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Abstract

Purpose: Automatic outlining of different tissue types in digitized histological specimen
provides a basis for follow-up analyses and can potentially guide subsequent medical decisions.
The immense size of whole-slide-images (WSIs), however, poses a challenge in terms of com-
putation time. In this regard, the analysis of nonoverlapping patches outperforms pixelwise seg-
mentation approaches but still leaves room for optimization. Furthermore, the division into
patches, regardless of the biological structures they contain, is a drawback due to the loss of
local dependencies.

Approach: We propose to subdivide the WSI into coherent regions prior to classification by
grouping visually similar adjacent pixels into superpixels. Afterward, only a random subset of
patches per superpixel is classified and patch labels are combined into a superpixel label. We
propose a metric for identifying superpixels with an uncertain classification and evaluate two
medical applications, namely tumor area and invasive margin estimation and tumor composition
analysis.

Results: The algorithm has been developed on 159 hand-annotated WSIs of colon resections and
its performance is compared with an analysis without prior segmentation. The algorithm shows
an average speed-up of 41% and an increase in accuracy from 93.8% to 95.7%. By assigning a
rejection label to uncertain superpixels, we further increase the accuracy by 0.4%. While tumor
area estimation shows high concordance to the annotated area, the analysis of tumor composition
highlights limitations of our approach.

Conclusion: By combining superpixel segmentation and patch classification, we designed a fast
and accurate framework for whole-slide cartography that is AI-model agnostic and provides the
basis for various medical endpoints.
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1 Introduction

With the introduction of slide scanning systems into pathological workflows, the prerequisite has
been met to introduce machine learning algorithms into diagnostic routines. Due to their large
size of over 10 billion pixels, however, digitized histopathological whole-slide-images (WSIs)
pose a challenge to automatic image analysis approaches. When working with such large images,
technicians are oftentimes confronted with compromising computational efficiency for segmen-
tation and classification accuracy. Especially in the clinical environment, however, both sides of
the coin are equally desirable. This work focuses on how semantic segmentation of tissue classes
can be executed efficiently. We present an algorithm for the analysis of large-scale microscopic
images which utilizes local pixel dependencies to achieve high classification accuracy, while
maintaining reasonable computational complexity. We propose to introduce clustering into
superpixels prior to classification which helps to model underlying biological structures.
Furthermore, we present a technique of inferring superpixel classification labels using neural
network classification. Using supervised learning and a hand-annotated database of 159 slides
of colon resection specimens stained with hematoxylin and eosin (H&E) dye, our solution is
trained to distinguish seven tissue classes. The multiclass analysis of tissue facilitates a further
evaluation of tumor composition and growth progression such as deriving the invasion front,
which we only touch upon in this work, but do not cover in depth.

Beyond the general research question of how whole-slide cartography can be performed effi-
ciently, this work aims to answer the following more concrete questions. Can superpixel cluster-
ing prior to patch-based classification be utilized to achieve a speed-up? How large is the speed-
up compared with sole patch-based analysis and what is the impact on the segmentation accu-
racy? Does this approach work equally well for all tissue classes? Is it necessary and beneficial to
classify all patches inside a superpixel or is it sufficient to classify only a subset? If so, what is the
impact on the speed-up and accuracy and where is a good balance point? Considering medical
end points, can the generated tissue map already be used to derive the tumor invasive margin?
How accurately can the tumor area be calculated? Is the tumor composition (necrosis, active
tumor cells, tumor stroma, and mucus) accurately differentiated?

2 Related Work

In the following paper, an overview of recent work in the field of semantic image segmentation
and applications to pathological image data is provided. Furthermore, technically related
approaches that combine superpixel clustering and subsequent classifications are briefly
elaborated.

2.1 Semantic Segmentation

Semantic image segmentation describes the process of inferring pixelwise classification labels to
generate a two-dimensional (2D) classification output. Due to their large size, WSIs are always
divided into smaller image patches which are analyzed individually. In general, two approaches
for the semantic segmentation of WSIs can be distinguished: each image patch can be analyzed
by a classification or segmentation network. The former predicts a single class-label for the
whole image patch and after reassembling the classified patches, a segmentation mask of the
WSI can be obtained. This classification-based approach has been applied both in a nonoverlap-
ping manner,1,2 creating coarse segmentation masks, and, at the cost of higher computation
times, in a sliding-window manner as neighborhood around each image pixel.3 To incorporate
image information on various scales, multiple resolutions can be integrated into a classification-
based analysis.4–6

For the latter approach, based on the segmentation of image patches, special fully convolu-
tional neural network7 architectures such as U-Net8 or SegNet9 are typically used. These archi-
tectures employ encoder–decoder structures for the prediction of 2D segmentation outputs and
have been used for scene9 and biomedical image segmentation.8,10–12 Encoder–decoder-based
approaches are able to generate a segmentation output with a high granularity that can only
be achieved by classification-based approaches when classifying each image pixel with its
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neighborhood as individual patches. However, these approaches entail high computational
complexity and require extensive hardware resources. Oskal et al.,8 for instance, reported
inference times of up to 18 min per WSI when using an NVIDIA Tesla P100 GPU and
Khened et al.11 30 to 75 min per WSI with an NVIDIATitan-V GPU. These complex hardware
requirements might not be attainable in a clinical setting and faster computation times are often
desired.

2.2 Applications in Digital Pathology

In the field of digital pathology, machine learning algorithms have increasingly gained impor-
tance for answering pathological research questions. Bychkov et al.,13 for instance, proposed a
convolutional neural network (CNN)-based approach for directly predicting 5-year disease-
specific survival for patients with colorectal cancer merely from tissue microarray cores.

