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ABSTRACT. Significance: Robust segmentations of neurons greatly improve neuronal popula-
tion reconstruction, which could support further study of neuron morphology for brain
research.

Aim: Precise segmentation of 3D neuron structures from optical microscopy (OM)
images is crucial to probe neural circuits and brain functions. However, the
high noise and low contrast of images make neuron segmentation challenging.
Convolutional neural networks (CNNs) can provide feasible solutions for the task
but they require large manual labels for training. Labor-intensive labeling is highly
expensive and heavily limits the algorithm generalization.

Approach: We devise a weakly supervised learning framework Docker-based deep
network plus (DDeep3M+) for neuron segmentation without any manual labeling. A
Hessian analysis based adaptive enhancement filter is employed to generate
pseudo-labels for segmenting neuron images. The automated segmentation labels
are input for training a DDeep3M to extract neuronal features. We mine more unde-
tected weak neurites from the probability map based on neuronal structures, thereby
modifying the pseudo-labels. We iteratively refine the pseudo-labels and retrain the
DDeep3M model with the pseudo-labels to obtain a final segmentation result.

Results: The proposed method achieves promising results with the F1 score of
0.973, which is close to that of the CNN model with manual labels and superior
to several segmentation algorithms.

Conclusions: We propose an accurate weakly supervised neuron segmentation
method. The high precision results achieved on 3D OM datasets demonstrate the
superior generalization of our DDeep3M+.
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1 Introduction
Neurons are the basic units of the structure and function of the nervous system.1 And the neuronal
morphology reflects the function of the brain. A complete segmentation of neuronal structure
from optical microscopy (OM) images is essential to reveal the connections of brain circuits and
investigate synaptic integration, neuron morphology, neuron connectivity, and brain mechanisms.2

Analyzing the morphology and connection of neurons enables us to have a deeper understanding
of the operating mechanism of brains and facilitates diagnosis of brain disease.3 For example,
congenital nystagmus affects starburst amacrine cells,4 and amyotrophic lateral sclerosis affects
upper and lower motor neurons.5 Alzheimer’s disease (AD) is a neurodegenerative disease
associated with synaptic loss and neuronal degeneration.6 A precise segmentation of 3D neuron
structures is vital to probe impaired brain functions of AD animal models and to determine early
treatment strategies.7 We might gain a better understanding of such disorders if we could find
specific neuronal morphology in disease models.8

Through the accurate signals of neuron morphology, we can systematically classify brain
cells. In recent years, labeling techniques9,10 and optical imaging methods11,12 have made a series
of breakthroughs, which can generate terabyte (TB) level neuronal morphological data at whole
brain scale.13,14 Micro-optical sectioning tomography (MOST)15 and its follow-up study fluores-
cence micro-optical sectioning tomography (fMOST)16 have realized the whole brain imaging of
specific neural structures at submicron resolution, including tens of thousands of complete neuro-
nal morphologies. Therefore, it is highly difficult to extract and analyze neuron morphology in
neuron tracing caused by the uneven distribution of fluorescence,17 differences of imaging sys-
tem,18 complex morphology of neurons,19 and low signal-to-noise ratio (SNR).20 Currently, many
efforts have been devoted to develop automatic or semi-automatic neuron tracing algorithms.
However, most of the neuron tracing methods are not applicable in challenging datasets where
the 3D neurites are contaminated by strong background noises or containing weak light signals.
These methods degrade in performance of neuron segmentation from more complex image
blocks. Therefore, an efficient segmentation method is urgently needed to reduce the impact
of noises and enhance the weak neurite signals, which should improve the result of neuron
tracing.

In recent years, deep learning has achieved remarkable success in processing natural
images. Convolutional neural networks (CNNs) have been employed to segment tubular struc-
tures due to its capability of feature learning and its nonlinear relationship capturing between
inputs and outputs. Deep learning techniques have been adopted in neuron segmentation to
improve the segmentation quality. A deep learning toolbox, DeepNeuron, was designed to
trace neurons with manually reconstructed neurons as training samples.21 The general super-
vised deep learning algorithms require a large number of manual labels for reaching an efficient
and accurate neuron segmentation, but the segmentation labeling is pretty expensive and
labor-consuming. Moreover, extensive a priori knowledge of neuroscience is also required
for manual labels.

To solve the above problems, we develop a weakly supervised learning framework [Docker-
based deep network (DDeep3M+)] for neuron segmentation from 3D OM images without any
manual labeling. It can extract accurate neuron signals robustly from noisy backgrounds. We take
advantage of both conventional methods and deep learning techniques as follows. An adaptive
enhancement filter is first employed to produce pseudo-labels for training a deep segmentation
neural network (DDeep3M). The proposed DDeep3M+ method improves prediction of
DDeep3M by iteratively optimizing the training labels and retraining model via region growing
and image fusion based on neurite structure information to mine undetected weak neurites from
the probability map predicted by DDeep3M. The experimental results on the fMOST16 datasets
and public BigNeuron22 datasets have demonstrated the high precision and generalization
achieved by the proposed neuron segmentation method; see Fig. 1.

Our main contributions are summarized as follows:

1. We propose a precise, automatic, and general method for neuron segmentation from noisy
and low-contrast OM images. And a weakly supervised learning framework based on
DDeep3M network is presented to improve 3D neuron segmentation without manual
labels.
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2. An adaptive enhancement filter is presented in the first stage to generate pseudo-labels by
enhancing weak neuronal structures based on Hessian matrix in a fibrous structure. We
take advantage of adaptive enhancement filter and deep segmentation network to make
them mutually complement to each other.

3. Neuron segmentation results on 3D OM datasets demonstrate the high precision and
generalization by the proposed method in automatic neuron segmentation. Moreover,
our DDeep3M+ outperforms state-of-the-art weakly supervised neuron segmentation
algorithms on fMOST and BigNeuron datasets.

