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Abstract. We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective
contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and
stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical
phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form
an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nano-
particle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging
was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the
photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring
dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these
drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete
Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to
the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing
signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow
cytometry. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.6.066012]
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1 Introduction
Photothermal (PT) imaging (PTI) of gold nanoparticles
(AuNPs) has been developed as a molecular specificity
approach for biomedical imaging in particular over the past
decade.1–11 In PTI, AuNPs are first biofunctionalized to bind
to specific targets, e.g., antigens on biological cells membranes
and then excited optically for selective imaging. The PT effect is
based on the transformation of light energy into heat. Under
optical excitation with specific wavelength, AuNPs can form
localized plasmonic resonance (LPR), an oscillation of the
electron cloud around the particle at a resonance frequency.5

Depending on the size and shape of the nanoparticle, this
frequency may be easily engineered to vary within the entire
visible spectrum and into the mid-IR region, creating a narrow
absorption spectrum. Thus, when illuminating the AuNPs
with a wavelength that suits their plasmonic resonance, a strong
absorption of light occurs and is followed by an energy release
in the form of heat. This heat creates environmental effects, such
as local refractive index changes that can be detected optically.
It should be noted that under sufficiently high excitation inten-
sities, AuNPs heating may cause structural damage to their
surroundings.

In order to avoid temperature buildup, time-modulated
pulsed excitation is used in PTI, where the excitation frequency
can change from several Hz to MHz. For this reason, PTI is not
suitable for highly dynamic cells in flow, for which the dynamics

frequency range overlaps with the excitation temporal frequency.9

Thus, the motivation for increasing data acquisition and process-
ing rate of PTI is clear. Fast PTI will allow a significant increase
of throughput suitable for flow cytometry so PTI may become a
common diagnostic tool, rather than limited to research.

Interferometric phase acquisition methods, such as differen-
tial interference contrast,1 optical coherence tomography
(OCT),2,6,7 and digital holographic microscopy (DHM),9,11,12 are
all capable of detecting optical phase changes induced by refrac-
tive index variations due to the temperature rise in the medium
surrounding the heated AuNPs. OCT-based PTI has produced
the best results so far, in terms of signal-to-noise ratio (SNR).
However, OCT imaging is typically based on either scanning
point-detection schemes or scanning line illumination, where
both require costly equipment, especially when PTI of dynamic
objects is needed.

In general, PTI techniques depending on scanning to obtain
the full field of view (FOV) hold little potential in cost-effective
imaging of dynamic objects. Moreover, in cases where the opti-
cally heated AuNPs change their position in the FOV during
PTI, smeared images are formed, which affects visualization
capabilities. In addition to the observation of cells during flow,
the expansion of nonscanning PTI methods for usage with
dynamic samples can be essential for capturing movements of
tagged cellular organelles, tissue displacements, and thus, pros-
pects to address applications which are currently hard to access
by scanning-based PTI. We have recently proposed different
methods for wide-field, scan-free PTI, based on our DHM
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systems.9,11 Since a large region of interest (ROI) is imaged by
a single camera exposure, we are also able to image highly
dynamic biological samples.13,14

Flow cytometry is a well-established method for high-
throughput measurements and sorting of flowing biological
cells, typically utilizing molecular specificity obtained by fluo-
rescent biomarkers. To obtain high throughput, large amounts
of cells flow through the device to produce large databases
per sample in a short time. Imaging flow cytometry sacrifices
throughput and cell flow velocity for better image quality
and spatial data.15,16 For this goal, AuNPs hold a significant
advantage over fluorescent biomarkers, which tend to photo-
bleach, followed by signal degradation over time.17 AuNPs
do not lose their efficiency before reaching significantly high
excitation powers, and PTI keeps the same SNR during long
courses of time. Moreover, AuNPs heating makes them attrac-
tive as specific bioagents for heating therapy.