For the semantic segmentation of WSIs, two standard approaches can be distinguished: cell-
based and texture-based methods. Sirinukunwattana et al.14 designed a two-staged CNN-based
cell detection and classification algorithm, which has been utilized by various approaches.15,16

These incorporated graph structures to represent cell communities and thereby created pheno-
typic signatures. By splitting WSIs into smaller patches and mapping each to their most similar
phenotypic signature, a multiclass WSI cartography could be created. On colorectal cancer spec-
imens, Sirinukunwattana et al.15 scored an accuracy of 97.4% averaged over nine tissue classes
and Javed et al.16 an F1 score of 92% averaged over six classes. These high classification scores,
however, were achieved at the expense of high computation times of up to 50 min per WSI for
cell detection and classification.14

In the field of texture-based segmentation approaches, Signolle et al.17 proposed a method
that incorporated several binary hidden wavelet-domain Markov tree classifiers whose outputs
were combined using majority voting. The authors scored a class-averaged recall of 71.02% on
five tissue classes on ovarian carcinoma specimens with an inference time of up to 300 h per
WSI. Other texture-based methods grouped pixels into coherent regions, which were classified
using texture-based feature representations. On prostate specimens, Gorelick et al.18 achieved a
class-averaged recall of 83.88% on eight tissue classes with an inference time of 2 min per 300 ×
300 pixel sized patch. Apou et al.19 segmented breast cancer WSI into six classes and achieved a
class-averaged sensitivity of 55.83% and a class-averaged specificity of 91.4%. The authors
stated inference times of under 2 h per WSI.

Due to the high variations in hardware resources and annotation quality, it is often difficult to
compare image analysis algorithms in terms of classification accuracy and computational costs.
Kather et al.20 presented a publicly available dataset of histopathological image data and com-
pared the performance of state-of-the-art image analysis algorithms. Using eight classes, the
authors scored a maximum accuracy of 87.4%.20 Rachapudi and Devi21 used this dataset to train
a CNN classifier and scored a class-averaged recall of 79.5% and a precision of 80.13%. Both,
Kather et al. and Rachapudi and Devi, however, achieved their quantitative results on test images
that completely belonged to one class, and the results are therefore difficult to compare with the
performance measures obtained on WSIs with multiple tissue classes present.

Using a binary cartography of histopathological images, primary tumor areas can be defined.
Tumor here is defined as a combination of viable tumor cells, interconnecting tumor stroma, and
desmoplastic stroma as well as comprised necrotic areas and mucus. A robust definition of the
tumor area can provide the basis for automatically evaluating pathological criteria such as tumor
extend, composition, or grading. Recent publications achieved tumor Dice scores of 69%22 and
75.86%23 on breast specimens and 78.2%11 on colon samples. A good trade-off between refined
segmentation results and low computational complexity was achieved by Guo et al.24 who scored
a tumor intersection over union (IoU) value of 80.69% at an average inference time of 11.5 min
per WSI.

2.3 Superpixel Classification

Due to their large size, digitized microscopic images can challenge standard machine learning
algorithms. Aiming to reduce computational complexity, a clustering into coherent image
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segments, e.g., superpixels, has proven advantageous. Zhang et al., for instance, used superpixel
clustering to compute a probability map for nuclei presegmentation, which was used as auxiliary
input to the subsequent tissue classification network.25 Nguyen et al. directly segmented breast
tissue samples into coherent tissue regions using a graph-based superpixel algorithm.26 The
authors, however, merely performed a segmentation and did not infer labels for the computed
superpixels. Other existing works manually extracted handcrafted superpixel feature vectors
which were then classified using machine learning-based classifiers and thereby enabled a
binary22,27 or multiclass12,18,19,28 semantic segmentation of medical images. On histological
image data, this approach has facilitated the binary segmentation of WSIs in 20 to 45 min
by Bejnordi et al.27 and up to 60 min by Balazsi et al.22 with good performance results indicated
by Dice scores of 92.43%27 and 69%,22 respectively. Mehta et al.12 segmented breast cancer
tissues into eight classes using superpixels and a support vector machine (SVM) for classifica-
tion. Since this combination was not the focus of their work, but merely served as a baseline for
performance comparison of their proposed method, the usage of superpixels has not been evalu-
ated in much detail. Zormpas-Petridis et al.28 applied a combination of superpixels and SVM-
based classification on the task of segmenting melanoma WSIs. Their evaluation, however, was
carried out with a randomly chosen set of superpixels, i.e., the ground truth did not contain the
entire annotated tissues as in our work.

Considering the classification of image data, there has been a trend toward the use of
deep learning methods, specifically CNNs, in recent years. Bianconi et al.29 provided a com-
prehensive overview from theory-driven (handcrafted) to data-driven (deep-learning) color and
texture descriptors. Tamang et al.30 summarized various deep learning-based and classical
approaches especially for the application of colorectal cancer diagnostics. One significant ad-
vantage of deep learning is that it enables a closed-form optimization of classification problems
whereas classification based on handcrafted features typically requires the selection of the most
characteristic features followed by optimization of the classifier. In addition, CNNs often achieve
more accurate classification results than traditional methods, especially when large amounts of
labeled data are available for training, which was also shown in a comparison of different
approaches for the classification of Malaria pathogens in microscopic image data made by
Krappe et al.31

Due to their irregular size and shape, however, superpixels can challenge CNN classifiers that
require square input images of predefined size. Previous work in the field of histopathology can
be categorized into two basic strategies to overcome this issue. The first group of approaches32–35

extracted bounding boxes around superpixels and resized them to a predefined input size. This
strategy either requires equally sized superpixels to maintain a similar downscaling factor for all
superpixels or loses proportions across the input images. The latter can lead to ignoring the
valuable size property of biological structures, e.g., the typically enhanced size of tumor cells,
which can be an indicator for neoplastic growth. The second group of approaches36,37 classified a
precomputed superpixel by extracting a patch with predefined size around the centroid of the
superpixel. These approaches, however, relied on compact and square-like superpixels.
Otherwise, the centroid might not lie within the given superpixel and the extracted patch will
not be representative of this superpixel. Biological structures, however, are rarely square-shaped
and especially at tumor boundaries the interaction of tumor, healthy tissue, and inflammatory or
necrotic reactions can lead to very irregularly shaped superpixels. To meet these characteristics
of biological tissue and tumor growth, approaches that can be applied to superpixels of varying
shapes and sizes are highly desired. Moreover, all of these approaches32–37 relied on a one-to-one
relationship between superpixel and the corresponding image patch, which is classified or proc-
essed by a CNN. Only Pati et al. subsequently merged neighboring and similar superpixels and
averaged their CNN feature vectors to use them in their tissue graph. In our approach, however,
the superpixel shape is allowed to deviate greatly from a square shape, and the size of the super-
pixels is on average 20 times larger than the size of the image patches which are classified by the
CNN. This opens up the possibility of classifying multiple image patches within a superpixel and
combining patch classification results to a superpixel label through majority voting. Moreover,
this one-to-many relationship between superpixel and image patches allows deducing a classi-
fication confidence measure from the individual patch classification results.
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3 Material and Methods

The proposed image analysis pipeline has been trained and evaluated on colon WSIs, provided
by the Institute of Pathology of the University Hospital Erlangen (UKER). In the following
sections, an overview of the datasets and a detailed description of the applied methods is given.

