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1 Introduction

Scattering due to micrometeoroid damage is a specific type of stray-light, which is inherent only
in the space instruments with optics exposed to the space environment. Free flying dust particles
in space can hit and damage the optical surface. These will cause an increase of stray-light in the
system. The problem of micrometeoroid damage exists since the first space flights.1 However,
only a few papers2,3 give an estimate of this type of stray-light. This work aims at improving
the simulation of scattered stray light that results from the impact of micrometeoroids in space
optical instruments.

To estimate light scattering induced by the micrometeoroid damage, we propose a method
that consists of four steps:

1. Definition of the environmental conditions (Particulates Environmental Model) of the
satellite: estimation of the flux and parameters of the particles that arrive at the critical
surfaces.

2. Calculation of the expected damage crater diameter (DCD) and ejected mass due to the
micrometeoroid impact.

3. Calculation, with the Peterson model,4 of the bidirectional scattering distribution function
(BSDF) that results from the impact craters. Calculation of the corresponding cleanliness
level and slope due to contamination by ejected mass.

4. Optical software (FRED) calculation of the scattered light.

In this paper, we apply this method to the case of the LISA (Laser Interferometer Space
Antenna) telescope and consider the sun-orbiting LISA trajectory, 50 Mkm away from the
Earth, in the micrometeoroid flux estimates. In the following, each step will be described, and
the results will be presented.

2 LISA Instrument

LISA will be the first space-based gravitational waves (GW) observatory.5 GW are ripples in
spacetime generated by the movement of massive objects. Albert Einstein predicted them in
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1916.6 The first direct observation of GW was made in 2015 by the ground-based interferometer
LIGO7 in the United States (Nobel Prize 2017). Due to seismic noise, gravity gradient noise, and
other effects, ground-based interferometers (LIGO, Virgo) are limited at low frequencies.
Significant improvements can be made by the construction of an underground interferometer
(Einstein Telescope) on the stable lithospheric plate.8 However, even underground detectors will
be limited to observing the merger of very compact massive objects, generating a signal at rel-
atively high frequencies. To detect GWat lower frequencies and detect more massive and slower
objects, the detector has to be in space and is likely to be a space interferometer mission such as
LISA. The LISA frequency band will include GW generated by compact objects captured by
supermassive black holes in galactic nuclei, compact binaries in our galaxy and beyond, binary
supermassive black holes, and quantum fluctuations in the early universe.

LISA is a GW observatory space mission now in phase A. It is a constellation of three iden-
tical satellites, forming an equilateral triangle of arms-length L ¼ 2.5 Mkm. The continuous
measurement of the light path length L½1þ hðtÞ� between two test masses reveals the presence
of the GW hðtÞ. It is performed via six interferometric heterodyne phase measurements that take
place at each end of the triangle arms. In the presence of any light that was not intended to be in
the design (stray light), the heterodyne interference can be disturbed. The correct assessment of
the stray light, together with the instrument stability, is vital for LISA measurements, which aim
at a precision of 10−21 in the GW hðtÞ strain, that is, in the measurement of the fractional change
of the light path length L½1þ hðtÞ�.

To make the phase measurements between beams from distant satellites possible, an optical
telescope is used for transmission and receiving of the beams. The schema of the LISA telescope
is given in Fig. 1. In the NASA design,9 it is an afocal Cassegrain telescope, which consists of
four mirrors. The mirrors are named in sequential order following the beam from the big entrance
aperture: M1 (primary mirror), M2 (secondary mirror), M3, and M4. The current off-axis design
provides better performance in terms of diffracted light, in comparison to the on-axis configu-
ration. To provide excellent thermal stability of the telescope, the material of the M1 mirror is
chosen to be a ZerodurðRÞ with a thin silver coating. Nevertheless, the approach developed below
is of general applicability and is not specific of this brittle material.

The telescope is a part of the moving optical subassembly (MOSA), which also includes the
optical bench and the gravitational reference sensor. From the optical bench, the transmitted
beam propagates through the telescope and is sent to the distant satellite. The same telescope
is used for collecting the received beam. On the optical bench, part of the transmitted beam is
pinched off and used for the interference with the received beam. The phase of the interfero-
metric signal encodes information about the GW hðtÞ.

