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Abstract. Optogenetics has become an integral tool for studying and dissecting the neural
circuitries of the brain using optical control. Recently, it has also begun to be used in the inves-
tigation of the spinal cord and peripheral nervous system. However, information on these
regions’ optical properties is sparse. Moreover, there is a lack of data on the dependence of
light propagation with respect to neural tissue organization and orientation. This information
is important for effective simulations and optogenetic planning, particularly in the spinal cord
where the myelinated axons are highly organized. To this end, we report experimental measure-
ments for the scattering coefficient, validated with three different methods in both the longi-
tudinal and radial directions of multiple mammalian spinal cords. In our analysis, we find that
there is indeed a directional dependence of photon propagation when interacting with organized
myelinated axons. Specifically, light propagating perpendicular to myelinated axons in the
white matter of the spinal cord produced a measured reduced scattering coefficient (μ 0

s) of
3.52� 0.1 mm−1, and light that was propagated along the myelinated axons in the white matter
produced a measured μ 0

s of 1.57� 0.03 mm−1, across the various species considered. This 50%
decrease in scattering power along the myelinated axons is observed with three different meas-
urement strategies (integrating spheres, observed transmittance, and punch-through method).
Furthermore, this directional dependence in scattering power and overall light attenuation did
not occur in the gray matter regions where the myelin organization is nearly random. The
acquired information will be integral in preparing future light-transport simulations and in over-
all optogenetic planning in both the spinal cord and the brain. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.NPh.7.1.015011]
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1 Introduction

Optogenetics, the use of light and genetic engineering to probe and manipulate cell activity, is an
important emerging technology that is instrumental in decoding the functional organization of
brain tissue. More recently, the technique has also shown promise in the study of the spinal cord
and peripheral nervous system.1–3 In the context of motor guidance, optogenetic tools have been
used to establish the role played by individual neural populations in motor navigation and have
shown potential for restoring function after spinal cord injury or motor neuron disease.4–7 In the
study of sensory and pain processing, experiments involving targeted optical stimulation have
greatly expanded our knowledge about the connectivity and function of peripheral and spinal
sensory neurons.8–12 In vivo control of somatosensory circuits continues to enable researchers to
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study behavioral consequences of stimulation in specific classes of neurons under both normal
and pathological conditions without confounding effects of genetic ablation or pharmacological
intervention.13,14

Nonetheless, a question that will continue to affect interpretation of optogenetic experiments
is whether a lack of physiological response to the light stimuli comes from abnormalities in
neural circuit activity or failure of the stimulation itself. Optogenetic control of nerve cell activity
relies on the expression of light-sensitive proteins called opsins, which generate depolarizing or
hyperpolarizing currents when exposed to light.15 Cell-selective and temporally precise control
over action potential generation in neural circuits, however, requires a specific knowledge and
consideration of the tissue optical properties and illumination profiles.

Understanding and overcoming obstacles related to targeted illumination is therefore an
essential step in designing effective in vivo experiments. A critical difference between the opto-
genetic stimulation in the brain and in the spinal cord lies in the light delivery system. In the
brain, light can be delivered to any cortical or subcortical regions through a fiber-optic tip, often
extended deep into tissue with minimal reported changes in animal behavior.16–18 This approach
is unlikely to be successful in the spinal cord or periphery because an implanted optical fiber
would severely damage the white matter tracts, which have minimal redundancy and carry high
information density. Furthermore, the spinal cord is a much smaller and more mobile structure in
comparison with the brain, making the targeting even more of a challenge. Light delivery sys-
tems are thus superficial, wrapping around a nerve, or fixed immediately dorsal to the spinal
cord.8,19 As a consequence, the light source is placed relatively far from the target activation
region and light must pass through the myelinated dorsal white matter of the spinal cord before
reaching the opsin-expressing gray matter. Evaluating light propagation patterns is therefore
critical for efficient optogenetic modulation.

While anisotropic light propagation has been observed in many biological tissues, an impor-
tant piece of information that is currently missing is the directional dependence of light scatter in
the highly organized spinal cord.20,21 Indeed, in the brain, it has been shown that nerve fiber
orientation can induce a dramatic difference in effective attenuation depending on the angle
of incident light with regards to the white matter tracts.22 Given this, and due to the fact that
the spinal cord contains very highly organized white matter tracts extending the length of the
vertebrae, a more in depth characterization of this directional effect was required.

