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ABSTRACT

A Fourier transform spectrometer is used to simultaneously measure distance, dispersion and spectrum. It is
shown that short coherence interferometry has the potential to measure the three-dimensional distribution of
the spatial structure of a sample with a resolution determined by the coherence length of the light source,
absorption spectrum with a resolution of 1 cm−1 and a dispersion with a resolution of up to 1025. © 1998 Society
of Photo-Optical Instrumentation Engineers. [S1083-3668(98)01101-0]
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1 INTRODUCTION

Fourier transform spectrometers (FTS) are prima-
rily used in the infrared (IR) and near infrared
(NIR) spectral region to record spectra in reflection
or transmission mode. The advantage of this type
of spectrometer is threefold compared with
monochromators.1 An FTS records all wavelengths
of the spectrum simultaneously (Fellgett advan-
tage). A monochromator scans the spectrum se-
quentially, utilizing only a fraction of the incident
light and requiring a much longer acquisition time.
Furthermore, simultaneous acquisition with a grat-
ing spectrometer is only straightforward in the vis-
ible region, where detector arrays are available at
reasonable costs. Another aspect is the Jacquinot
advantage. An FTS has a circular symmetric optical
geometry that is better adapted to typical source
geometries than grating spectrometers using slit ge-
ometries as entrance and exit diaphragms.

In this paper we discuss a modification of an FTS
that allows one to simultaneously measure the ab-
sorption spectrum, dispersion, and the thickness of
a sample. Dispersion can be measured by beam
deviation.2 Other approaches are critical angle
measurements3 and reflectometry.4 Information on
dispersion of the object can also be derived from an
FTS signal with the Kramers–Kronig relation if
there are significant absorption lines or bands in the
sample spectrum. The method fails for highly trans-
parent media. Our technique is based on measuring
the broadening of the interference signal of the FTS
caused by the dispersion of the sample.
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The setup also allows measurement of the thick-
ness and distance of a reflecting sample. Closely
related to our technique is optical coherence tomog-
raphy (OCT) obtained, for example, with a dual
beam interferometer,5 or a fiber optic Michelson
interferometer.6 These techniques, which are also
based on short coherence interferometry, provide
information on distances. In principle these tech-
niques also have the capability to provide informa-
tion on dispersion and spectrum of the sample.
However, in order to achieve a high spectral reso-
lution on the order of at least 1 cm−1 over a broad
spectral range of several thousand wave numbers,
all the technical features of an FTS have to be incor-
porated into an OCT measurement device. For that
reason we decided to base our experimental setup
directly on an FTS. We want to show in this article
that short coherence interferometry, and in particu-
lar OCT, have the potential to simultaneously
gather information on the spatial distribution of
material density, spectral absorption, and disper-
sion properties of a sample. These are of impor-
tance for the identification of substances within tis-
sues and therefore for the functional diagnosis of
diseases.7

2 EXPERIMENTAL SETUP

The setup is shown in Figure 1. It consists of a
Bruker Equinox 55 FT spectrometer with a halogen
lamp and a silicon detector diode. The FTS can also
be described as a Michelson interferometer with a
moving reference mirror and a stationary second
mirror. The light beam exiting the output port is
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coupled into a Michelson interferometer (interfer-
ometer 2) consisting of a reference mirror, a beam-
splitter cube, and the reflecting sample. The two
light beams are superimposed at the detector. The
arm lengths of interferometer 2 are deliberately
mismatched.

The reference mirror of the FTS moves with con-
stant speed along the reference arm axis of the in-
terferometer. Interference occurs at three moments
of the scanning phase of the scanning mirror:

1. The FTS arm length difference matches the
arm length difference of the Michelson inter-
ferometer.

2. Both arm lengths of the FTS are equal.
3. The negative FTS arm length difference

matches the arm length difference of the
Michelson interferometer.