2 Related Work
Morphology of neurons is essential for the organization and function of the brain. Segmentation
or tracing of 3D neuron structures from OM images are the main approaches to characterize and
analyze neuronal morphology. There are 2,32,613 digitally reconstructed neurons contributed by
800 laboratories worldwide in NeuroMorpho19 dataset, which took more than 2.5 million hours
of manual work in the past decades. In computational neuroscience, there are high requirements
for automatic and accurate neuron segmentation methods.

With the development of optical imaging and molecular labeling technology, we can obtain
large-scale sub-micron resolution neuron images through optical imaging of mammalian brain.
These advances promote the generation of various optical images for different applications, and
pose new challenges in neuron segmentation. The limit is the significant differences in image
quality and attributes between different datasets due to a variety of factors, such as intensity
range, image size, neuron structure, etc.22 Another challenge is that microscopy images usually
have high background noise. It has difficulty in separating weak neuron voxels from an
inhomogeneous background.23 It is tough to distinguish the neurites with low intensity and non-
uniformity from the noise background, especially for the large-scale neuron images with discon-
tinued segments of neurites and ultra-low SNR. The variability between different datasets and the
low SNR of optical images increase the difficulty of generalization and improvement of neuron
segmentation algorithms. Many semi-automatic or automatic methods have been proposed for
neuron segmentation or neuron tracing.24 In these algorithms, various computational methods
addressing global and local image features have been used to realize neuron segmentation and
tracing. These include but are not limited to region growing, tubular model, full path pruning,
graph theory method, and support vector machine based on self-learning.25,26 These algorithms

Fig. 1 Typical segmentation result of two diverse OM image datasets, including the maximum
intensity projection of fMOST16 and BigNeuron22 dataset. Red pixels indicate the ground truth.
Yellow pixels represent the overlapping regions between the prediction and ground truth.
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usually show good performance on OM images with clear structure. However, the above methods
are designed for specific datasets or specific problems, and their performance on different types
of datasets may degrade, so complex parameter tuning is needed. In addition, most algorithms
perform poorly in tracing neurites from low SNR images, and are unable to recognize weak
neurite signals or prone to over-segmentation due to background noise.

Deep network27 has been widely used in many fields, including computer vision, natural lan-
guage processing, speech recognition, and so on, and has achieved excellent results in these tasks.28

Since the full convolution network (FCN),29 various deep networks have been proposed to improve
the accuracy of image segmentation, including U-Net,30 3D deeply supervised network (DSN),31

and VoxResNet.32 The excellent performance of deep network encourages researchers to apply it to
neuron segmentation.33 In Ref. 34, a deep network is designed to improve the performance of
existing tracing algorithms. The main purpose of the deep network is to denoise the image con-
taining a single neuron or multiple sparse neurons. DeepNeuron,21 a deep learning toolbox, is
designed to trace neurons with human-reconstructed neurons as training samples. But they have
poor performance in the case of weak neurites. Yang et al.35 employed a two-stage 3D neuron
segmentation approach to segment neuron images from the BigNeuron dataset, via learning deep
features by an FCNmodel and enhancing weak neuronal structures based on Hessian Eigenvalues in
a fibrous structure. Structure-guided segmentation network (SGSNet),36 a two-branch network for
3D neuron segmentation, contains a shared encoding path but utilizes two decoding paths to
enhance weak neuronal structures and remove background noises. There are 3D CNNs specifically
designed for neuron segmentation and tracing that show better performance on images with high
noise.37,38 However, these algorithms require a lot of labor, time-consuming, and expensive manual
annotation to segment neurons. Users need to annotate enough new samples for neuron datasets
from different brain regions to achieve reliable prediction. The need for manual annotation has
greatly limited the promotion of deep learning-based methods for various optical neuron images.

Here, we propose a weakly supervised learning method for deep CNN without manual
labeling. Integrating the advantages of traditional image enhancement and deep learning, we
can extract neuron signals accurately and robustly from noisy background, and realize neuron
segmentation in OM image.

3 Materials and Methods
To segment neuron population from low SNR optical microscopic images, our neuron segmen-
tation framework consists of four key modules: pseudo-labels module, DDeep3M segmentation
network, region growing module, and image enhancement module, which are illustrated in
Fig. 2. The automatic neuron segmentation framework includes four steps: (1) initial neurite
segmentation is automatically obtained by an adaptive enhancement filter and threshold segmen-
tation algorithm from optical images as their pseudo-labels, (2) training of the DDeep3M seg-
mentation network using input images and their pseudo-labels as training sets, and prediction of
the neurite as probability map using DDeep3M, (3) refinement of pseudo-labels from probability
map based on region growing, (4) combining the original image intensities with the refined prob-
ability map. Steps (1) to (4) are iterated to update the probability map. The segmentation network
is optimized, and the completeness and accuracy of neuron segmentation are improved. By
fusing the prediction probability map of neuron voxel with the original intensity to enhance the
original image, we can preserve the global structure from probability map and local signal from
original image at the same time. We gradually improve the performance of neuron segmentation
by combining the traditional image enhancement method and the DDeep3M network without
any manual annotation. Finally, we complete the automatic segmentation of large-scale neuronal
population from noisy and low-contrast OM images through whole framework.

3.1 Pseudo-Labels
There are some problems in the 3D optical images of neurons, such as weak signal, strong noise,
and uneven signal distribution. All these problems seriously restrict neuron segmentation, so we
enhance the original image to remove the noise in the first place. Usually, a neuron consists of a
soma and a great number of fibers. The fibers are formed from an axon and dendrites. Seeing
a neuron in mathematical graphical structure, we can understand that a cell body is a dot-like
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structure and a neurite is a fiber-like or line-like structure.39 We propose an adaptive enhancement
for the 3D image of neurons based on distance transform (DT) and Hessian matrix. The purpose
of enhancement filters for neuron is to get clearer and higher contrast images, and then the neuron
can be segmented after being enhanced.