A thermal shield will surround the mirrors of the telescope, and only mirror M1 will be
exposed to the space environment.

3 Stray Light Problem in the LISA Telescope

In the presence of stray light, the phase measurements can be disturbed. The stray light can be
considered as an additional beam if it has the same polarization and optical frequency as the
reference beam. Stray light in LISA includes exterior contributions (stars, planets, etc.),

Fig. 1 Schematic of the Cassegrain four mirror telescope designed by NASA for the LISAmission.
The same telescope is used to expand the transmitted beam and collect the light of the received
beam.
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diffraction of the beam, multiple reflections in optics (ghosts), and scattering of the nominal
beams. The sources of scattering are:

1. Surface microroughness
2. Contamination: particle, molecular, biological on the surface and in the volume
3. Cosmetic defects: digs, scratches either due to the assembling of the optical components or

resulting from the impact of micrometeoroids
4. Backscattering in the optical fibers

A common way to describe scattering is the usage of the BSDF, which designates how the
scattering probability depends on the scattering angles. BSDF is the radiance of the scattering
surface normalized by the irradiance of the surface.10 BSDF is used by optical software (FRED,11

Zemax,12 Code V13) to perform stray light simulations. When optical and mechanical geometries
are defined and optical properties set, then a BSDF is assigned to each surface. Later, each stray
light path is identified. To avoid stray light, the optical designs generally use smooth, clean optics
(mirrors, beam dumps), black coating for support structures, unique optical designs, baffles, and
stops, etc.

3.1 Environmental Conditions: Particulates Environmental Model

The first step of stray light analysis due to micrometeoroid damage is to determine the particulate
environment for the satellite. This includes information about the flux, velocity, density, mass,
and directivity of the micrometeoroids. In the particular case of LISA, the environment of the
satellite is given in the LISA Environment Specification document.14 Charter 5 of that document
contains information about the micrometeoroid distribution. However, below we discuss a gen-
eral approach to the solution of the problem.

The flux-mass model for meteoroids at one astronomical unit from the Sun has been pro-
posed and presented by Grün et al.15 (see Fig. 2). It gives the total average meteoroid flux ϕGðmÞ
(sporadic+ stream average) in terms of the integral flux (i.e., the number of particles per square
meter, per year, of mass larger than or equal to a given mass m, impacting a randomly oriented
flat plate under a viewing angle of 2π). Except for Earth shielding and gravitational effects
(which are negligible at the LISA altitude of 50 Mkm), this flux is omnidirectional.16 The
Grün model accounts for averaging over all directions. Besides this, micrometeoroid streams
are not considered. This interplanetary flux is valid for the micrometeoroid mass range of
1 × 10−18 g to 1 g.

For the impact crater calculation, we use a density value of 2.5 g∕cm3 for all ranges of mass,
as was specified in the LISA Environmental model.14 However, since the mass density of the
micrometeoroids is not a measured quantity, a reasonable assumption should be used instead.
Another description of the density is given as a function of steps16 (see Fig. 2). This function will
be used in Sec. 3.4.
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Fig. 2 The Grün meteoroid flux-mass model (in black) and the step function of density distribution
(in blue).16
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As a first approximation, we use the constant value of meteoroid impact velocity 20 km∕s for
all the masses of micrometeoroids. This value is the typical mean velocity for a micrometeoroid
impact with a sun-orbiting body,17 and it is proposed by LISA environmental model.14

The space debris environment is not considered.
The next step is to apply this model to the investigated surface. For this, some parameters of

the mission are required: duration of the mission, nature of the critical surfaces (size, material,
orientation, shielding), etc. For the calculation of the number of expected impacts, we use the
Grün model14 and the following parameters:

• Nominal mission duration is 4 years (extended duration is 10 years).

• The primary M1 mirror diameter of the LISA telescope is 0.3 m. We assume that M1 is the
only mirror exposed to micrometeoroids.

Because the mechanical structure is unknown at the moment, no correction is made to
account for the shielding by the structure surrounding the telescope. The approach presented
in this paper corresponds to this worst-case scenario.