One obtains three interference signals. Figure 2
shows the central interference burst and the right
satellite peak. The satellite peak on the left side is
not shown. Theoretically the central signal (situa-

Fig. 1 Dual Michelson interferometer. The FT spectrometer is in
principle a Michelson interferometer with a reference mirror on a
moving stage. Interferometer 2 is a Michelson interferometer with a
fixed reference mirror and a fixed sample.
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tion 2) is twice as high as the two satellites (situa-
tion 1 and 3), as will be shown in Sec. 3. The posi-
tion of the central peak does not depend on the
position of the sample in the second interferometer
because it is generated solely by the FTS. The satel-
lite peaks move relative to the central peak when
the position of the sample mirror is altered. The
distance of the satellites to the central peak is a
measure of the sample distance relative to the
beamsplitter of the second interferometer. If a dis-
persive medium is placed in the sample arm of in-
terferometer 2, the satellite signal is broadened be-
cause of the wavelength-dependent index of
refraction causing a wavelength-dependent delay.
The central signal is unaltered because it is gener-
ated in the FTS. The degree of the broadening can
be utilized to determine the dispersion, as de-
scribed in the following section.

3 THEORY OF MEASUREMENT

3.1 COHERENCE FUNCTION AND
INTERFERENCE SIGNAL

The electrical field of the light beam from the light
source at a certain position can be described as

E~t !5E0~t !•e2ivt.

The amplitude E0(t) is assumed to be complex and
stochastic. The power density is

I5
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2h0
^E0~t !E~t !& (1)
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E0~t !E~t !dt (2)

with the impedance of the vacuum

h05Am0

e0
5377 V .

For simplification we define the normalized ampli-
tude u(t)5E(t)/A2h0 so that

I5^u0~t !u~t !&.

The amplitudes of the two partial beams exiting the
FTS are

u1~t !5 1
2 u~t ! (3)

u2~t !5 1
2 u~t1t1!, (4)

where t1523Dz1 /c . Dz1 is the arm length differ-
ence of the FTS. The partial waves are further split
at the beamsplitter of interferometer 2 so that the
amplitude of the beam reaching the detector is

udet~t !5u11~t !1u12~t !1u21~t !1u22~t ! (5)

with
Fig. 2 Interference signal of the dual Michelson interferometer.
The position of the sample mirror does not influence the position of
the high peak, but the position of the satellite peak.
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u11~t !5 1
4 u~t ! (6)

u12~t !5 1
4 u~t1t2! (7)

u21~t !5 1
4 u~t1t1! (8)

u22~t !5 1
4 u~t1t11t2! (9)

and t2523Dz2 /c and Dz2 as the arm length dif-
ference of interferometer 2. Note that Dz2 , repre-
senting the sample distance, is stationary and Dz1
changes due to the moving mirror in interferometer
1. For simplicity, all reflectances are assumed to be
at unity. The intensity at the detector is:

Idet~t1!5^uu11~t !1u12~t !1u21~t !1u22~t !u2&
(10)

5 1
4 I1 1

16 @2•~G~t1!1G~t2!!

1G~t11t2!1G~t12t2!#1c.c. (11)

with the definition of the coherence function

G~t!5^u0~t !u~t1t!&5 lim
T→`

1
2T E

2T

T
u0~t !u~t1t!dt

and in particular

G~0 !5^u0~t !u~t !&5I .

The coherence time tc is a measure of the length of
the interference signal. It is defined as

tc5E
2`

1`

ug~t!u2dt

with the normalized coherence function

g~t!5
G~t!

G~0 !
.

If we assume that t2@tc and take into account that
t2 is constant, we may neglect G(t2) in Eq. (11) so
that the result is

Idet~t1!5 1
4 I1 1

16 @2•G~t1!1G~t11t2!

1G~t12t2!#1c.c. (12)

The signal consists of a time-independent part that
is not registered by the ac-coupled detector system
and a time-dependent interference term consisting
of the central peak 1/8G(t1), which is maximum at
t150, and two satellite peaks 1/16G(t11t2) and
1/16G(t12t2) with maxima at t152t2 and t1
5t2 . The size of the satellite peaks is half the size of
the central peak.
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3.2 TEMPORAL COHERENCE FUNCTION AND
DISPERSION

We assume that a dispersive medium of length l is
located in arm 2 of the Michelson interferometer 2.
One satellite signal is described by the coherence
function:

G~t11t2!5^u1
0~t !u2~t1t11t2!& (13)

with

u1~t !5E
2`

1`

ũ1~n!ei2pntdn

u2~t !5E
2`

1`

ū2~n!ei2pntdn .

With dispersion we get:

ũ2~n!5ũ1~n!ei2p n/c Dn~n!2t.