3.1 Datasets

For this work, two different datasets have been used. Dataset A comprises 159 annotated H&E-
stained WSIs. The microscopic slides were digitized using a 3D HISTECH Pannoramic 250
slide scanner with an objective magnification of 20× and a resolution of 0.22 × 0.22 μm∕pixel.
Pathologist-approved manual annotations cover seven tissue classes: tumor cells, muscle tissue,
connective tissue combined with adipose tissue, mucosa, necrosis, inflammation, and mucus.
Figure 1 visualizes three representatives of each annotated class. Based on these annotations,
patches of a size of 224 × 224 pixels that were covered to at least 85% by one annotation class
have been extracted and labeled accordingly. These patches have been used for training and
validating a neural network for semantic image segmentation. Table 1 provides an overview
of the dataset including the total number of patches and the corresponding area.

A second dataset (dataset B) has been used for answering medical research questions, includ-
ing tumor area estimation and composition. This dataset comprises 18 H&E-stained samples
with annotations of the primary tumor area and necrosis, inflammations and mucus within.
In addition, for each sample, an AE1/AE3 antibody immune histochemical staining (IHC) as
described by Pour Farid et al.38 on a consecutive serial section was available.

The retrospective study was approved by the scientific committee (CCC – tissue biobank) of
the Comprehensive Cancer Center (CCC Erlangen-EMN; application-No. 100030; date of

Fig. 1 In each column representatives for one tissue class are displayed. From left to right: tumor
cells, muscle tissue, connective tissue combined with adipose tissue, mucosa, necrosis, inflam-
mation, and mucus.

Table 1 Overview of dataset A. The parameter test set is used for superpixel configurations.

# Slides # Patches (224 × 224) Area (mm2)

Training set 92 2,173,515 5278

Validation set 30 719,010 1746

Parameter test set 8 — 612

Test set 29 — 3047

Sum 159 2,892,525 10,683
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approval May 9, 2012) of the Friedrich-Alexander University Erlangen-Nuremberg. The study is
based on the approval of the Ethics Commission of the University Hospital Erlangen (No. 4607
from January 18, 2012). The study is in accordance with the declaration of Helsinki and ethical
guidelines applicable for retrospective studies were respected for all experiments. Tissue histol-
ogy was reviewed by two pathologists. Pathology reports and medical records of patients who
underwent an operation at our hospital were reviewed.

3.2 Image Analysis Pipeline

The developed image analysis pipeline is designed as a twofold approach: first, the WSI is
segmented into superpixels using the simple linear iterative clustering (SLIC) algorithm.39

Then, each superpixel is classified using a CNN-based approach.

3.2.1 Superpixel segmentation

With the goal of reducing the computational complexity of a pixel-based clustering algorithm,
the input WSI is analyzed at a coarser resolution level (3.54 μm × 3.54 μm∕pixel) corresponding
to a downscaling factor of 16 in each dimension with respect to the original resolution.
Moreover, the WSI is cropped at the tissue’s bounding box. The foreground (tissue) is deter-
mined by applying a simple intensity threshold to identify white background pixels (3.54 μm ×
3.54 μm∕pixel resolution). Afterward, the remaining input image is segmented into superpixels.
We compared different established superpixel clustering algorithms by Achanta et al.,39

Beucher,40 Felzenszwalb and Huttenlocher,41 and Vedaldi and Soatto.42 These experiments
demonstrated the superiority of the SLIC algorithm regarding boundary detection of different
tissue types and computational efficiency, which is in correspondence with the observations
by Achanta et al.39 In this work, we employ the SLIC implementation from the Python sci-
kit-image module. To utilize prior knowledge about the histological staining (H&E), a color
deconvolution43 is performed on the input image and the SLIC algorithm has been modified
by replacing the clustering in ½l; a; b; x; y�T-space with a clustering in ½H;E; x; y�T-space. To
avoid overly jagged contours, the image is smoothed prior to segmentation using a Gaussian
filter (σ ¼ 5). The SLIC’s number of k-means iterations is limited to 10. The average superpixel
size is set to 3600 pixels at the downscaled resolution level (i.e., a square superpixel would cover
0.2 × 0.2 mm2). This average superpixel size was determined on a subset of dataset A, which
was solely used for parameter configuration (see Table 1, Sec. 4.1). Accordingly, the input
parameter for the number of superpixels to be generated by the SLIC algorithm is set to

EQ-TARGET;temp:intralink-;e001;116;312k ¼ pixelCountðboundingBoxðforegroundðWSIÞÞÞ
3600

: (1)

After segmentation, all superpixels that contain at least 50% white pixels are labeled as back-
ground. These superpixels are excluded from any subsequent classification. The threshold of
50% has been set as a compromise to achieve an accurate tissue-background separation while
not disregarding superpixels that cover adipose tissue, which oftentimes also contains large
white areas.