The Hessian matrix is a mixed second derivate matrix, which simply indicates that the gray
intensity trends of continuous voxels in a 3D image. A 3D raw OM image volume was presented
as I ðx; y; zÞ. Hessian matrix was defined as the second order derivatives of the image intensity

EQ-TARGET;temp:intralink-;e001;117;397H ¼ ð∇G ⊗ IÞðð∇G ⊗ IÞTÞ ¼
2
4 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

3
5; (1)

where G ¼ ð2πs2Þ−3∕2 expð−ðx2 þ y2 þ z2Þ∕ð2s2ÞÞ is a Gaussian kernel. ∇G denotes the first
order Gaussian derivatives. ⊗ is convolution. Iij denotes the mixed second derivative along
dimensions i and j.

First, the window size of the Hessian matrix is determined by DT: DT can measure the
thickness of different neuron fibers effectively, and it can be used to calculate the Hessian matrix.
Second, the method constructs a structural response function to enhance the neuron fibers: when
the image signal is bright and the background is dark, the Hessian matrix eigenvalue λ1 is approx-
imately equal to 0, λ2 and λ3 are <0 and their amplitudes are close to each other. The method takes
advantage of this characteristic to enhance the neuron fibers. Third, the method enhances the
soma with different strategy: the signal value of the soma is high and the radius is large.
Accordingly, this method sets a higher threshold for DT to localize the soma for hole filling.
Through the above three steps, the enhancement of neuron with different structures is finally
achieved. Through a Hessian analysis-based neuron enhancement and neurite threshold segmen-
tation, the initial neurite segmentation is automatically obtained, and then they are regarded as
initial training labels (pseudo-labels).

We devise a way to get an adaptive window size, which can guarantee that the Hessian
matrix has a proper window size in our image of uneven intensity. First, we distinguished the
foreground regions and background regions with a determined value derived from a priori
knowledge, the image was transformed to be binary. Then we used the Euclidean DT to describe
the degree of the thickness. Here, the Euclidean DT between M and N is DðM;NÞ ¼
ðPk

i¼1 jmi − nijpÞð1∕pÞ. Here M and N are k-tuples (k ¼ 3 in this study), mi and ni are the i’th
coordinates of M and N, p ¼ 2 in Euclidean distances. The purpose of computing the DT is to
determine the window size of the Hessian matrix. As a second-order partial derivative matrix,

Fig. 2 Schematic illustration of the proposed weakly supervised learning framework (i.e., our
DDeep3M+) for automatic neuron segmentation. Our method consists of four steps: (1) using
adaptive enhancement filter to segment the neural signal from the OM image and generate pseudo
labels; (2) training and predicting of DDeep3M network with raw images and their pseudo-labels
as training sets; (3) refining pseudo labels using region growing; (4) combining the prediction
probability map with the original image. Iterative steps 1 to 4 update the pseudo label of training
samples to improve segmentation.
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the Hessian matrix needs to determine how many points to calculate when calculating between
voxels. The size of the Hessian matrix window is closely related to the thickness of the nerve
fibers. It has a great influence on the subsequent nerve fiber enhancement. First, the center point
of a cell body is set as X. After the Euclidean DT, the DT value of the cell center point is set to
DTðXÞ. Next, the window size of the Hessian matrix is calculated by the obtained DT value.

Then the window radius is determined by the following formula: R ¼ log2 DTðXÞ. The
intensity of neurites in the middle is higher than that at the edge. DT image reveals the structure
information of the graph, to a certain extent. We made use of this useful information and defined
an optimal window radius R for each voxel. The DT value for each location ðx; y; zÞ is defined as
D ðx; y; zÞ, and all the DT values for each voxel in the image build a DT matrix, which has the
same size as the original image. Then we normalize DTðXÞ between 1 and 256. We defined the
normalized result for each voxel as DN ðx; y; z). We make a logarithmic operation for DN, the
result of it comes to be the window radius. Indeed, in this way, we basically used a window with
radius R between 1 and 8. The window size, that is, window diameter DI is defined as twice the
radius and plus one. The above formulas are as follows: R ¼ log2 DNðx; y; zÞ, DI ¼ 2Rþ 1.
It can provide a proper size for each voxel for the uneven gray-scale characteristics of different
locations in neurites to calculate the Hessian matrix.

Since the Hessian matrix is symmetric, there exist three eigenvalues λ1, λ2, and λ3. For
convenience, they are sorted based on the absolute value: jλ1j ≤ jλ2j ≤ jλ3j. In previous studies,
such as Frangi’s40 method in 1998 when the signal is bright and the background is dark,
the Eigenvalues of an ideal 3D dot-like, line-like, and plate-like area satisfy the following
conditions: line-like: λ1 ≈ 0; λ2 ≈ λ3 < 0; dot-like: λ1 ≈ λ2 ≈ λ3 < 0; plate-like: λ1 ≈ λ2 ≈ 0;
λ3 < 0. Initially, taking account of the neurite enhancement, Frangi’s filter proposed three derived
parameters based on the above-mentioned Eigenvalues: p1 ¼ jλ2j∕jλ3j, p2 ¼ jλ1jffiffiffiffiffiffiffiffi

jλ2λ3j
p , and

p3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22 þ λ23

p
. The response function was defined as follows:

EQ-TARGET;temp:intralink-;e002;114;425ðXÞ ¼
(
0; if λ2 > 0 or λ3 > 0

ð1 − e−ap
2
1Þe−bp2

2

�
1 − e−

p2
3
c

�
; else

(2)

where a, b, and c are thresholds that control the sensitivity of the line filter to the measures p1,
p2, and p3. Through the test of multiple groups of data, we found the optimal values of param-
eters: a ¼ 5∶55, b ¼ 2, and c ¼ 2 × 106. When a voxel in the image is a point in a plate-like

structure, ð1 − e−ap
2
1Þ approaches 0. The calculation result ofOðXÞ is 0 without response. When a

voxel is a point in a dot-like structure, e−bp
2
2 approaches 0. The result of OðXÞ is 0 without

response. When a voxel is background signal, ð1 − e−p
2
3
∕cÞ approaches 0. The result is with

no response. Therefore, nerve fibers can be specifically enhanced by the Eq. (2).
The above work is for line-like structures enhancement, the soma of a neuron will be turned

into a circular ring or an irregular shape with a hole,41 as shown in Step 1 of Fig. 2. To solve the
problem and make our algorithm complete and useful, we must design a method to detect the
holes. In the original fluorescent neuron image, the intensity of the soma and middle part of
the fiber is always higher than the other pixels. We take advantage of this feature and combine
the characteristic of DT, then design the following approach to detect the holes in soma and
thicker fiber. First, we choose a relatively higher determined value I2, which is bigger than
I1, with a priori knowledge. Then, we recalculate DT matrix with the higher threshold I2, defined
as D2, the result will show the location of the holes in soma and fiber. We can use the location to
fill the hole in the enhanced image by replacing it with high intensity at the same location. If
D2ðXÞ > T, OðXÞ ¼ 255; otherwise, it remains OðXÞ. Where X is the voxel, D2ðXÞ is the local
DT value for X with higher threshold, T is the threshold to determine whether a voxel is within
the soma area or not. And OðXÞ is the enhanced result before soma detection. If the voxel is
assumed as a soma voxel, we replace the intensity value. Otherwise, the previous enhanced result
will be retained. TheOðXÞ is the enhanced result of original image, and then we obtain the initial
training labels (pseudo-labels) through threshold segmentation after enhancement by our Hessian
analysis based adaptive enhancement filter.
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3.2 Segmentation Network—DDeep3M
Docker is an open source lightweight virtualization technology. DDeep3M42 integrates the
CDeep3M43 network by Docker, and it can run on the local computer by downloading a separate
Docker image file containing all necessary libraries, software and framework. DDeep3M greatly
reduces the threshold for biomedical researchers to accept deep learning technology. It achieves
excellent segmentation performance on multiple datasets and performs better than most related
models, especially in the neuroscience image segmentation tasks.

The architecture of DDeep3M has some similarities to the U-Net architecture,30 which con-
sists of a bottom-up path and a resolution recovery path. We aggregate multiscale context infor-
mation required for classification and minimize the effect of noise via using the z-direction
information. However, there are inception and residual modules in the coding path, which are
some key differences from U-Net. In deep learning, deeper layers can lead to overfitting and
vanishing gradient problems. The size of the receptive field is another important factor affecting
network performance. The inception module allows information to pass through multiple sized
cores in parallel, applying 1 × 1 convolution reduces the number of input feature maps before
using large kernel convolution to effectively reduce the complexity of the model. Residual learn-
ing is able to alleviate the gradient vanishing problem. We apply skip connections similar to those
in FCN,29 but add pyramid dilated deconvolution to further enhance the ability to represent multi-
scale information in the spatial recovery path.

Because neurites only account for a small part of the data block, the categories of foreground
(i.e., segmented neurites) and background are usually unbalanced, which may lead to prediction
bias. The weighted cross-entropy (WCE) loss function44 and dice loss (DL) function45 reduce
the impact of class level imbalance. We use a mixed loss function to combine these two loss
functions to prevent class imbalance and maintain regional continuity. The WCE loss is

EQ-TARGET;temp:intralink-;e003;117;448LWCE ¼
XL
i

XW
j

XH
k

−γ · gðxijkÞ logðpðxijkÞÞ; γ ¼
P

L
i

P
W
j

P
H
k gðxijkÞ

L ×W ×H
: (3)

Then, the DL is

EQ-TARGET;temp:intralink-;e004;117;394LDL ¼ 1 − 2

P
L
i

P
W
j

P
H
k pðxijkÞgðxijkÞ þ εP

L
i

P
W
j

P
H
k pðxijkÞ þ

P
L
i

P
W
j

P
H
k gðxijkÞ þ ε

; (4)

where pðxijkÞ is the prediction probability of pixel x; gðxijkÞ is the corresponding pseudo-labels
of foreground or background, and its values are 1 or 0 respectively; L is the length, W is the
width, and H is the height of volume data; γ is the ratio of the number of voxels of foreground
pseudo labels to the number of voxels of image volume data N; ε is the smoothing parameter set
to 1. Thus, the combination loss function to train the model is L ¼ σLWCE þ LDL, where σ is the
weight of cross-entropy loss LWCE, which is used to balance the ratio of loss function.