Over the past decades, with the development of high-speed
cameras, several methods for imaging dynamic cells have been
developed. Some of them involve spectrally coded imaging18

and focus-stacking phase imaging.19 These methods use high
frame-rate sensors of over 3000 frames per second and may cap-
ture from tens to thousands of cells per second, flowing at a
speed of between 10 and 40 mm∕s, significantly lower than
flow cytometry but in the physiological range of blood flow.20

In this paper, we propose a simplified implementation of
PTI for imaging cells in flow and new image processing
principles for improved computational efficiency, with the
potential for future integration in imaging flow cytometers. The
new PTI processing approach increases the computation speed
by decreasing the window size of the spectral analysis and a
combination of the Goertzel discrete Fourier transform (DFT)
with sliding DFT algorithms.21 Both approaches significantly
increase the potential of PTI-based real-time imaging flow
cytometry.

2 Methods

2.1 Optical Setup

For recording digital off-axis image holograms, we use a sim-
plified interferometer22 that is illuminated by a low-temporal-
coherence source. As shown in Fig. 1(a), our imaging beam
is originated from a titanium:sapphire laser (Coherent, Micra-
5, λ0 ¼ 780 nm, ΔλFWHM ¼ 10 nm, up to 100 mW∕cm2, at
the maximum imaging speed). The sample is illuminated by
the condenser lens L1 (f ¼ 300 mm). The light that is transmit-
ted by the sample is then magnified by a microscope objective
(40×, NA ¼ 0.65, Newport), passes the tube lens L2 (f ¼
150 mm), and enters the self-interference module.16 This
module interferes the image of the sample beam with its slightly
shifted version to obtain an off-axis angle between the interfering
beams, which is achieved by a slight tilt of one of the mirrors, so
that the sample details in one beam overlap with empty locations
in the shifted beam. The resulting interferograms are recorded by
a CCD camera. Here, we choose to work with a resolution of
2 μm, which is enough to acquire PT signals from the cells,
in order to image a large FOV. Note that our goal here is not
to see the binding sites of the AuNPs on the cells but rather
just to obtain PT from the labeled cells during fast flow.

The AuNPs excitation arm is comprised of a DPSS laser
(Laserglow, λ ¼ 532 nm), which is expanded by a 1∶10 beam
expander (composed of lenses L3 and L4), and focused onto

the AuNPs-labled sample by L5 (f5 ¼ 200 mm), where AuNPs
LPR excitation occurs. The excitation power on the sample is
33 kW∕cm2, which is independent of the imaging speed. The
excitation beam is later filtered by long-pass filter LPF and is
not detected by the camera. The light intensity of the DPSS
laser source is temporally modulated by a signal generator, at
frequencies lower than half the camera frame rate, to maintain
proper sampling under Nyquist criteria for further spectral
analysis.

2.2 Sample Preparation and Cell Flow Experiment

For PTI assessment of moving targets, we used the interfero-
metric module to image cells flowing through a microfluidic
channel. We used MDA-MB-468 breast cancer cells that express
high levels of epidermal growth factor receptor (EGFR). AuNPs

Fig. 1 Sample setup for dynamic PTI of cells in flow. (a) The PTI
system, comprised of a simplified interferometric setup (red beams)
and PT setup (green beam). In the interferometric path, a titanium:
sapphire (Ti:sapph) laser beam is condensed by lens L1 and imaged
by MO and tube lens L2. Prior to reaching the sensor, the image
enters an off-axis self-interference Michelson interferometer (BS,
M1, and M2). In the PT excitation path, a signal generator modulates
a DPSS laser (532 nm), which is expanded and then focused on the
sample plane. Later, a low pass filter LPF blocks the excitation beam
from entering the interferometric module. (b) Top view of the flow
chamber, placed in the sample plane. Two syringes with cells are
coupled to the flow chamber and control the flow. The inset shows
a zoom into the imaging and excitation beam location. (c) The
arrangement of the interfering beams upon the camera plane, and
circles 1 to 4 represent cells flowing in the channel.
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were synthesized and biofunctionalized by conjugating them
with anti-EGFR antibodies (Sigma, Monocolonal Anti EGF
Receptor, Clone 225).9

To label the cells with AuNPs prior to the experiment, cells
were floated and incubated with a solution of the biofunction-
alized AuNPs for 30 min. After incubation, the solution was
centrifuged at 1200 rpm for 5 min, and the pellet was extracted
and placed in a syringe with 5 ml phosphate buffered saline.