3.2.2 Superpixel classification

Figure 2 visualizes the algorithm for inferring the superpixel class-labels. Initially, the input
image is divided into equally sized, nonoverlapping patches of 224 × 224 pixels at the original
image resolution of 0.22 × 0.22 μm∕pixel (20×). Afterward, all patches covered by at least 50%
of one superpixel are classified using a CNN. By lowering this threshold, the absolute number of
patches that account to a superpixel’s classification result increases, but so does the relative
number of in-distinctive border patches. The threshold of 50% was found to be a good
trade-off during preliminary experiments on the parameter optimization subset of dataset A.
After patch classification, all patch labels are combined to infer a superpixel classification.
Various standard CNN architectures utilize a softmax layer to output a probability distribution
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over all classes. We propose to compute the combined probability distribution by summing up
over all patch softmax output vectors and normalizing by N, the number of patches that con-
tribute to the classification result. The superpixel label LSP is then defined by the class corre-
sponding to the maximum entry in the superpixel’s probability distribution:

EQ-TARGET;temp:intralink-;e002;116;460LSP ¼ argmax
ci

�PN
n¼1½pn;c1 ; pn;c2 ; : : : ; pn;ck �T

N

�
¼ argmax

ci

�PN
n¼1 ~pn

N

�
; (2)

Here, ci ∈ C is the set of available class-labels.
Preliminary experiments have shown that due to a high variance in shape and size of the

superpixels sometimes up to 100 individual patches account to a superpixel label. Since the
vast majority of patches within a superpixel will contain the same tissue type, we hypothesize
that valuable computation time can be saved by analyzing only a random subset of patches with-
out significantly impacting the overall accuracy. We propose to analyze at most 10 patches. The
influence of this restriction is investigated in Sec. 4.1

Moreover, we propose a confidence measure (Cvotes
diff ) of a superpixel classification derived

from the classification results of the patches within this superpixel. For this, we divide the differ-
ence of patch votes for the most represented and the second most represented class by the num-
ber of all patches.

3.2.3 CNN model

The developed preprocessing steps (color deconvolution, foreground detection, and superpixel
segmentation) are independent of the subsequent CNN structure, which is therefore interchange-
able. However, the average superpixel size has to be adapted to the CNN input patch size to
maintain a reasonable ratio of both measures. For the experiments elaborated hereafter, a
ResNet50 architecture with 224 × 224 pixel input size has been chosen and trained using train-
ing and validation set of dataset A (see Table 1). The network has been implemented using
TensorFlow 2.2. We employ the color augmentation method described by Tellez et al.,44 where
the RGB image is converted to the H&E color space using a deconvolution. Then, the H&E
components are individually modified, simulating different staining intensities. Moreover,
zero-centering is applied as a preprocessing step. Training is performed using cross entropy loss
and Adam optimizer with a learning rate of 0.001. A batch-size of 105 was chosen and in each
batch the different classes are represented equally. Class imbalances are hereby compensated by
oversampling of underrepresented classes as for example necrosis and mucus.

Fig. 2 Superpixel classification workflow.
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3.3 Evaluation Method for Cartography Results

For a visual validation of the annotation ground truths and classification outputs, the Open
Source software tool SlideRunner45 has been used. The quantitative analysis is performed with
an image resolution of 3.54 μm × 3.54 μm∕pixel. We assign a class-label to each foreground
pixel according to the manual ground truth annotation. The prediction map of the image is gen-
erated with the same resolution. Only pixels having both a ground truth and a prediction label are
evaluated. Based on the confusion matrix, different classification measures such as, e.g., class-
wise recall are calculated. For all classwise measures, the corresponding two-class problem is
regarded whereby all negative classes are combined to one class.

3.4 Tumor Area Computation and Invasive Margin

The primary tumor area is determined based on the cartography results. First, binary maps for the
classes “tumor cells,” “necrosis,” and “mucus” at the same resolution level used for superpixel
segmentation (3.54 μm × 3.54 μm∕pixel) are created. A morphological closing operation is
applied to the “tumor cells” map and each connected component of the necrosis and mucus-
map is checked for whether it is located adjacent to a tumor cell component. All adjacent
necrosis and mucus components and all tumor cells components are added to a tumor map.
Afterward, morphological closing followed by opening is applied. Finally, the tumor area is
given by summing up areas enclosed by the outer contour of each tumor component.
Besides the direct comparison of the calculated area (E) and the annotated ground truth area
(GT), the IoU and Dice coefficient metrics are computed:

EQ-TARGET;temp:intralink-;e003;116;464IoU ¼ jE ∩ GTj
jE ∪ GTj ¼

TP

TPþ FPþ FN
; (3)

EQ-TARGET;temp:intralink-;e004;116;407Dice ¼ 2jE ∩ GTj
jEj þ jGTj ¼

2TP

2TPþ FPþ FN
; (4)

EQ-TARGET;temp:intralink-;sec3.4;116;371TP∶true positives-pixel is contained in both E andGT;

FP∶false positives-pixel is contained in E but not inGT;

FN ∶false negatives-pixel is contained inGT but not in E:

The tumor invasive margin is derived from the autodetected tumor area by extending the
region in relation to the desired margin width. The intersection between this extended region
and nontumor tissue defines the basis of the invasive margin. Finally, the intersection area is
again extended as the invasive margin is situated at the border between tumor and surrounding
tissue and stretching out into both.

3.5 Tumor Composition

Quantitative analysis of the tumor microenvironment supports studies and diagnostics of tumor-
infiltrating lymphocytes in colon, as well as bladder and breast cancer.46,47 The analysis in a
region of interest such as the invasive margin plays an important role for evaluating the immune
response against tumor cells. In previous studies, a high correlation between CD3- and CD8-
positive cell counts and patient outcome has been shown.48 In the case of colon cancer, the
immune response can be quantified using the immunoscore.

Therefore, we use dataset B to compare the estimation of tumor component areas (active
tumor, necrosis, mucus) from cartography results with the manual annotations. Graham
et al.49 used a rotation equivariant network for the task of gland segmentation. We use this
approach to separate the active tumor area from interconnecting tumor stroma using the seg-
mented glands’ area as approximation for the active tumor area. The ground truth area for
necrosis and mucus is directly derived from the manual annotations. The ground truth for the
active tumor area is obtained on serial sections stained with immunohistochemical markers (pan-
cytokeratin, epithelial AE1/AE3) by applying a simple thresholding approach within the
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manually annotated tumor area. Again, color deconvolution was performed and solely the DAB
channel was chosen for segmentation. Figure 3 shows a comparison of the manual annotations
on the H&E-stained WSI and the segmentation result on the IHC-stained consecutive WSI. On
the one hand, this approach is beneficial as it does not suffer from the human annotator’s sub-
jectivity. On the other hand, one has to keep in mind there is a small spatial distance between the
two consecutive sections that is large enough that a cell visible in one slide might not be visible in
the other slide.