The term ei2pn/cDn(n)2t describes the phase shift
each frequency component experiences because of
the frequency-dependent part of the index of refrac-
tion Dn(n) of the dispersive medium of length l ,
which describes the difference of the index of re-
fraction between the dispersive sample and air. The
total index of refraction of the dispersive medium is
n(n)511Dn(n). The Fourier transform of the co-
herence function of Eq. (13) is

G̃~n!5ũ1
0~n!ũ2~n! (14)

5ũ1
0~n!ū1~n!ei2p n/c Dn~n!2l (15)

5S~n!ei2p n/c Dn~n!2l (16)

5S~n!H̃~n!. (17)

S(n) here is the power spectrum of the source and
we note that

G̃0~2n!5S~2n!H̃0~2n!.

We have substituted ei2pn/cDn(n)2l with H̃(n).

4 RESULTS AND DISCUSSION

Figure 2 shows the detector signal as a function of
Dz1 for a mirror sample. The high peak corre-
sponds to G(t1) in Eq. (12); the satellite peak corre-
sponds to G(t11t2). The power spectrum of each
peak is determined by the spectrum of the lamp,
the spectral sensitivity of the detector, and the spec-
trum of the sample reflectivity. With known spec-
tral information on the detector and the lamp, it is
possible to determine the absorption of the mate-
rial. The power spectrum of the peak in Figure 2 is
shown in Figure 3.

The theoretically expected ratio of 2 between cen-
tral and satellite peaks is not achieved because the
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size of the light source reduces the interference con-
trast of the second interferometer. The distance be-
tween the central and satellite peaks gives the dis-
tance of the sample. The resolution is determined
by the coherence length of the light source.

Figure 4 shows the satellite peak when a glass
plate (Schott BK7) is placed in one of the arms of
the second interferometer. The coherence function
is broadened due to dispersion. The frequency-
dependent index of refraction causes a delay of
each spectral component of the coherence function.

With Eq. (16) the complex spectrum can be de-
scribed as

G̃~n!5S~n!ei2pn ~Dn~n!2l1z0! /c (18)

z0 is a fixed offset between the arm lengths of inter-
ferometer 2. The modulation period of the spec-
trum is given by c/(Dn(n)2l1z0), which is deter-
mined by the fixed offset z0 and a frequency-
dependent index of refraction (chirp). The real part
of the Fourier-transformed satellite peak of Figure 2
is shown in Figure 5.

One can normalize the function Ḡ(n) in Eq. (18)
by dividing it with the power spectrum S(n). This
is equivalent to dividing the spectrum of Figure 5
by its envelope function. The result is shown in Fig-
ure 6.

Fig. 3 Power spectrum of the satellite peak in Figure 2.
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The modulation frequency is chirped because of
dispersion. The frequency is a measure of the delay
each spectral component of the coherence function
experiences due to the frequency-dependent index
of the refraction. In order to obtain the frequency
dependence of Dn , the normalized spectrum in Fig-
ure 6 is least-squares fitted with the model function

model~n!5sinS 2pn
Dn~n!2l1z0

c D .

The fit parameter function is Dn(n). One could also
calculate Dn(n) directly from Eq. (16). However,
the least-squares fit approach turns out to be more
robust for data noise. The thickness l of the sample
is determined by measuring the distance of the re-
flection peaks at the front and rear surfaces of the
glass plate. With the index of refraction at
8500 cm−1 (which can be determined iteratively
with the experimentally determined dispersion
data), one gets the geometrical thickness l of the
sample. The fast end of the coherence function on
the left in Figure 4 is determined by the fastest fre-
quency component of the spectrum, which is in the
case of normal dispersion the short wavelength end
of the spectrum in Figure 3. The index of refraction
measured as a function of the wavelength and the

Fig. 5 Real part of the spectrum of the satellite peak with disper-
sion.
Fig. 4 Interference signal of the satellite peak with dispersion.

Fig. 6 Normalized real part of the spectrum of the satellite peak
with dispersion.
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index curve calculated with the Sellmeier formula
for the Schott glass BK7 are shown in Figure 7. Note
that the mean deviation of the experimental data
from the Sellmeier values is on the order of 1025.

5 CONCLUSION

The results show that the method described pro-
vides spectral and spatial information. In addition,

Fig. 7 Comparison of experimental data and Sellmeier formula for
the dispersion curve of BK7.
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dispersion can be measured. With the current
setup, the acquisition time is limited by the light
source. For imaging applications, brighter light
sources with comparable spectral width are
needed. Candidates are, for example, femtosecond
or ultrabroad fiber lasers.
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