The flow setup comprised of input–output coupled syringes
that controlled the suitable flow direction throughout the experi-
ment. A flow chamber (Ibidi, μ-slide, VI 0.1) and supplementary
flow equipment were used to couple the syringes to the sample.
Pressure was manually applied to the syringe in order to induce
flow of the cells through the microfluidic channel. Both the
imaging and excitation beams were aligned to fit the ROI within
the microfluidic channel, positioned horizontally to keep gravity
from disturbing the flow.

Since the self-interference method consists of the interfer-
ence of two identical beams, both holding the same spatial infor-
mation of the sample, the off-axis angle between them is chosen
to be in the flow direction. Moreover, the angle was adjusted in
such a way that it allows two different parts of the same ROI but
in opposite phase, to appear simultaneously on the camera FOV,
as they are reflected from the two mirrors as explained in Fig. 1
(c). With this alignment, we see the same cells moving twice as
they flow through the FOV; in frame k, only cells 1 and 2 are
excited by the excitation beam. Cell 3 appears on the sensor with
an opposite phase, as its image is originated from M2.
Therefore, although the phase profile of all cells will be visible
(cells 1 and 2 will have positive phase and cell 3 will have neg-
ative phase), we will expect a PT signal around frame k only
from cells 1 and 2. In frame kþ Δ, however, cell 3 reaches
the excitation beam and is now imaged by M1. Around
frame kþ Δ, cell 3 will produce PT signal, and cell 4, which
is not excited, will not produce PT signal. This gives this con-
figuration the advantage of viewing the same cell with and with-
out excitation during the flow of the cells, for evaluation
purposes, effectively creating an inherent control sample.

2.3 Raw Data Acquisition

The single-axis off-axis interferogram of the sample can be
expressed as

EQ-TARGET;temp:intralink-;e001;63;283I ¼ IM1 þ IM2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IM1IM2

p
cos

�
φðx; yÞ þ 2π

λ
x sin α

�
;

(1)

where IM1 and IM2 are the intensities of the sample beams and
its shifted version, respectively, φðx; yÞ is the phase difference
between the beams, proportional to the sample thickness and
the refractive index differences within the beam path, λ is the
wavelength, and α denotes the relative angle between both
beams relative to the horizontal axis x. The second term of
the cosine represents high-spatial-frequency phase modulation,
dependent on α, effectively acting as a spatial carrier frequency
of the sample phase φðx; yÞ.

The recorded off-axis interferogram is then digitally two-
dimensional Fourier-transformed and one of the cross-correla-
tion terms is spatially filtered and centered. The argument of
a reverse Fourier-transform of the result represents the phase
of the sample, which can be unwrapped digitally to avoid 2π

ambiguities.23,24 The sample phase itself is a function of both
the local refractive index differences Δn and the physical thick-
ness of the sample Δz. Therefore, changes in any of these
parameters will be detectable by the DHM system.12

2.4 Conventional PT Data Analysis and Its
Problems in Imaging Dynamics

For PTI, we used a time-modulated laser excitation that created
plasmonic resonance around the AuNPs. The modulated
excitation intensity induces time-modulated heat and a corre-
sponding spectral phase signal while simultaneously avoiding
heat accumulation. When analyzing the pixel-by-pixel spatial
phase information, strong signals are present around the location
of AuNPs. Two different approaches to view these phase
changes may be used; the lock-in analysis,10 which is generally
faster but less cost-effective and captures solely the PT signal,
and spectral analysis of the full phase maps.

According to the spectral analysis approach, we perform a
Fourier transform of the time-varying phase maps pixel-by-
pixel, binning the excitation frequency, and Fourier transform
back, which results in a PT phase map indicating the location
of the AuNPs in the sample. For nonstationary samples such as
flowing cells, this analysis approach might fail. Flowing cells
often show a broad frequency range that might overlap with
the PTI excitation frequency and, thus, result in unwanted
noise in the final PT phase map.

2.4.1 Sliding DFT windowing for more efficient dynamic
PTI

The goal of dynamic PTI is to observe rapidly changing phase
signals originating from nonstationary AuNPs that are dispersed
within a sample. To optimize the processing, we only analyze a
limited number of frames N at every evaluation cycle, instead of
processing all frames to form the PT image. This is enabled by
the breakdown of an entire frame-by-frame temporally recorded
sequence of PT images into smaller temporal subfractions (tem-
poral windows); that allows the evaluation of data from a sample
moving laterally during the phase sequence measurement.