4 Results and Discussion

Several experiments were performed using dataset A to investigate the performance of the super-
pixel-based WSI cartography. Starting from parameter configuration of the SLIC algorithm, fol-
lowed by a comparison between a classical patch-based approach with our newly introduced
superpixel approach up to an investigation of uncertainty of the superpixel classification results.
Though not the focus of this work, we carried out preliminary experiments on dataset B for two
possible medical endpoints (tumor area and tumor composition) that will likely benefit from
having a detailed tissue map available as it is generated by our proposed method.

4.1 Configuration of Superpixel Approach

To define an optimal average superpixel size as well as a threshold for the number of classified
patches per superpixel, experiments were performed on the parameter test set of dataset A con-
taining eight WSIs (see Table 1).

Figure 4 visualizes the influence of increasing the average superpixel size (as start parameter
for the SLIC algorithm) on the total number of superpixels per WSI, the classification accuracy,
and the average computation times for superpixel classification and WSI inference. For these
experiments, the maximum number of classified patches per superpixel was limited to 30.
Inference times have been measured using an NVIDIA GeForce GTX 1060 GPU with 6 GB
RAM. As expected, a larger average size per superpixel results in fewer superpixels per WSI.
However, larger superpixels cover a larger number of patches, which are classified and then
combined to infer a superpixel class-label. Therefore, larger superpixels entail higher

Fig. 3 (a) Manual annotation of tumor (black), necrosis (orange), and mucus (purple) in H&E-
stained colon section. (b) Active tumor area (green) in corresponding IHC-stained colon section.
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computational costs [Fig. 4(a)]. Nevertheless, the overall computation time for slide inference
decreases due to the decreased number of superpixels on the WSI. The classification accuracy,
however, also decreases [Fig. 4(b)].

Figure 5 visualizes the effect of smaller superpixel sizes [Fig. 5(a)] and larger superpixel sizes
[Fig. 5(b)] on the segmentation result. As compromise between low computational complexity
for larger superpixel sizes and high accuracy for smaller superpixel sizes, an average superpixel
size of 3600 pixels, i.e., a square superpixel would cover 0.2 × 0.2 mm2, was chosen for further
experiments. However, the results of these experiments depend on various parameters (such as
the threshold for the number of classified patches per superpixel) as well as the chosen CNN
architecture, and there is still room for further optimization. The biggest disadvantage of a
greater superpixel size is that small details are neglected, resulting in inaccurate segmentation
results especially for classes such as necrosis or tumor cells.

The histogram in Fig. 6 shows that with an average superpixel size of 3600 pixels, some
larger superpixels cover more than 30 individual patches. We hypothesized that it is sufficient
to only classify a random subset of the patches within a superpixel. Table 2 summarizes the
influence of various maximum patch limits on the computation time of slide inference and over-
all accuracy. While a smaller patch limit results in significantly lower computational costs, the
slide accuracy only shows a marginal decrease. Therefore, we further reduced the limit from 30
to 10 patches for subsequent experiments.

Fig. 4 (a) Influence of average superpixel size on the average number of superpixels per WSI and
the average computation time per superpixel classification and (b) the average computation time
and accuracy for inference on the overall slide. Evaluations were performed on the parameter test
set of dataset A and the maximum number of classified patches per superpixel was limited to 30.

Fig. 5 (a) Superpixel segmentation result with size of 3.600 pixels compared to (b) the segmen-
tation result with a size of 10.000 pixels. The segmentation results on the left side fits better to the
tumor cell boundaries but in both images necrotic areas within the tumor are not always detected
as separate regions.
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4.2 Classification Performance and Run-Time

To evaluate segmentation performance and computational complexity, the proposed algorithm is
compared to a traditional classification-based approach with nonoverlapping image patches. To
isolate the effects produced by the proposed technique of introducing a superpixel clustering and
inferring superpixel classification labels, the same CNN is used as part of both approaches.
Results are collected on the remaining 29 slides of dataset A (test set), which have not been
used for training, validation, or adaptation of parameters. The classification performance is
assessed pixelwise on a lower image resolution of 3.54 μm × 3.54 μm∕pixel as described in
Sec. 3.3. Table 3 summarizes the total number of evaluated pixels on this resolution. Minor
deviations of the overall sum of evaluated image pixels exist due to the irregular shape of the
superpixels compared to the patchwise approach.

On the 29 test slides of dataset A, the tissue bounding box contains on average 10.7 billion
pixels on the native resolution (≙520 mm2). Within these, the SLIC algorithm produces 4060 �
1717 (μ� σ) superpixels with an average size of 1,016,289 pixels (≙0.05 mm2). The average
number of patches per superpixel without introducing a maximum cut-off is 19.58 � 6.39. A
restriction of the maximum number of patches to be classified to only 10 patches per superpixel
affects 94.8% of all superpixels and decreases the average number of classified patches per
superpixel to 9.95 � 0.36.

When evaluating a multiclass semantic segmentation task, it is informative to look at which
classes are frequently mistaken for one another. Figure 7 shows the relative confusion matrices
for both approaches. They show similar behavior regarding the typical confusions of classes:
e.g., necrosis is misclassified as tumor or inflammation as mucosa.

Table 2 Average computation time and overall accuracy on parameter test set for different limits
of number of classified patches per superpixel.

Patch restriction
per superpixel

Average computation
time per WSI (s)

Overall
accuracy (%)

10 408 95.1

18 643 95.3

20 686 95.3

Fig. 6 Superpixel count over number of patches per superpixel for an average superpixel size of
3,600 pixels. The histogram sums up all WSIs in the parameter test set of dataset A. On average, a
superpixel contains 19.66 patches with a standard deviation of 6.63.
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From the confusion matrices class-based recall and precision values are calculated, which are
displayed in Fig. 8. The superpixel-based approach yields an overall accuracy of 95.7% com-
pared to 93.8% obtained with the patch-based approach. The improvement in accuracy has been
tested for statistical significance using the two-matched-samples t-test based on the 29 slidewise
classification accuracies and has been verified on a confidence interval of 99%. Due to
differences in the background detection which is performed per superpixel and respectively per
patch, the sum of classified pixels slightly differs between the two approaches. Figure 8 shows an
improvement of the classification measures with the superpixel approach compared to the patch-
based approach. The average improvement in recall is 0.022, 0.019 for precision, and 0.018 for
the F1 score. While this improvement can be observed for all classes with larger annotation
areas, the performance sometimes decreased for inflamed, necrotic, and mucous areas. One pos-
sible reason for this might be that these classes constituted very fine annotations. The chosen
superpixel size sometimes creates clusters too coarse to accurately represent these minute
structures.