3.3 Pseudo-Label Refinement
Some weak and uneven neuron signals are not detected in the pseudo-labels obtained by an
adaptive enhancement filter, which reduce the network prediction accuracy of neuron images
with low SNR. Therefore, it is necessary to improve the pseudo-labels for better segmentation.
Huang et al.46 proposed a weak supervised learning method for neuron reconstruction. The
region growing and skeleton method is used to mine more weak neurites from the probability
map predicted by CNN iteratively. Here, we use the region growing method employed by Huang
et al.46 to find more weak neurites from the probability map predicted by DDeep3M iteratively.
The steps of the regional growth method are as follows:

1. Selection of seed region: According to the predicted probability map, the algorithm with
maximum probability classification is used to generate the seed region of neurite. An adap-
tive threshold ρ is calculated for region growth in Step (2). ρ is the average value of voxels
near the seed region (Nreg). Nreg is defined as follows:

EQ-TARGET;temp:intralink-;e005;117;105Nreg ¼ fv ∈ N 0ðv0Þ ∣ v ∈= Oreg; v0 ∈ Oregg; (5)

where N 0ðv0Þ is the 124 voxels neighborhood of v0; Oreg is the seed region; and v, v0 are
the voxels.
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2. Region growing: Based on neurite continuity, the seed region is expanded to include
weaker neurites using region growing algorithm

EQ-TARGET;temp:intralink-;e006;114;713Greg ¼ fv ∈ Nðv0Þ ∣ sðvÞ > ρ; v0 ∈ Oregg (6)

where Nðv0Þ is the 8 voxels neighborhood of v0, sðvÞ is the probability map value of v;
ρ is the adaptive threshold of region growth, and Greg represents the grown region.

Compared with the seed region, the grown region contained more voxels from neurites.
Some weak neuron signals in the post-processing prediction graph are marked, which can be
fused with the original image to obtain new enhanced training data for the next round of network
training, to improve the accuracy of network prediction.

3.4 Image Enhancement
The output of DDeep3M network is the 3D probability map PðxÞ, which is calculated by the
SoftMax activation function after the 3D data block passes through convolution layers of the
network. PðxÞ ∈ ½0; 1� denotes the probability that voxel x becomes the part of neuron. To use
the prediction results, a natural method is to segment neurons directly from the prediction graph.
However, because the accuracy of pseudo labels is not as good as manual annotation, especially
in early iterations, some local details may be lost in the prediction graph. Therefore, we enhance
the original image by fusing the prediction image and the original image to maintain the accurate
neuron structure and suppress the noise signal effectively. By fusing the prediction result graph
PðxÞ with the original image IðxÞ signal, the enhanced image block FðxÞ can be obtained, to
preserve the local signal and the global structure at the same time (the image enhancement for-
mula is shown below). When the enhanced image block FðxÞ is delivered to the Hessian module,
a more complete neural community can be segmented and a better pseudo-label can be provided
for the next iteration of network training. In the process of iterative learning, DDeep3M and
Hessian modules complement and promote each other, thus gradually improving the perfor-
mance of neuron segmentation.

Specifically, for an input image IðxÞ, where x is a voxel, we identify the foreground voxels
through the threshold δ (δ ¼ 2) selected by experience, to screen the probability map.34 If the
foreground probability PðxÞ of voxel x is <δ, we set the intensity IðxÞ to zero, otherwise we keep
the original intensity value unchanged. We use a step-edge function ΘðIðxÞ − δÞ to describe an
intermediate image. if PðxÞ > δ, ΘðIðxÞ − δÞ ¼ IðxÞ; if PðxÞ ≤ δ, ΘðIðxÞ − δÞ ¼ 0. Then, inter-
mediate images and probability maps are fused, and the final image FðxÞ adjusted by our
enhancement function is defined as

EQ-TARGET;temp:intralink-;e007;114;322FðxÞ ¼ α

αþ β
· ΘðIðxÞ − δÞ · IðxÞ þ β

αþ β
· bð1 − αÞ · IM · PðxÞc; (7)

where IM is the maximum intensity of the image, and α ∈ ½0; 1� is the weight controlling the
contribution of voxel x in the original intensity, whereas β ∈ ½0; 1� is the weight controlling the-
contribution of voxel x in the prediction graph, which were both set between 0 and 1. Using more
reliable segmentation results as pseudo-labels, the segmentation network can be further trained to
learn more distinctive and representative features for generating the probability map, which is
conducive to the Hessian matrix based enhancement filter to segment more complete neurons in
the next iteration. To explore the influence of parameter α for image enhancement, we adopt
different values for α. In this paper, we empirically select α ¼ 0.8 to increase the robustness
of the whole framework.

During each iteration of the training process, we calculate the F1 value (Ft) of the test data-
set. If the difference between Ft and the F1 value from the previous iteration (Ft−1) is <0.005,
and the difference between Ft and the F1 value from the next iteration (Ftþ1) is also <0.005
(i.e., Ft − Ft−1 < 0.005 and Ftþ1 − Ft < 0.005), we consider the iteration to have converged
to the optimal solution. Based on our experimental results (as shown in Fig. 3) and experience,
we have found that the number of iterations required to converge to the best solution is
usually between 4 and 6. Once convergence is achieved, the network training is considered
complete.
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4 Results

4.1 Datasets and Settings
We evaluate the proposed method and state-of-the-art segmentation methods based on deep
learning on various 3D optical neuron datasets, including the fMOST datasets and the
BigNeuron datasets. For the fMOST dataset, we select an image stack with the voxel size of
0.5 μm × 0.5 μm × 1 μm from the images of mouse neurons at the single fiber level for training
and testing. The fMOST dataset used in the experiment is 3D volume data obtained from trans-
genic mouse Thy1 sample using two-photon fMOST (2P fMOST) system, which combines slicer
and two-photon microscopy to realize continuous block imaging. In this study, the prediction set
included the fMOST image stack of 3687 × 1224 × 1000 voxels from the V layer of the mouse
cerebral cortex. During the training phase, we input a representative fMOST image stack of size
200 × 200 × 350 voxels into the DDeep3M framework for iterative network training. The image
stack was divided into three datasets for training, validation, and testing, respectively. The train-
ing dataset comprised a volume of 200 × 200 × 200 voxels, whereas the validation and testing
datasets were 200 × 200 × 50 voxels and 200 × 200 × 100 voxels in size, respectively. For each
iteration, we fed the training and validation datasets, along with the corresponding pseudo-labels,
separately into the neural network for training. The network’s performance on the test dataset and
the ground truth data were used to evaluate its prediction accuracy at each iteration, which was
then used to decide whether to continue training the network or terminate the iteration.