Since the flux ϕGðmÞ is a cumulative flux, to know the number of expected impacts in a
certain mass range (one bin), the difference between neighboring bins should be taken into
account. The result of the calculation is given in Fig. 3. The bin size is uniform in the logarithmic
scale. The ratio between neighboring bin size is 101∕10. The number of expected impacts is a
fractional value (different from integer2), as it is a statistical quantity. In the mass spectrum of the
meteoroid (see Fig. 3), we neglect the high mass tail, for which the cumulated flux is lower
than 1∕e2.

3.2 Effect of the Micrometeoroids

The hypervelocity impact of the optical surface causes a double effect in terms of scattering. The
direct result of the impact is a microcrater. It causes scattering inside of it and diffraction on the
border of the crater. From studies of lunar craters and craters in hardware returned from space,
it is known that the shape of the damage crater is approximately circular, independent of micro-
meteoroid shape or incidence angle.2 This is because hypervelocity impact is an explosive
release of energy in which heat diffuses outward from a point. In this paper, we use a single
parameter to describe the impact crater: the DCD. Below, we propose several methods to
calculate the DCD.

Another effect of the hypervelocity impact is the contamination of the surface by the ejected
material. There is an experimental evidence that ejection takes place due to the strength of the
hypervelocity impact.18–20 We cannot write a definite account as to whether contamination goes
to the mirror or to the structure around (including other mirrors). The danger with ejected
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Fig. 3 The expected number of micrometeoroid impacts on the M1 mirror, calculated according to
the Grün model, as a function of the micrometeoroid mass. The bin size is logarithmically uniform.
The total number of micrometeoroid impacts with mass >1 × 10−12 g is 92 for a 4-year mission and
231 for a 10-year mission.
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material is that it can contaminate other components in the system, which, for a given contami-
nation level, can generate a higher scattered light contribution to the photodetectors. In principle,
the amount of stray light caused by contamination may be of the same order or even larger than
that caused by the impact craters. The mechanisms for redeposition go well beyond the scope of
the paper, but we can place upper limits by supposing that the impacted mirror cannot not receive
more than 100% of the contamination it generates. So, in this paper, we derive an upper limit for
the contamination of the impacted mirror, by considering that all ejected matter is deposited
back. After DCD estimates, we give expressions to calculate the total mass ejected for single
micrometeoroid impact.

3.2.1 Estimate of the damage crater diameter

To calculate the size of the DCD, we use two different models2,21 with seven sets of parameters
in total.

The Hörz21 model is based on the analysis of three laboratory experiments performed by
independent investigators to calibrate lunar microcraters. The DCD D (cm) is found to be a
function of the mass of the projectile m (g):

EQ-TARGET;temp:intralink-;e001;116;531D ¼ C ×mΛ: (1)

The coefficients C (cm) and Λ are given in Table 1. The DCD as a function of mass for these
three Hörz models are given in Fig. 2.

Another model is based on a damage equation,16 which describes the physics of projectiles
impacting a target at high velocities. The DCD D in this case is given as

EQ-TARGET;temp:intralink-;e002;116;450D ðcmÞ ¼ K1Kcd
ζ
μρ

β
μvγ½cos α�ξρκt ; (2)

where K1 is a factor characteristic of the model, dμ (cm) is the micrometeoroid diameter, ρμ, ρt
(g∕cm3) are the densities of the micrometeoroid particle and target, respectively, v (km∕s) is
the impact velocity, α is the impact angle, the crater factor Kc is the ratio of the crater radius
to the crater depth, and it may be as high as 10 for brittle targets such as ZerodurðRÞ.16

The origin of the equation parameters is independent investigations (Gault, Fechtig, McHugh
& Richardson, and Cour-Palais), which are summarized in Ref. 16. Typical values of the param-
eters of Eq. (2) are given in Table 2.

As a conservative approach, the value of the impact angle α is set to 0°. In the LISA telescope,
the material for the primary M1 mirror will be ZerodurðRÞ ceramics with a density of
ρt ¼ 2.53 g∕cm3. ZerodurðRÞ is a brittle material. We assume that the coating on the mirror does
not affect the crater formation. We choose Kc ¼ 10 as the worst-case scenario.