Figure 9 visualizes the cartography outputs of the compared approaches. Overall, the non-
overlapping patch-based image analysis yields checkered classification outputs with many

Fig. 7 Comparison of confusion matrices of (a) superpixel-based approach and (b) patch-based
approach. The rows represent the ground truth class-labels and the columns represent the pre-
dictions. Due to high imbalances in the number of pixel per class, a relative representation of the
confusion matrix was chosen.

Table 3 Number of evaluated pixels (resolution 3.54 μm × 3.54 μm∕pixel) for the patch-based
and superpixel approach. Differences are caused by the background detection and the irregular
size of superpixels.

# Pixels (patch-based) # Pixels (superpixel)

Tumor cells 61,575,137 61,526,076

Inflammation 2,157,405 2,157,411

Conn./adipose tissue 75,677,369 76,463,057

Muscle tissue 60,759,062 60,652,301

Mucosa 38,708,588 38,654,828

Mucus 620,245 620,823

Necrosis 5,883,073 5,874,393

Sum 245,380,879 245,948,889
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Fig. 9 Cartography results: (a) original section, (b) ground truth hand-annotation, (c) patch-based
output, and (d) superpixel-based output.

Fig. 8 Comparison between patch-based and superpixel-based approach by classwise recall,
precision, and F 1 score.
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interruptions of connected components due to individual misclassifications. A prior segmenta-
tion into superpixels, on the other hand, yields smoother results which follow biological struc-
tures. It can be seen that the larger tissue classes are detected accurately and also smaller
structures, e.g., inflammations and necrotic areas, are classified correctly in most of the cases.
However, this example also highlights limitations of the algorithm, where structures become too
small to be accurately represented by the superpixels, e.g., small necrotic areas of comedo
necrosis, which is in correspondence with the decrease in recall for necrosis compared with the
patch-based approach. This drawback could be countered by choosing a smaller average super-
pixel size, albeit, only at the cost of higher computation times. The relatively large superpixel
size also causes tumor cell classifications to be rather generous and incorporate surrounding
tumor stroma. If a precise tumor/stroma separation is intended, the superpixel-based classifica-
tion approach could be followed by a separate cell-detection-algorithm or simply a second
refinement run of the superpixel segmentation and classification restricted to only the tumor
areas.

Using an NVIDIAGeForce GTX 1060 GPU and TensorFlow 2.2, the standard classification-
based segmentation approach with nonoverlapping patches resulted in computation times of
12.8� 5.3 min per WSI. The superpixel-based segmentation pipeline achieved classification
times of 6.7� 2.8 min with an additional 47� 18 s for the SLIC clustering resulting in an
overall run-time of 7.5� 3.0 min per WSI. Thereby, an average acceleration of 41% could
be achieved by the proposed image analysis approach. This acceleration is mainly the result
of restricting the number of classified patches per superpixel. Without restriction, the classifi-
cation time increases to 13.4� 5.5 min and the overall run-time including SLIC clustering to
14.2� 5.7 min. This is slower than the patch-based approach but yields the highest overall
accuracy with 96.0% which is an improvement of 0.3% points compared to the the superpixel
cartography with restriction of the classified number of patches per superpixel.

When comparing computation times, it has to be considered that the patch-based approach
was performed in the fastest possible way using nonoverlapping patches. Standard patch-based
approaches, however, use overlapping image patches and interpolate classification results. When
choosing an overlap of half the patch dimension, the number of overall classifications already
increases from n × n to ð2n − 1Þ × ð2n − 1Þ. Even when using fast scanning architectures for
avoiding redundant computations in overlapping image regions, the overall computational costs
are assumed to further increase when using overlaps. This underlines the benefit of the proposed
clustering prior to classification even further.

4.3 Introduction of Rejection Class Based on Classification Confidence

Aiming to minimize the effect of misclassifications on the final cartography output, we attempt
to detect superpixels with uncertain classification results. This way, a rejection label can be
assigned to these superpixels. Our hypothesis is that the remaining classification results are more
reliable and therefore yield a higher overall accuracy as well as average classwise precision,
recall, and F1 score. This is done at the expense that unclassified areas are introduced which
are not included in the calculation of classification quality measures. Superpixels with a con-
fidence lower than a defined threshold are assigned to the rejection class and hence all pixels
(resolution: 3.54 μm × 3.54 μm∕pixel) inside them as well. All pixels of the remaining super-
pixels are evaluated as before (see Sec. 3.3). As a consequence of the rejection of unsure pixels,
the number of classified pixels and therefore the number of correct and false predicted pixels
decreases.

We compared the confusion matrix and classification metrics without and with rejection of
uncertain superpixels. As rejection threshold we have chosen 0.1, which means that all super-
pixels with a Cvotes

diff smaller than 0.1 are assigned to the rejection class. In total, 1.3% of the pixels
were rejected. The number of total true predictions decreases by 0.8% compared with the clas-
sification without rejection while the number of false predictions decreases by 11.8%. Overall,
1.9 million pixels that were correctly classified are discarded due to a low confidence value and
1.3 million pixels that were incorrectly classified. The overall accuracy increases to 96.1% com-
pared with 95.7% without rejection of superpixels. Likewise, there is an improvement for all
classes in precision (average 0.009), recall (average 0.007), and F1 score (average 0.009).
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The highest impact is obtained for classes that are usually distributed over the whole tissue sam-
ple and cover very small sections such as necrosis, inflammation, and mucus. These results sup-
port our hypothesis that the remaining classification results are more reliable at the expense of
introducing areas without classification. Therefore, it depends on the application which aspect is
prioritized.