To this end, we characterized the reduced scattering coefficient (μ 0
s) in both the radial and

longitudinal directions of the myelinated fibers in perfused macaque spinal cord, as well fixed
and fresh human spinal cord. To achieve this, we use integrating sphere measurements and val-
idate with microscope images and the “punch-through” method.23 Finally, we incorporate these
data into a modified open-source three-dimensional (3-D) Monte Carlo program (mcxyz),
allowing the use of multidimensional scattering coefficients, to visualize the anisotropic illumi-
nation profile in a typical optogenetic experiment.24

2 Results

We show herein that light propagation patterns in the spinal cord depend both on the local tissue
scattering properties as well as the regional tissue organization.

2.1 Scattering Coefficient Depends on White Matter Tract Orientation

Spinal cord gray matter consists mainly of neuron and glial cell bodies along with nonuniform
combinations of myelinated and nonmyelinated nerve fibers. On the other hand, spinal cord white
matter is built up almost entirely of highly organized myelinated nerve fibers.While the anisotropic
nature of neural tissue is often ignored, it is generally accepted that overall, the myelinated axons in
white matter lead to increased scattering in comparison with gray matter.25–29 We show here that
this is not always true and that the direction of light propagation with respect to white matter fiber
tracts plays a profound role in the observed scattering and attenuation.

Specifically interesting, the white matter in the spinal cord has lower scattering in the longi-
tudinal direction (along axons) and higher scattering in the radial direction (perpendicular to
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axons) compared with the gray matter present on the same slices. The results of these integrating
sphere measurements are tabulated in Table 1. The difference in scattering power between
the longitudinal and radial white matter was profound, with a 50% decrease measured in the
longitudinal direction in all the tissues considered. The measurements in gray matter, however,
produced similar results in both directions, suggesting that this effect arises due to the organized
myelinated structures in white matter. While we measured μ 0

s in each Cartesian direction (x, y,
and z), we reduce the terms to radial and longitudinal due to the symmetry of the organized
myelin structures resulting in equal μ 0

sx and μ 0
sz . Moreover, our results in radial white matter

are very much in agreement with previous measurements of μ 0
s using a fiber optic probe.30

In all of our integrating sphere measurements, the measured absorption coefficient in all tissue
regions and sections were below 0.1 mm−1. These measurements are purposefully taken at
633 nm to minimize absorption contributions, to better isolate and analyze directional scattering.
While the main result here is the observed ratio of the scattering power between the two direc-
tions, the absolute values may also be useful due to limited reports in spinal cord tissue.

We further validated the directional dependence of attenuation by imaging two 1-mm fixed
macaque tissue samples in both the radial and longitudinal directions using a transmission micro-
scope [Figs. 1(a) and 1(b)]. Indeed, we see the white matter regions have a directional dependence
with respect to transmission, which is in good agreement with the inverse of the scattering relation-
ship (white matter transmits more than gray matter in the longitudinal direction and less than gray
matter in the radial direction). We also include images we have taken using coherent anti-Stokes
Raman scattering (CARS) in primate spinal cord, in the various directions, showing the organi-
zation of the spinal cord segments at subcellular scale for reference [Figs. 1(c) and 1(d)].

As an additional and final validation that the reduced scattering coefficient is anisotropic in
the white matter of the spinal cord, we performed the punch-through23 method. We experimen-
tally estimate the relative values of μeff in perfused mouse and macaque spinal cord white and
gray matter sections, also in the longitudinal and radial directions. Due to the limited thickness of
mouse spinal cord, it is not possible to obtain tissue samples for which the diffusion approxi-

mation is valid and μeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μaðμa þ μsð1 − gÞp

.31 Nevertheless, the initial exponential decrease
is related to μeff . As seen in Table 2, we found the light traveling along the white matter tract axis
is also roughly 50% less attenuated than light traveling perpendicular to the white matter tract.
We again observed the lack of a directional preference in the gray matter structures, due once
again to the lack of organized myelin. What is important to take away from these observations is
the ratio of the coefficients between the two directions.