From Parseval’s theorem, we know that the spectrum noise
floor of a signal is related to the number of sampled data points,
in our case number of image frames, and as we reduce the num-
ber of processed frames per measurement, it results in poorer
SNR values. Thus, there is a tradeoff between SNR and signal
smearing, and there exists an optimal measurement time that
minimizes movement smearing effects while keeping good
SNR. This temporal window is specific for different optical set-
ups and is influenced by the sensor recording speed, excitation
frequency, sample velocity, and stationary signal SNR, but the
more critical parameter is the lateral movement in pixels during
a single excitation cycle. This pixel number per excitation cycle
should be as low as possible, along with a sufficient sampling
rate of the sensor. In this work, we have empirically tested the
system performance for different window sizes. The PTI signal
is derived from the excitation frequency value in the signal tem-
poral spectrum, where only a single frequency bin needs to
be further processed. Thus, there is no benefit in performing
a full spectrum fast Fourier transformation (FFT). We therefore
use the Goertzel algorithm15 in order to calculate the k’th bin
for every window. The algorithm for finding the DFT value of
variable x at spectral bin k is
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EQ-TARGET;temp:intralink-;e002;63;752XðkÞ ¼
XN−1

n¼0

xðnÞe−j2πnk∕N

¼ xð0Þ þ xð1Þe−j2πk∕N þ : : :

þ xðN − 1Þe−j2πðN−1Þk∕N; (2)

whereN is the window size, or the number of frames in our case,
and xðnÞ represents the phase values of frame n.

Lastly, recalculation at each time step of frame-sequence
DFT is redundant. Adding a new frame to an existing windowed
frame DFT does not force a whole new calculation. It is possible
to reuse the data from the previous calculation to compute
only the updated portion of information from the new frame.
Thus, the spectral bin k, at the next frame will be
EQ-TARGET;temp:intralink-;e003;63;588

Xnþ1ðkÞ¼ xð1Þþxð2Þe−j2πk∕N þ : : : þxðN−1Þe−j2πðN−2Þk∕N

þxðNÞe−j2πðN−1Þk∕N; (3)

where the index n refers to the n’th frame. Equation (3) resem-
bles the bin of the last frame, with a shift. We can look at
EQ-TARGET;temp:intralink-;e004;63;515

XnðkÞejπk∕N ¼ xð0Þej2πk∕N þ xð1Þ þ xð2Þe−j2πk∕N þ : : :

þ xðN − 1Þe−j2πðN−2Þk∕N; (4)

and can substitute Eq. (4) to Eq. (3) to obtain the final expression
for the relation between both frames

EQ-TARGET;temp:intralink-;e005;63;443Xnþ1ðkÞ ¼ ½XnðkÞ − xð0Þ�ej2πk∕N þ xðNÞe−j2πðN−1Þk∕N:
(5)

Note that in the resulting sliding DFT algorithm in Eq. (5),
the number of calculations for each frame does not depend on
the window size, which is highly beneficial for large frame
sequences. This is accomplished by shifting the spectral values
across the relevant frames of an evaluated series. Data of non-
relevant frames are dropped while values of new relevant frames
are added.15 In short, when the value of the k’th bin is progressed
by one frame, the new data replace the first frame of the previous
window and all other data are multiplied appropriately to
match Eq. (2).

The value of the parameter k can be calculated according to

EQ-TARGET;temp:intralink-;e006;63;276k ¼
���� fexcitationFR

N

����; (6)

where fexcitation is the excitation frequency and FR is the frame
rate of the camera.

Another crucial factor for increased throughput capabilities is
the maximum velocity of the cells during flow, which should be
derived from the optical parameters of the system. If we require
that an element of the size of a pixel in the sensor plane will not
move more than one pixel during a single exposure, the follow-
ing equation will describe the maximum blur-free cell velocity:

EQ-TARGET;temp:intralink-;e007;63;143vmax ¼
FR

N
·
p
M

; (7)

where p is the camera pixel size and M is the magnification of
the imaging system. Note that the factor 1∕N is due to the tem-
poral analysis that PTI requires. The factor accounts for the

window size, during which any cell movement will cause blur-
ring of the signal itself. These blurring artifacts can be removed
as demonstrated in Sec. 3.3.