Besides the quantitative evaluation, the question arises about which areas in a WSI tend to
achieve uncertain classifications. We only touch upon this question with one qualitative example:
In Fig. 10(d), superpixels with uncertain classification results (based on Cvotes

diff with a threshold of
0.45) are highlighted. This example reveals two typical constellations that lead to an uncertain
classification. Superpixels containing a high amount of background pixels, e.g., located at or
nearby fissures or at the rim of the tissue section, tend to be misclassified. The same applies
to superpixels in the transition of two tissue types, e.g., located near the invasive margin or
slightly inflamed tissue. Moreover, ground truth annotations are only provided for regions that
can be assigned clearly to one tissue type except for the tumor cell class. Here, it was not feasible
to annotate each small necrotic area which is shown in Fig. 10(b).

4.4 Tumor Area

Dataset B was used to evaluate the computation of the tumor area. On average, the estimated and
the annotated tumor area differ by 6% with a mean IoU of 89.4% and a mean Dice coefficient of
94.3% (per slide results in Fig. 11).

Figure 12 depicts examples of evaluation results, where green overlays resemble tumor areas
that have been found correctly (TPs), red marks areas that were mistaken as tumor (FPs), and

Fig. 10 Example for uncertain superpixels based on Cvotes
diff with a threshold of 0.45. (a) Original

section, (b) ground truth hand-annotation, (c) cartography results, and (d) only superpixels
with uncertain classification results are marked. Especially superpixels containing a high
amount of background pixels or in the transition of two tissue types tend to show uncertain
classifications.
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blue indicates tumor annotations not detected by the algorithm (FNs). It can be seen that most
misclassifications are located at tumor boundaries. Especially, necrotic areas adjacent to the
lumen were included in the tumor area for our approach but have been excluded by the patholo-
gist. On the contrary, at the invasive margin our approach misses some tumor areas.

Looking at the slide results in detail, however, a few WSIs contain larger misclassified
regions. Three examples are visualized in Fig. 13. One main source for deviations are again
necrotic areas. In our approach, all adjacent necrotic areas are incorporated into the tumor area.
This technically defined rule cannot perfectly represent the pathologist’s annotation (ground
truth) in individual cases, as it cannot sufficiently reflect the biological and complex morpho-
logical nature of the tumor. Moreover, two sections contained adenomas that were classified as
tumor. In rare cases, tumor misclassifications occurred, e.g., in areas containing debris and
destroyed mucosa tissue (see Fig. 14).

4.5 Invasive Margin

By growing the tumor area evenly by a defined distance toward the surrounding healthy classes,
the tumor invasive margin can automatically be generated (see Fig. 15). The generated margins
of all slides of dataset B are qualitatively evaluated by two pathologist using a point-based

Fig. 12 Comparison of tumor area [from left to right: slide numbers 1, 3, 8, 16 (see Fig. 11)]. Green:
areas correctly identified as tumor (TPs); red: areas mistaken as tumor (FPs); blue: tumor tissue
missed by the classifier (FNs). Misclassifications are largely located at the tumor boundary.

Fig. 11 IoU and Dice measure of estimated and annotated tumor area for all 18 slides of
dataset B.
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grading system from 1 to 5 (1≙ very good, 5≙ insufficient). On average, the margins were rated
1.6 composed of 18 ratings as “very good,” 15 ratings as “good,” and 3 as “satisfying.” The two
pathologists were in correspondence for 13 WSIs and their judgments only differed by one point
for five WSIs. These first qualitative results seem promising and could enable further analysis,
e.g., the determination of the invasion depth or quantifying inflammation within the invasive
margin.

Fig. 14 The mixture of debris and destroyed mucosa tissue is classified as tumor (orange) and
mucus (turquoise) and leads to a deviation in tumor area in slide number 11.

Fig. 13 Comparison of estimated and annotated tumor area showing the examples with the high-
est deviations [from left to right: slide numbers 5, 11, 13 (see Fig. 11)]. Green: areas correctly
identified as tumor (TPs); red: areas mistaken as tumor (FPs); blue: tumor tissue missed by the
classifier (FNs).
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4.6 Tumor Composition

Using dataset B, the tumor composition is evaluated by computing ratios of tumor cells (Fig. 16),
necrosis, and mucus within the ground truth tumor area. The results in Fig. 16 show that both the
superpixel approach and the patch-based approach overestimate the active tumor area for every
slide. However, the average deviation is smaller in the latter case. The best estimation is obtained
with the gland segmentation approach.

To analyze these results further, the slides of dataset B have been divided into subsets accord-
ing to their tumor grading. Table 4 breaks down the deviation of estimated active tumor area from
the ground truth for each subset as mean over the subset. For tumors with grade 1 and grade 2,
the gland segmentation approach provides good estimations of the active tumor area. As
expected, the accuracy decreases with tumor belonging to grade 3 where the growth becomes
diffuse and gland structure is destroyed.

Figure 17 shows the detected active tumor area (marked in orange) for a well-differentiated
tumor (grade 2, slide number 1) for all three approaches. This example illustrates that the super-
pixel approach overestimates the active tumor area due to misclassification of tumor stroma as
tumor cells. The patch-based approach shows a similar behavior, however, with smaller devia-
tions to the ground truth. The gland detection approach is in good correspondence with the

Fig. 16 Active tumor area relative to annotated ground truth tumor area calculated with different
approaches.

Fig. 15 Examples of automatically generated invasive margins (marked in green).
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ground truth segmentation. The limitation of this approach is evident in the second example
(Fig. 18) showing a tumor with grade 3 (slide number 11). In this example, the estimated active
tumor area deviates significantly from the ground truth area (Table 4). On the contrary, the
deviation to the ground truth for the superpixel and patch-based approaches seems to be inde-
pendent of the grade of the tumor.

Besides the active tumor area, the ratio of necrosis and mucus area within the tumor area are
additional relevant parameters for characterization of the tumor microenvironment. Both, the
patch-based and superpixel approach show similar results here with a slight superiority of the
patch-based approach for the determination of the necrotic area (see Table 5). Because the aver-
age superpixel size (0.048 mm2 on dataset B) is significantly bigger than the patch size
(0.002 mm2) necrotic areas, which are oftentimes only small islands between tumor cells, seem
to be better captured by the patches than the superpixels.