The results of the different DCD calculations are given in Fig. 4. The difference between
different models (up to one order of magnitude) can be explained by the variety of the exper-
imental conditions in the study of hypervelocity impacts, the complexity of the physical phe-
nomena, and the different analytical approaches of the investigations. We assume that some of
the used models may overvalue or undervalue DCD for ZerodurðRÞ material. For this reason,

Table 1 log10 C and Λ coefficients of the Hörz model21 and Eq. (1). Each
set of the coefficients corresponds to an independent experiment. These
values were obtained with targets made of a glass type material and are
relevant for the ZerodurðRÞ M1 mirror of the LISA telescope.

log10 C Λ

Hörz 1 1.569 0.37

Hörz 2 1.793 0.396

Hörz 3 1.485 0.377
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we calculate the BSDF and perform optical simulations for each model separately. In the future,
new experimental data might help to make a preference among the various models listed above or
possibly new models.

3.2.2 Estimate of mass ejection

As a micrometeoroid impact is a microexplosion event, some mass will be ejected and can con-
taminate surfaces including the M1 mirror. Here, we consider this microexplosion process and
calculate the total amount of ejected mass Me.

To calculate Me, we use the equation derived by Gault18,19 following the analysis of a range
of experimental data:

EQ-TARGET;temp:intralink-;e003;116;269Me ¼ 7.41 × 10−6Kðρμ∕ρtÞ1∕2E1.133
i ðcos αÞ2ðSI unitsÞ ; (3)

where Ei is the projectile kinetic energy in Joule and α is the angle of impact. For brittle materials
such as ZerodurðRÞ, the coefficient K depends on the diameter dμ of the micrometeoroid: K ¼ 1

for >10 μm and otherwise K ¼ dμ ðmÞ∕10−5.
To derive a worst-case value, we assume that all the ejected mass will be deposited on the M1

mirror surface. As a result, using Eq. (3), we can calculate the mass ejected for each mass of
the micrometeoroid and so to build an appropriate M1 contamination model (see Sec. 3.3.2).

3.3 BSDF Calculations

As was mentioned above, the hypervelocity impact of the mirror surface by a micrometeoroid
can cause scattering for two reasons: from the impact crater and ejected contamination. Each of
them requires a specific analysis.
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Fig. 4 Calculated DCD with models listed above for micrometeoroids of mass 10−13 to 10−2 g,
impact velocity 20 km∕s, and micrometeoroid density 2.5 g∕cm2.

Table 2 Parameters for DCD calculation with Eq. (2) in case of brittle targets.16

Model K 1 ζ β γ ξ κ Kc

Gault 1.08 1.071 0.524 0.714 0.714 −0.5 10

Fechtig 6.0 1.13 0.71 0.755 0.755 −0.5 10

McHugh&Richardson 1.28 1.2 0 2/3 2/3 0.5 10

Cour-Palais 1.06 1.06 0.5 2/3 2/3 0 10
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3.3.1 BSDF due to crater damage

To calculate BSDF(θ) (θ is the scattering angle) from damage craters, we use the Peterson model,
which is devoted to calculating the BSDF of the scattering due to digs in optical components.4

We assume that modeling the scattering from a dig can apply to modeling the scattering from an
impact crater of the same diameter. In this model for a crater of a given diameter D, the scattered
light is divided into two contributions:

• “geometric” scattering or backscattering from surfaces inside the crater, considered as a
Lambertian scatterer of diameter D;

• diffraction of light that passes around the crater, considered as a circular mask of diam-
eter D.