4.2 Training Details
The fMOST image stack is processed by a histogram equalization technology to strengthen the
contrast, and then normalized by merely dividing the value of all pixels by 255. Finally, the data
augmentation technique is applied to the original training set. Data augmentation can expand the
effective size of training data, thereby decreasing the problem of over fitting. It is normally used
to train CNN for image classification. By applying several spatial transformations to the input
image, we enhance the training and test data. These transformations are a combination of
horizontal and vertical mirrors, rotation þ90 deg, −90 deg, and 180 deg in the XY plane, and
flipping in the Z direction (horizontal mirror). A total of 5 datasets of 1000 images are employed
in training. After all the converted data is provided to the network, we apply reverse conversion
for each probability map. We take the predicted average of each transformation graph and the
original graph as the final output of the boundary probability map.

We initialize the network by utilizing a Gaussian distribution with a standard deviation of
0.01. The mini batch size of our training model is 4, and the base learning rate is 0.01. The
stochastic gradient descent optimization method with a momentum of 0.9 is adopted. Each model

Fig. 3 Comparisons of F1 value of the neuron segmentation at different iterations with four deep
segmentation networks, respectively. After 4 iterations, DDeep3M network achieves the best
segmentation result, with F1 value up to 0.973. Our DDeep3M+ effectively improves the neuron
segmentation performance by combining any one of the three-neuron segmentation CNNs
(U-Net,30 3D DSN,31 and VoxResNet32).
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trains 30,000 iterations, and the mixed cross-entropy loss function is taken as our training objec-
tive. The network segmentation was trained and executed on a computer equipped with an Intel
Xeon w-2123 CPU (64 GB RAM) and a Nvidia P5000 GPU (16 GB RAM). The prediction task
for the fMOST image stack (3687 × 1224 × 1000 voxels) was completed by DDeep3M+ in
∼5 h, resulting in an average processing rate of 18.4 s per image.

4.3 Evaluation Metrics
To conduct quantitative comparisons among different segmentation methods, we first perform a
binarization operation on the segmentation results obtained by different segmentation methods
with a threshold value of 200, and then utilize common metrics to quantitatively evaluate the
segmentation result between the ground truth labeled by human experts. They are precision,
recall, F1, and Jaccard, and their definitions are given by

EQ-TARGET;temp:intralink-;e008;114;592Precision ¼ TP

TPþ FP
; (8)

EQ-TARGET;temp:intralink-;e009;114;546Recall ¼ TP

TPþ FN
; (9)

EQ-TARGET;temp:intralink-;e010;114;518F1 ¼ 2 ·
Precision × Recall

Precisionþ Recall
; (10)

EQ-TARGET;temp:intralink-;e011;114;489Jaccard ¼ TP

FPþ TPþ FN
; (11)

here TP, TN, FP, and FN denote the true positive, true negative, false positive, and false positive.
To demonstrate the segmentation performance of our weakly supervised learning strategy,

four widely-used deep segmentation networks, including U-Net, 3D DSN, VoxResNet, and
DDeep3M, are tested to generate the neuron probability map in our framework. Eight iterations
are tested on the fMOST dataset, and the F1 value improvement of segmentation results is shown
in Fig. 3. It can be seen that our DDeep3M+ algorithm achieves the best segmentation effect, with
the F1 value up to 0.973 after fourth iterations. After the fifth iteration, the F1 value decreases,
and the network segmentation effect does not improve when the iteration number increases.
It indicates that the prediction performance of the weakly supervised learning framework has
reached the best after the fourth iteration. In addition, the performance of the DDeep3M network
is better than the other three deep networks.

Moreover, the neuron segmentation results on a test block at different iterations are shown in
Fig. 4, which depict the mining process of pseudo-label refinement. In Fig. 4, we can see that
the prediction effect of DDeep3M network is more and more accurate, and many weak nerve
fiber signals can be accurately segmented in the later stage, after several iterations of training.

4.4 Comparison with Other CNN Models
By comparing the detection performance of the proposed method against that of the common
deep learning methods, we tested the effectiveness and accuracy of the proposed weakly
supervised learning method for neuron detection and segmentation. The deep learning
method used in this experiment is based on the supervised learning of the DDeep3M network.
Figure 5 showed the segmentations of the proposed method on the fMOST datasets. Figure 6
displays the 3D rendering of the prediction results for a larger fMOST image stack
(3687 × 1224 × 1000 voxels), as well as the maximum intensity projection of the original
images and segmentations for 50 slices of the image stack. The proposed method detects almost
all neurites from OM images. According to Table 1, the F1 score of the proposed method and the
supervised deep learning method are 0.973 and 0.980, respectively; the recall and precision
scores of the proposed method are 0.952 and 0.994, respectively; and the recall and precision
scores of the deep learning method are 0.970 and 0.985, respectively. In Table 1, we also imple-
ment segmentation models that contain different parts of our DDeep3M+ modules in the fMOST
image trainings, and the results show the performance for the different key structures. Table 1
shows that our DDeep3M+, which contains our enhancement filter to obtain pseudo-labels,
has the best performance for fMOST neuron segmentation. We implement four segmentation
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Fig. 5 Validation of DDeep3M with the fMOST16 dataset after four iterations. (a) Original image,
(b) segmentation of DDeep3M+, (c) ground truth, (d) merge of the segmentation (green) and the
ground truth (red). The segmentation of neuron signal is realized accurately by DDeep3M+.

Fig. 4 An example of pseudo-label refinement for weak neurite mining. (a1)–(a4) Probability map
by DDeep3M at different iterations; (b1)–(b3) region grown to include nearby weak neurites;
(c) original image. Yellow arrowheads point to the grown region. We iteratively mine more unde-
tected weak neurites from the CNN-predicted probability map.
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networks with a threshold method (named Otsu) for pseudo-labels. And the results show that
their performances are far worse than our DDeep3M+ method.