Fig. 17 Comparison of active tumor areas obtained with different approaches for slide number 1
with a tumor of grade 2. From left to right: ground truth segmentation (green) of active tumor area in
IHC staining. Cartography results in H&E staining by superpixel approach and patch-based
approach. Gland segmentation results. Active tumor area is depicted in orange for all three
approaches.

Fig. 18 Comparison of active tumor areas obtained with different approaches for slide number 11
with a tumor of grade 3. From left to right: ground truth segmentation (green) of active tumor area in
IHC staining. Cartography results in H&E staining by superpixel approach and patch-based
approach. Gland segmentation results. Active tumor area is depicted in orange for all three
approaches.

Table 4 Comparison of different methods for the determination of active tumor area. The average
deviation between the calculated relative active tumor area and the ground truth relative active
tumor area is given. Slides are assigned to the set “grade 3” as soon as parts with grade 3 are
present.

Grade Superpixel (%) Patch-based (%) Gland segmentation (%)

1 to 2 34.7 28.3 3.7

3 33.2 26.9 21.1

Dataset B 34.0 27.7 11.4
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5 Conclusion

In this work, we presented an approach for histology whole-slide cartography using superpixels
by the example of colon carcinomas. Our work was motivated by a feasibility of the developed
method in a clinical setting. Even though, regarding granularity of segmentation outputs,
encoder–decoder-based approaches are sometimes considered superior to patch-based
approaches, they often require powerful hardware not attainable in a clinical setting. Therefore,
our work focused on increasing the efficiency of a patch-based cartography, which can easily be
transferred to, e.g., a pathology institute and ensures fast inference. This increased efficiency
could be obtained by presegmenting the input image into superpixels and only classifying a
subset of patches within these superpixels.

The evaluation results on our test set composed of 29 WSIs show a superiority of our
approach compared to a classical patch-based approach for overall accuracy with an increase
from 93.8% to 95.7% as well as computing-time with an average speed-up of 41% resulting in an
average overall run-time per WSI of 7.5 min. The speed-up is mainly achieved by limiting the
number of classified patches within each superpixel. This patch restriction only results in a mar-
ginal decrease in accuracy of 0.3% points compared with the unrestricted approach. These results
indicate that the superpixel clustering already segments the WSI into regions belonging to the
same tissue type. Only when this requirement is fulfilled can accurate cartography results be
obtained. The limitation of our approach lies in the relatively large size of superpixels compared
to patches. On our test set one superpixel on average covers 0.005 mm2. Compared to fine-
grained structures, such as small necrotic areas within the tumor, this size is too big to correctly
capture these areas. This is also reflected in, e.g., a lower recall for necrosis. Another limitation
lies in the manual annotations. Accurate and complete annotation of these fine-grained structures
are also a challenge for the human annotator. Therefore, wherever possible, an alternative gen-
eration of the ground truth should be preferred, e.g., based on segmentation in immunohisto-
chemically stained sections. Moreover, one has to keep in mind that there is a general problem
with the quantitative assessment of cartography results. Although using seven tissue classes,
there are still areas that cannot be clearly assigned to one of these classes. These nonannotated
areas are not included in the quantitative evaluation. Therefore, from our point of view, it is
important to always apply the developed approaches to complete WSIs and check the cartog-
raphy results in these areas at least qualitatively.

The key difference of our method compared with other superpixel-based approaches for
histopathology images is the one-to-many relationship between superpixels and corresponding
image patches. In our setup, a superpixel contains on average 20 image patches of which we
classify a random subset. Utilizing the fact that a superpixel class-label is inferred from a set of
multiple individually classified patches, we investigated a measure for quantifying the uncer-
tainty of a superpixel classification derived from the votes of the patches within the superpixel.
This measure was suited to decrease the relative number of incorrect predictions at the cost of
introducing unclassified tissue areas and a rejection of correct predictions, but to a smaller extent.
Moreover, applying our introduced uncertainty measures to WSIs and visualizing uncertain
superpixels enables a plausibility check of the approach. As expected, the classification results
of superpixels in the transition of two tissue types, e.g., located near the invasive margin, tend to
be unsure. The uncertainty measurement also facilitates an automatic improvement by, e.g.,

Table 5 Comparison of superpixel and patch-based approach for the determination of necrotic
and mucus area. Necrotic areas were present in all of the slides. However, only five slides con-
tained mucus areas. Therefore, the average deviation for the relative mucus area is calculated
once for all slides and once only for slides containing mucus.

Average deviation Superpixel (%) Patch-based (%)

Rel. necrotic area 1.77 1.22

Rel. mucus area (all WSIs) 0.19 0.24

Rel. mucus area (only WSIs containing mucus) 0.56 0.55
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partitioning them into smaller segments and reclassifying these superpixels or applying other
pixelwise segmentation methods within these areas.

Whole-slide cartography by itself offers only limited support to the pathologist but provides a
basis for subsequent analysis operations that can predict various medical endpoints. Within this
work, we used the cartography results to determine the tumor area and composition as well as to
derive the invasive margin. While the tumor area is in good agreement with the ground truth, the
tumor composition analysis highlights weaknesses of the approach. Again, due to the size of our
superpixels, the separation between finely grained active tumor cells and tumor stroma is not
adequate. However, a combination with further methods (in our case gland segmentation for well
differentiated tumors) yields good results with an average deviation of only 11.4%.

Being able to reliably detect and outline, the tumor area is very valuable from a clinical
perspective. In a routine workflow, such a functionality could be used as an assistance system
that draws the pathologist’s attention to a specific region. Alternatively, such a system could be
introduced as a quality control mechanism that provides a second opinion. Another potential
application is the insurance that samples for molecular testing are taken from an area that actually
contains a high ratio of tumor cells. In the context of computational pathology, it has been shown
in recent literature that it is possible to predict genetic alterations directly from WSIs.50,51 A
prerequirement here is that only tumor-areas are analyzed. In the context of colon carcinoma,
an example would be the detection of microsatellite instability to validate the presence of Lynch
syndrome. The tumor composition in terms of the ratios of active tumor cells, tumor stroma,
necrosis, and mucus has been shown to be of prognostic relevance52 and could at least for
well-differentiated tumors be assisted by the proposed approach.
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