In the Peterson model,4 the digs are considered to be circular, and the intensity of diffracted
light from a dig (crater) is calculated using the scalar diffraction theory in the Fraunhofer
(far-field) limit and Babinet’s principle. So, the total BSDF from digs (craters) is calculated
as the sum of the geometric and diffraction contributions:

EQ-TARGET;temp:intralink-;e004;116;542BSDFðθÞ ¼ NDD2

4
×
�
1þ π2D2

4λ2

�
1þ sin2ðθÞ

l2D

�
−3∕2

�
; (4)

where ND is the number of digs per unit area, D is the dig (crater) diameter, λ ¼ 1.064 μm is the
optical wavelength, and the roll-off angle4 is lD ¼ ð 4

π4
Þ13 λ

D. After integration over the range of
micrometeorite masses, the calculated BSDF for different models of DCD is given in Fig. 5. We
further proceed with FRED optical software in which the “ABg model” of BSDF is embedded.
This model is widely used to describe the scattering due to microroughness10,22 and involves only
three parameters: A, B, and g coresponding to a proportionality factor, a roll-of angle, and a
slope, respectively. To implement this Peterson model in the FRED software, we fit the resulting
BSDF (see Fig. 5) with the ABg model plus a constant term:

EQ-TARGET;temp:intralink-;e005;116;397BSDF ¼ A
Bþ ½sinðθÞ�g þ

R
π
: (5)

The first term in Eq. (5) corresponds to the diffraction of light that passes around the crater,
and the second term corresponds to Lambertian scattering of level R inside the crater. The fit of
the Peterson BSDF by the ABg model22 curve was previously used to simulate light scattering by
digs in the METIS coronograph.23

Let us now consider the backscattering from the primary mirror of NASA’s model of the
LISA telescope. The precalculated BSDF for different models of DCD is shown in Fig. 5.
The contribution to the backscattering fraction (BSF) due to the diffractive part varies according
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Fig. 5 Application of the Peterson model4 to the scattering from a surface damaged by microme-
teoroids. Assumptions: exposition duration is 4 years, exposition area is a disk with a diameter of
30 cm, and micrometeoroid flux is given by the Grün model.15 The names given to the BSDF
models are the same as the ones used in Sec. 3.2.1 in the calculation of the DCD.
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to the different models from 1.6% to 8.7% (5.4% on average over the seven models). All the rest
is due to Lambertian scattering. So in this particular case, methods based on percentage area
coverage10 give a reasonable estimate of the scattered light due to micrometeoroid damage.

The total integrated scatter (TIS) is a ratio of the total scattered power to the incident power.
TIS for different models and mission duration is given in Table 3. The values of TIS due to
micrometeoroid damage is significant.

The variations of the computed TIS values (Table 3) are large, due to the range of values (up
to a factor of 10) for the crater diameter. Presently, there is no reason to prefer or discard one of
the models, so we used all available models, from the most pessimistic to the most optimistic.
Further work on this topic is required to distinguish the best model to use.

3.3.2 BSDF due to ejected contamination

To calculate the BSDF due to ejected contamination, we assume that the size distribution of
particles can be described with the (IEST)CC1246 standard.24 It describes the number of par-
ticles Np (per 0.1 m2) whose diameter is greater than or equal to Dp by

EQ-TARGET;temp:intralink-;e006;116;347NpðS; CL;DpÞ ¼ 10jSj½log210ðCLÞ−log210ðDpÞ� ; (6)

where S is the slope of particle size distribution, CL is the cleanliness level, andDp is the particle
diameter in μm.

This is a common way to describe the distribution of the contamination on an optical surface.
The model is implemented in FRED optical software and is easy to use as it requires only
a few parameters (λ, S, CL, etc.) and relies on the properties of Mie scattering. Here, we will
calculate the cleanliness level using the definition of the CL parameter [the largest particle
(in microns), which can be found on a surface of 0.1 m2; see Eq. (6)] and using the following
considerations:

• In the regime of hypervelocity micrometeoroid impacts, the largest ejected particle mass is
reported to be proportional to the total mass ejected.20 For simplification, we assume the
worst case when the coefficient of proportionality is equal to one: the biggest ejecta carries
most of the ejected mass, up to the total ejected mass (the coefficient is 1). The ratio of 1 is
the worst-case scenario. Further numerical and experimental investigation in this field is
required. With this assumption, the most massive particle is ejected from the biggest
impact micrometeoroid. We apply this assumption only for the largest particle on the sur-
face. The distribution of all the rest ejected particles is assumed to be given by the (IEST)
CC1246 standard.

