1.6187 0.9718 

bSVD 

50% 

1.4844 0.9741 0.2280 0.9988 1.3656 0.9730 

Tikhonov 4.1308 0.9690 1.7753 0.9849 2.6510 0.9158 

TTV 1.2916 0.9828 0.2190 0.9990 1.3018 0.9765 

STV 1.7399 0.9868 0.4508 0.9969 1.2121 0.9793 

SG 1.0834 0.9978 0.5960 0.9947 11.1994 0.8917 

SR-MoG 0.7962 0.9988 0.1616 0.9990 0.8843 0.9889 
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To further demonstrate the performance of the presented SR-MoG method, RMSE and SSIM measurements are utilized 
and corresponding comparison results of the different methods at 50% dose and 25% dose, and the result is listed in Table. 
1. It can be seen that the presented SR-MoG method outperforms the other competing methods by a large margins in terms 
of the RMSE and SSIM measurements at the two dose levels. Thus results demonstrate the presented SR-MoG 
deconvolution algorithm achieve significant ability compared with other algorithm for noise suppression and structure 
consistent. 
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