Equation (7) shows an inverse relation between the cell
maximum velocity and the optical magnification. Thus, by using
magnification of 5× (rather than 40×), our system increases its
throughput by a factor of 8, similar to other existing imaging
cytometers. It is noteworthy that the amount of data acquired
by phase imaging is larger than bright-field microscopy, adding
more information regarding the imaged cells; therefore, overall
data throughput effectively increases as well.

3 Results
Due to our optical design, from each flowing cell we get two
data sets. The first dataset is the PTI data, where the cell
image is backreflected from mirror M1, corresponding to the
time when it moves through the excitation beam and the
AuNPs act as modulated heat sources, producing PT signals.
Here, we expect a PT signal matching across the entire cell
area. The second dataset, on the other hand, is where the cell
image is formed from the backreflection fromM2 and represents
the time slot when it is not affected by the PT excitation. When
looking at the phase images, both datasets can be easily distin-
guished, as the cells appear in opposite phase contrast.

When looking at the PTI images, we would expect the cells
to show no PT signal when they are not excited. However, as
mentioned in Sec. 2.3, the phase is proportional to the sample
thickness and its refractive index, i.e., when a cell is moving
across the ROI fast enough, with temporal frequency that over-
laps with the PT excitation, it causes rapid changes in both
parameters regardless of the PT excitation. This may create
false-positive readings of cells, which are normally not expected
to produce any PT signal, as well as cause smearing of the real
PT signals of the marked cells. This is demonstrated in Fig. 2
(Video 1), where a nonspecific rise of the entire spectrum is evi-
dent when the nonexcited cell passes through the marked pixel.
In contrast, the excited cell modulates the phase as expected to
create a distinct PT signal in the excitation frequency. To reduce
this unwanted effect, we divide the excitation frequency bin by
another bin from the same frame, which greatly increased SNR.

3.1 Algorithm Efficiency

For dynamic measurements on moving objects with perspective
real-time possibilities, fast processing capabilities are essential.

Fig. 2 Demonstration of PT signal specificity. (Video 1, MP4, 8.32 MB
[URL: http://dx.doi.org/10.1117/1.JBO.22.6.066012.1]).
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Therefore, we compared the runtimes of the suggested sliding
DFT and the conventional FFT algorithms.

A set of 3500 phase maps of 13 × 34 pixels each, represent-
ing an ROI of 24 μm × 63 μm within the FOV, was used for
this comparison. These 3500 phase maps were analyzed by both
algorithms for various window size N with values ranging from
5 to 256. Each configuration was run 500 times, and the average
values of calculation times were compared, as shown in Fig. 3.

The runtime results for N ¼ 5, 8, 16, 32, and 64 frames are
shown in Fig. 3(a). While the algorithm based on performing
an FFT on each window became slower when the number of
frames increased, the sliding-DFT algorithm was evidently
hardly affected by the number of frames. For N ¼ 5, the FFT
average run time was 201 ms, which was already too slow to
produce video-rate calculation time (25 to 30 fps). In contrast,
the sliding-DFT algorithm runtime for the same window size
was 29 ms, which is sufficient for video-rate processing of
PT signals. For N ¼ 64 frames runtimes were 1240 and 30 ms
for FFT and sliding-DFT algorithms, accordingly.

From Fig. 3(b), we can see an increase in the ratio of the FFT
and sliding-DFT computation times as the number of frames
increases. This trend demonstrates clearly the advantage of
implementing sliding DFT in dynamic PTI, especially for a
large number of frames. Using the sliding-DFT algorithm
with a small window of five frames was 6.9 times faster than
the conventional FFT algorithm, which represents a significant
improvement. For a window size of 16 frames, already a ratio of
20 was measured, whereas for larger windows even several
orders of magnitude of improvement were achieved.

3.2 Windowing

With large time windows, we get more data, hence enhancing
the SNR, but the dynamic nature of the sample may cause
smearing of the signal due to sample movement within that
time frame. Therefore, we first qualitatively analyzed the signal
appearance while changing the number of frames in the window
in relation to frame rate and excitation frequency.