• Ejected mass is mainly target mass (ZerodurðRÞ) and has the same density as a target
material. Ejected particles are spherical.

• All the ejected mass deposits back onto the surface.

Table 3 TIS for the nominal and extended mission duration.16,21

Model TIS, 4 years TIS, 10 years

Hörz 1 2.35 × 10−5 9.02 × 10−5

Hörz 2 2.52 × 10−5 1.02 × 10−4

Hörz 3 1.23 × 10−5 4.79 × 10−5

Gault 2 × 10−4 7.44 × 10−4

Fechtig 5.26 × 10−3 2.05 × 10−2

McHugh&Richardson 1.03 × 10−4 4.2 × 10−4

Cour-Palais 4.04 × 10−4 1.49 × 10−3
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Using the flux calculated in Sec. 3.1 and ejected mass in Sec. 3.2.2, we find that after 4 years
of exposition, we will have maximum ejected mass equal to 1.14 × 10−4 g, which corresponds to
a diameter of a sphere equal to 441 μm, so CL ¼ 441.

To find the slope S, we use the mass conservation law. The total mass of particles, which is
given by this distribution, should be equal to the total mass ejected over the exposition duration:

EQ-TARGET;temp:intralink-;e007;116;675

X∞
Dp¼0

Δ½NpðS; CL;DpÞ�
Sm

0.1 ðm2Þ ×mðDpÞ ¼
X∞
dμ¼0

MeðdμÞ × ΔfϕG½mðdμÞ�g ; (7)

where Sm is the M1 mirror area, the mass of the micrometeoroid mðxÞ is a function of its equiv-
alent sphere diameter x and Me is the ejected mass given in Sec. 3.2.2, ϕGðmÞ is the integrated
flux given in Sec. 3.1, Δ is a difference operation between the neighboring bins of the distri-
bution (Np and ϕG are the cumulative distributions). On the right side of Eq. (7) is the total mass
ejected due to all micrometeoroid impacts, and in the left side is the total mass of contaminations,
assuming that the distribution of particles on the surface will be given by Eq. (6). When the slope
parameter S is chosen correctly, these two masses will be equal.

We find that for 4 years, the absolute value of the slope is equal to S ¼ 0.8738, which is quite
close to the value 0.926 used in the CC1246D standard. For 10 years of exposition: CL ¼ 743.2

and S ¼ 0.7668.
Up until this point we have ignored the silver coating of the ZerodurðRÞ mirror. We have

assumed that only ZerodurðRÞ material is ejected. However, we can also assume that the silver
coating will play a role in the amount of ejected mass, so in the limiting case we assume that only
silver will be ejected. We consider this case only for the mass ejection calculation. In all other
cases only uncoated ZerodurðRÞ material is considered. In this case in Eq. (3), the coefficient is
K ¼ 1 for all diameters of the micrometeoroid. The corresponding S and CL coefficients are
S ¼ 1.2827 and CL ¼ 216.6 for 4 years of mission duration and S ¼ 1.0998 and CL ¼ 365 for
10 years.

3.4 FRED Simulations

The backscattering in the direction of the photodiode of the LISA telescope has been calculated
using the FRED simulation software. The scattering model has been applied for the M1 telescope
mirror only. The scattering calculation includes two main items: due to impact craters and due to
ejected mass contamination.

3.4.1 Scattering due to impact craters

To calculate the scattering due to impact craters in FRED software, we use two embedded BSDF
models: Lambertian and ABg. The coefficients of these models were obtained from the fit of
total Peterson’s BSDF, as was described in Sec. 3.3.1. The calculation results are summarized in
Table 4. Despite the high values of the TIS (see Table 3), the values of backscattering are low,
as the coupling factor of the M1 mirror is low.

To study the impact of micrometeoroid parameters on the final result, we consider a situation
when the density of micrometeoroid follows the step distribution given in Fig. 2 (blue curve), and
we simulate the distribution velocities following Taylor’s17 observations, which is a re-evaluation
of the Harvard Radio Meteor Project data of about 20,000 meteor observations. The result
is summarized in Table 5 (third column). For comparison, the second column contains the values
of BSF with the assumptions used in the paper: constant velocity v ¼ 20 km∕s and density ¼
2.5 g∕cm3 of the micrometeoroid. No qualitative change is observed. The values are slightly
lower, as the considered density of micrometeoroids is lower.