Zhao et al.47 proposed a progressive learning method to reconstruct neurons via 3D DSN
network from ultra-large scale optical microscopic images, and it is currently the excellent
method for weakly supervised learning in the field of neuron segmentation. Figure 7 shows that
neither U-Net segmentation network nor progressive learning method has an ideal segmentation
effect on MOST dataset by comparing the segmentation performance of different network. We
tested the proposed method and compared the final result with other three networks with a mouse
brain dataset as shown in Fig. 8, which shows more details for comparison results between our
method and other three segmentation networks. The result of proposed method shows more
details of the fibers. As pointed out by the yellow box images in Fig. 8, the VoxResNet network
was unable to detect neurites with weak or sudden changes in intensity. Similarly, it is difficult to

Table 1 Quantitative comparison results of neuron segmentation by different
methods on fMOST16 data.

Methods Precision Recall F1 Jaccard

DDeep3M+ Our 0.994 0.952 0.973 0.947

Otsu 0.764 0.735 0.750 0.599

U-Net30 Our 0.993 0.913 0.951 0.907

Otsu 0.599 0.836 0.598 0.536

3D DSN31 Our 0.994 0.836 0.908 0.831

Otsu 0.386 0.926 0.545 0.374

VoxResNet32 Our 0.992 0.892 0.939 0.885

Otsu 0.948 0.518 0.670 0.504

Supervised learning42 0.985 0.970 0.980 0.990

Fig. 6 Prediction by DDeep3M+ on fMOST16 image stack. (a) 3D rendering of the prediction in a
larger image stack. (b) Part of raw images in (a). (c) A magnified view of some of the nerve fibers in
(b). The signal at the ends of the fibers is very weak and the connections are intermittent.
(d) Segmentation of (b) with DDeep3M. (e) A magnified view of some of the nerve fibers in
(d). Weak nerve fiber signals can be accurately identified and segmented, and the connections
of nerve signals are continuous.
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trace some weak and uneven neurites from high noise images by 3D DSN network. In Fig. 8(f),
there are some false positives in the result of U-Net network, which failed to trace some weak
neurites precisely from the noisy background. Our method, employing weakly supervised learn-
ing, can accurately segment neuron cell body and fiber, and even some weak neurites can be
accurately identified, and its segmentation performance is comparable to that of traditional deep
learning method with manual annotations.42

Fig. 7 Segmentation performance of different networks: (a) raw images, (b) U-Net, (c) 3D DSN,
(d) supervised method, and (e) our method. Neither U-Net30 network nor other weakly supervised
learning method has an ideal segmentation effect on fMOST16 dataset. Our method segments
neurons more completely and accurately compared to other methods. The proposed method is
comparable to that of supervised deep learning method.

Fig. 8 Enhancement comparison results in fMOST16 dataset. Images were acquired with a voxel
size of 0.5 μm × 0.5 μm × 1 μm. (a) Original images and (b) enhanced results of our method.
(c)–(h) Details of original images, ground truth images, enhanced results of our method, U-
Net30 method, 3D DSN31 method, and VoxResNet32 method. Yellow box images show the situation
of weak neurites.
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4.5 Comparison on Other Datasets
We also test the performance of the proposed method on other datasets, as shown in Table 2. The
proposed method also performs well on the BigNeuron datasets, with the highest F1 value up to
0.880, much higher than the 0.809 of U-Net network. The F1 value of U-Net, 3D DSN, and
VoxResNet were 0.809, 0.816, and 0.649, respectively, whereas the performance of DDeep3M
in our experiment is 0.855 (recall), 0.907 (precision), and 0.880 (F1 value). After the comparison
of various quantitative metrics, the proposed method is better than other segmentation methods
in all aspects. Figure 9 shows the segmented neurons on three test images from the BigNeuron
dataset.

4.6 Enhancement Parameter
To explore the influence of parameter α in enhancement function on image enhancement of our
segmentation framework, we use different values of α and show the corresponding segmentation
results of our method in Fig. 10. α ¼ 0 means that the original data block is directly used as the
input of neuron segmentation. α ¼ 1 means that only the probability map is used as the input of
neuron segmentation. This shows that the performance is improved by combining the probability
map with the original image signals. The main reason is that the probability map reflects the long-
range trajectory structure, whereas the original image signal carries more details of the neurites.
The experimental results show that the segmentation performance can be improved by combining
the probability map with the original image signal, which is mainly because the probability map

Table 2 Quantitative comparison results of neuron segmentation by different
methods on BigNeuron22 data.

Methods Precision Recall F1 Jaccard

DDeep3M+ 0.977 0.885 0.929 0.867

U-Net30 0.921 0.722 0.809 0.680

3D DSN31 0.772 0.881 0.806 0.677

VoxResNet32 0.914 0.692 0.784 0.649

Supervised learning42 0.890 0.802 0.905 0.876

Fig. 9 Segmentation by DDeep3M+ on BigNeuron image stacks. (a)–(c) Original images; (d)–(f)
segmentations of (a)–(c). The proposed method also performs well on BigNeuron dataset.
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reflects the long-range trajectory structures, whereas the original image signal has more details of
subtle neural processes. Since we used pseudo labels to train the CNN model, its performance
was limited when comparing it against the supervised learning method. To reduce the influence
of false positive prediction on the probability map and combine with experimental verification,
we chose α ¼ 0.8 in this paper to improve the robustness of the whole framework.