In order to test a wide range of window sizes N without
smearing the signal too much, we chose a relatively slow mov-
ing cell that moved at a speed of 200 μm∕s. The acquisition
frame rate of the camera was 2000 fps and the excitation
frequency was set at 900 Hz. In Fig. 4, we compare the PTI
of the same frame as calculated with two different window
sizes. As evident from Figs. 4(a) and 4(c), the signal is stronger
and wider when we increase N, where a true signal should
appear. From Figs. 4(b) and 4(d), however, we see that for a

larger window, a false signal appears at the edges of the moving
cell, caused by the movement itself, as explained in Sec. 3.

The graphs in Fig. 5 show the cross-section of a PT true sig-
nal smear (in pixel units) and the signal rise as a function of
window size. As expected, both the SNR [Fig. 5(a)] and smear-
ing [Fig. 5(b)] increased for larger windows. Note that the large
FWHM for N ¼ 5 that can be seen in Fig. 5(c) is caused by the
low SNR and the proximity of the signal maximum to
the noise floor. The exact optimal window size is specific for a
certain system and an experiment setup. It is generally recom-
mended to work with the smallest window size that still produ-
ces clear signals. For our measurements, we have found that
N ¼ 16 achieves acceptable results.

3.3 Dynamic PTI with Noise Reduction

As proposed in Sec. 3, the false signals evident in Fig. 4(d) can
be significantly reduced. This feature of the algorithm is shown
in Fig. 6 (Video 2).

In this video, the brighter cells are the ones that are stimu-
lated by the light of the excitation beam and are expected to form
PTI signals, whereas the darker cells, or reference cells, are not
influenced by the beam and should not form any distinct spectral
signal on the excitation frequency. At first, only the excitation

Fig. 3 Run time of (a) the sliding-DFT algorithm and conventional FFT algorithm and (b) the ratio
between them (FFT/sliding-DFT) as a function of window size, averaged over 500 runs.

Fig. 4 PT signals at a temporal window size of (a, b) N ¼ 8 frames,
(c, d), N ¼ 64 frames, and the corresponding quantitative phase
images of the same cell as imaged by each mirrors individually.
The excited cell is in (a, c, e) and the nonexcited cell with opposite
(negative) phase values is in (b, d, f). Dashed red lines indicate
the location of the cross-section graphs shown in Fig. 5.
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frequency bin is considered, and we do see strong “ghost” sig-
nals at the edges of the cells moving in the flow direction. These
signals are more visible around the reference cells as they pro-
duce no real PT signal, but they do also appear on the excited
cells as well. Since these signals are spectrally broadband, an
increase of the excitation frequency spectral data is accompa-
nied by a similar increase at the neighboring bins. Therefore,
dividing the excitation frequency bin by a nonexcitation bin
identified the real PTI signals that are originated by the presence
of nanoparticles, rather than by the impact of cell flow. This is
shown in the end of Video 2, where the reference cells pose no
signal as a response to the excitation frequency.

4 Summary and Conclusions
Due to the growing interest in AuNPs and the prospects of using
them as biomarkers, improved modalities are needed to explore

the LPR-based imaging capabilities that are formed by the
particles. Full-field OCT and lock-in methods are capable of
dynamic PT imaging of AuNPs but with a tradeoff of high
cost. In this paper, we have presented a cost-effective system
for full-field dynamic PTI of living cells in flow and an
improved algorithm, which is based on a sliding window con-
cept for fast data processing. This cost efficient interferometric
phase microscopy approach allows the observation of living
cells in flow and rapidly produces series of full phase maps
of the entire FOV, in addition to the PT molecular-specific
signals.

Our system is based on a simple microscope, with an inter-
ferometer add-on at the exit port and a PT excitation arm on the
sample. The interferometer is used for phase acquisition of the
dynamic samples while the excitation arm triggers the PT effect,
which is manifested in phase changes retrieved from cells
labeled with functionalized AuNPs. The principle of flowing
cells through a microchannel in combination with an adapted
alignment of the Michelson-interferometer module enabled the
self-referencing concept, in which the same cells have been used
as both target and control cells, depending on whether they have
been under excitation or not in a certain FOV.