The FRED divot analysis approach was used by NASA25 to estimate the micrometeoroid
damage of the M1 mirror. In their work, the total area occupied by the crater was modeled
as a single divot placed on the M1 mirror surface. Depending on the position of the divot
on the mirror surface, the BSF obtained in their study is in range from 1.73e-14 to 3.33e-13,
which is compatible with the values obtained in this study.
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3.4.2 Scattering due to ejected mass contamination

The FRED calculation of contamination was performed with the embedded 1246C24 standard. The
values of CL and S used in the simulation are listed in Sec. 3.3.2. The computed values of back-
scattering are summarized in Table 6. As ZerodurðRÞ mirror will be coated with silver, it would
certainly cause an effect of contamination population, and so the real value of scattering will be in
between two limit cases: mirror material is only ZerodurðRÞ and mirror material in only silver.

These values are compatible with the highest of the scattering data of Table 4 (6.6e-13 for
4 years and 2.5e-12 for 10 years). So the scattering contribution due to ejected mass is dominant
under the assumption that 100% of the ejecta contribute to the M1 contamination and should not
be neglected in stray-light estimates caused by the micrometeoroid impacts.

4 Conclusion

In this paper, we developed a method for the estimation of the stray-light due to the microme-
teoroid damage of optical surfaces. It consists of four steps. The first step is the flux calculation

Table 5 BSF for variable density and velocity of the micrometeoroids.

Model
BSF, 4 years
Constant ρ; V

BSF, 4 years
Variable ρ; V

Gault 2.6e-14 1.7e-14

Fechtig 6.6e-13 5.1e-13

McHugh&Richardson 1.3e-14 1.4e-14

Cour-Palais 5.2e-14 3.7e-14

Table 6 BSF due to ejected mass contamination for 4 and 10 years mis-
sion duration.

Mirror material BSF, 4 years BSF, 10 years

ZerodurðRÞ 4.93e-13 1.04e-12

Silver 2.16e-12 4.46e-12

Table 4 BSF for the nominal and extended mission duration in the LISA
telescope.

Model BSF, 4 years BSF, 10 years

Hörz 1 3.2e-15 1.2e-14

Hörz 2 3.4e-15 1.1e-14

Hörz 3 1.7e-15 6.4e-15

Gault 2.6e-14 9.5e-14

Fechtig 6.6e-13 2.5e-12

McHugh&Richardson 1.3e-14 5.4e-14

Cour-Palais 5.2e-14 1.9e-13
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based on the satellite environmental model. The second step is the calculation of the DCD
and ejected mass. The third step is the calculation of the corresponding bidirectional reflectance
distribution function using the Peterson model and the 1246C standard. The last step is
the calculation of the scattering with an optical software, for the detailed application to the
considered optical configuration. We have applied the method to the simulation of the scattering
of light in the LISA telescope, due to the damage to the primary mirror from the micrometeoroid
impact. The results suggest that even under the worst-case assumptions the impact craters
and the resulting contamination contribute to an acceptable scattering of light to the LISA
detectors.

It should be noticed that a contamination due to mass ejection gives a significant contribu-
tion. Further work should address a possible contamination due to ejecta toward mirrors other
than the primary mirror.

The main sources of uncertainty are in the modeling of the DCD and in the distribution of
ejected particles (shape and quantity) on the damaged surface. The modeling presented here
should benefit from any future improvements in the experimental data, particularly when optical
materials are used as targets for the hypervelocity impact experiments.

The method is straightforward to apply, to modify, and it can be used for any space optical
instrument with minor parameter changes. The code is available on GitHub.26 The model can be
used not only for reflective but also for refractive optics as well. The final result of the scattered
light calculation depends on the optical design of the telescope, in our case the beam expanding
telescope that is required to transmit the emitted beam to the distant spacecraft.
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