5 Discussion
Deep learning-based algorithms provide an effective and automatic method for neurite detection
in highly noisy backgrounds. However, an accurate and robust estimation relies on large numbers
of voxel-wise annotations. In recent years, the method of weakly supervised learning has gradu-
ally become a new trend in biomedical image segmentation. Huang et al.,46 Zhao et al.,47 and
Chen et al.48 proposed three weakly supervised methods for neuron tracing and reconstruction.
They solved the problem of the scarcity of manually annotated training samples and obtained
better neurite detection results. Here, we employ a well-established CNN (DDeep3M) with
inception and residual modules to achieve accurate, automatic, and universal neuron segmenta-
tion of 3D optical images for different types of neuron datasets with low and non-uniform signal
strength. The proposed method is superior to several novel weakly supervised segmentation
methods.

First, we apply the Hessian-based adaptive enhancement filter for 3D neuron images based
on DT to obtain more accurate pseud-label. Our enhancement filter can preserve the neuron
signals of subtle intensity. The enhanced images have shown better visual effect, higher image
quality, more abundant information. In addition, the proposed algorithm has shorter time con-
sumption. Thus, this algorithm will benefit the morphological study of neurons. The adaptive
enhancement filter based on Hessian matrix is used to extract the global feature of the neuron
voxel, which can effectively provide the approximate location of the neuron. However, some
weak, disconnected, and heterogeneous neurites are not detected in the pseudo-labels obtained
through the Hessian matrix, which reduces the accuracy of image segmentation for low SNR
neuron images. Therefore, finer neuronal signals must be mined for better segmentation.
Deep CNN has achieved impressive performance in both natural and medical image segmenta-
tion, and its efficient performance in extracting image features gives us the possibility of our
work. Further use of the DDeep3M network on the adaptively enhanced image can detect almost
all the neurites in the neuron image, including the difficult to identify thin neurites with relatively
low intensity.

The initial training labels are constructed by the traditional image enhancement algorithm
based on the neurite structure features. Then, the DDeep3M network improves prediction by

Fig. 10 Neuron segmentation performance with different α in Eq. (7) for image enhancement. We
choose the best model α ¼ 0.8 to reduce the impact of false positive prediction on probability map
and improve the robustness of the whole framework.
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iteratively optimizing the training labels and retraining model, while using regional growth to
mine undetected weak neurites from the probability map predicted by DDeep3M. With more
iterations of network training and image enhancement, the pseudo-labels are progressively
refined and the DDeep3M model can gradually learn discriminative features of the neurites and
background. Therefore, DDeep3M based segmentation method and traditional image enhance-
ment technique can complement and promote each other. Finally, completer and more accurate
neuron segmentation is obtained by our DDeep3M+ method.

In the training phase, deep learning completes the model establishment and parameter opti-
mization, and in the inference phase, it completes the specific implementation and application.
After carefully adjusting the weights, the neural network is basically a bulky and huge database.
To make full use of the training results and complete the segmentation task in practical appli-
cation, we used data quantification, layer fusion, and model pruning to optimize the inference
process of the network. After the acceleration technology in inference phase, the speed of net-
work prediction can be increased by about 12 times. At the same time, the F1 value of the pre-
diction results did not decrease significantly, indicating that the inference speed was improved
and the accuracy was not lost.

There are still some limitations of our work. (1) Our method is currently not as good as
supervised learning methods in accuracy, although we have an advantage in the cost of manual
labeling. In the future work, we need to make better use of the prior knowledge of neuronal
signals and improve the architecture of deep networks to improve the prediction accuracy of
weakly supervised learning and achieve more accurate segmentation of neuronal protrusions.
(2) The selection of the value of the parameter in the enhancement formula in the work of
image fusion is empirical, and there is no theoretical support. We choose α ¼ 0.8 as the weight-
ing value of the original image according to the experience of the experiment. The enhance-
ment result is the best, which is only obtained from limited discrete data. (3) The selection of
the number of iterations in the whole weakly supervised learning scheme is also obtained
according to the experience of experiments, which also lacks the explanation of the algorithm
principle. (4) We have not carried out neuron reconstruction experiments on the results of
neural network segmentation. In the future work, we will use neuronal images enhanced by
neural networks for neuron tracing and reconstruction, so as to analyze the advantages of our
method in promoting neuron tracing, reconstruction and visualization compared with other
deep learning methods.

Compared to supervised learning methods, our method adapts to different types of optical
neuron datasets without manual labeling, model redesign, or parameter tuning. The high accu-
racy results on challenging 3D optical images from different types of datasets demonstrate the
accuracy and generalization of the proposed neurite segmentation method. The proposed weakly
supervised learning framework can be extended to multi-modal biomedical big data, such as
soma, vessels, and tumors, which helps life science experts to efficiently use deep learning tech-
niques and promote further brain research. In addition, the source code of our method is open on
the GitHub, which helps neuroscience researchers to easily use deep learning tools for their work
on neuron segmentation and reconstruction.

6 Conclusions
We propose a weakly supervised deep learning method (i.e., DDeep3M+) for automatic neuron
segmentation in 3D OM images. Our DDeep3M+ framework consists of an adaptive enhance-
ment filter that extracts initial neuron signals as initial neurite segmentations and a deep
segmentation network for precise neurite segmentations from low SNR optical images without
manual labeling. The accuracy of segmentation is close to that one of the best supervised learning
methods. The comparison between the proposed method and several new segmentation methods
proves the superiority of the proposed method in the segmentation of neurons from low SNR
images. The proposed framework is effective for both public fMOST and BigNeuron datasets,
and can be used for automatic segmentation of super-large neuronal population in the entire brain
region. The codes and the pretrained model weights of our method are available at GitHub, which
will help neuroscience researchers to easily use deep learning tools for their work on neuron
segmentation and reconstruction. We believe it will promote further brain studies, including
neuron tracing, neuron reconstruction, and so on.
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