We have shown that for rapid dynamic imaging, it is neces-
sary to analyze a smaller number of frames for each PT map as
larger frame numbers may create artifacts of the signal such as
smearing of a targeted cell, or a ghost signal of a nontargeted
cell, resembling motion-blur in imaging. While the former arti-
fact does not ordinarily affect the detection results of targeted
cells, the latter might lead to false-positive readings. We suc-
ceeded in eliminating these ghost signals by spectral back-
ground deduction and thresholding. Other artifacts shown in
Fig. 6 are background flashing, caused by medium flow, as
well as actual waves of the liquid originated by the PT effect

Fig. 5 Cross-sections of the PTI images at the middle of the cell, indicated by the dashed red line in
Figs. 4(a) and 4(c), as calculated with different values of window size N. In (a), the PT signals
shown are on the same scale, in (b) the self-normalized signals are shown. In (c), both the FWHM
and maximum PT signal as a function of N, normalized to the maximal value, are shown.

Fig. 6 Demonstration of noise reduction on dynamic PTI data. On the
top image, white cells are cells under PT excitation and black cells are
with no excitation. (Video 2, MP4, 10.9 MB [URL: http://dx.doi.org/10
.1117/1.JBO.22.6.066012.2]).
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on the cells. This noise may be further reduced by implementing
edge detection algorithms to separate cells from background.

Since every PTI system has its own optimal window size,
depending on the target velocity, camera frame rate, and exci-
tation frequency, we conclude that the well-known FFT
algorithm, with computational complexity of the order of
N · log N, can significantly limit the capabilities of the PT sys-
tem for real-time imaging. Therefore, we implement a combi-
nation of algorithms that eliminates window size dependency
frame-by-frame. The Goertzel algorithm is used to calculate
only the necessary spectral data from the first N frames. Then,
for every frame we apply the sliding-DFT algorithm, the com-
putational complexity is independent of N and can only be
related to the number of pixels. We have shown that using
this algorithm, the computation time is almost independent of
the window size and much faster than the FFT. We could dem-
onstrate processing times in the range of 30 ms per frame while
keeping a frame rate of over 30 fps.

The proposed system was set for feasibility studies regarding
expanding PTI capabilities to dynamic imaging and has demon-
strated 0.2 mm∕s flowing speed (using 2000 fps). However,
recent imaging flow cytometry methods have the ability of
acquiring data of thousands of cells per second with physiologi-
cal velocities of 10 to 40 mm∕s. As suggested by Eq. (7), the
proposed system is potentially capable of acquiring PTI within
these limits. Using an optical microscopy system with a mag-
nification of 5×, and camera pixel size of 20 μm, for example,
while increasing the frame rate to 4000 fps, the imaging system
will be able to handle cells flowing at 16 mm∕s. It should be
noted, however, that the trade-off between throughput and res-
olution should be taken into consideration per application.
Further adjustments of the optical parameters of the system,
using similar techniques utilized in imaging flow cytometry
to increase throughput,25 are expected to allow faster flowing
speeds in PTI as well.

This analysis is valid for fast acquisition of PTI for off-line
efficient processing. Real-time PTI will still be limited to the
processing power of the computer and algorithms, which may
be further improved in the future. For instance, we may choose
to analyze PT images of only a small ROI, or only choose
relevant pixels after image segmentation to further improve
the computational analysis time to be smaller than 30 ms per
frame, or moreover using graphics processing units for parallel
computing.

To conclude, with the emergence of AuNPs as contrast agents
and PTI methods for specific molecular imaging, dynamic PTI
capabilities are crucial for high-throughput measurements and
flow cytometry-based classification of specific cell populations.
Toward this goal, we have demonstrated that the proposed
method is capable of dynamic, fast-processing PTI, and simulta-
neously provides rapid processing for regular quantitative imag-
ing, which is essential for deriving cellular parameters, such as
volume and dry mass. We thus expect that the proposed dynamic
PTI concept will be integrated in future multimodal quantitative
phase imaging systems, and will assist in providing specificity in
phase imaging of rapidly changing samples, with an option for
cell population depletion by PT treatment.
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