3 Discussion

3.1 Simulating 3-D Optogenetic Activation Volumes Using Multidirectional
Scattering Coefficients

Using the different experimental evidences, we have shown that the scattering coefficient along
the myelin fibers is approximately half the value obtained across the myelin fibers. Here, we

Table 1 Measured values of μ 0
s in the longitudinal and radial directions at 633 nm.

Species Tissue type μ 0
sLong (1/mm) μ 0

sRad (1/mm)

Human (fresh) White matter 1.56� 0.2 3.51� 0.3

Gray matter 2.61� 0.2 2.69� 0.3

Human (fixed) White matter 1.59� 0.1 3.46� 0.3

Gray matter 2.24� 0.2 2.57� 0.2

Macaque (fixed) White matter 1.58� 0.2 3.59� 0.3

Gray matter 2.67� 0.2 2.90� 0.2
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investigate the impact on the light distribution in tissue by performing simplified light propa-
gation simulations in spinal cord tissue volumes, showing the repercussions of directional light
scattering on the optogenetic activation volume using an adjacent optical fiber illumination
source. To do this, we have edited an existing open-source 3-D Monte Carlo package
(mcxyz)24 to use multidirectional scattering coefficients (see Sec. 5 for more information).
It is understood that it would require a complete treatment modeling the cylindrical structures
of the white matter to obtain accurate simulations for these anisotropic structures. However, the
focus is to obtain an estimate of the volume of tissue illuminated and the impact of an anisotropic
scattering coefficient on that volume’s eccentricity. The results of these simulations with 10-mW
laser power at 473 nm (channel rhodopsin excitation wavelength), in the various species’ spinal
cords can be seen in Fig. 2. Described further in Sec. 5, one of the reasons for using the mcxyz
program as a base for our modification is the package’s ability to generate generic tissue volumes
with user-defined chromophore absorption (i.e., hemoglobin), at any given wavelength, as well
as its ability to automatically calculate the relative scattering coefficient at any wavelength
(herein 473 nm) in reference to a measured one (herein 633 nm).

Table 2 Measured values for μeff in the longitudinal and radial directions at 594 nm.

Species Tissue type μeffLong (1/mm) μeffRad (1/mm)

Macaque (fixed) White matter 1.90� 0.2 3.83� 0.45

Gray matter 2.65� 0.6 3.02� 0.32

Mouse (fixed) White matter 1.87� 0.22 3.48� 0.46

Gray matter 2.46� 0.16 2.36� 0.32

Fig. 1 Transmission images of 1-mm spinal cord sections. (a) Transmission microscope image of
1-mm slice of macaque spinal cord in the longitudinal direction. There is higher transmission in
white matter when imaging in this direction. (b) Transmission microscope image of 1 mm slice of
macaque spinal cord in the radial direction. There is higher transmission in gray matter when
imaging in this direction. (c) Backward-detected CARS images of white and gray matters in the
longitudinal direction showing subcellular myelin composition. (d) Backward-detected CARS
images of white and gray matters in the radial direction showing subcellular myelin composition.
WL, white matter in longitudinal direction; GL, gray matter in longitudinal direction; WR, white
matter in radial direction; GR, gray matter in radial direction.
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The spinal cords are to scale in this simulation and we can see here the obvious difficulties
and importance of accurate planning in translating optogenetics to larger animals. For the case of
the mouse simulation, μ 0

s values from the macaque spinal cord were used, as small size made it
too difficult to separately measure μ 0

s in the white and gray matter regions. We believe this to be
a satisfactory assumption based on the similarity in measured μeff in the macaque and mouse
spinal cord. To elaborate on the implications of illumination volume in the mouse spinal
cord, 10 mW is enough optical power to activate channel rhodopsin (activation intensity:
1 mW∕mm2)32,33 in every laminae down to the upper edges of the laminae 7. This corresponds
to about 1.2 mm of tissue being activated in the dorsal to ventral direction, when the fiber output
is perpendicular to the myelin sheaths. In the longitudinal direction, with the same fiber orien-
tation, channel rhodopsin can be activated up to 1.6 mm away from the fiber tip’s midline, in
both directions. A cervical vertebrae length in mice is about 800 μm, meaning that effective
simulations that take into account anisotropic scattering are important for optogenetic planning,
especially if only specific vertebrae are to be optogenetically investigated.34 In the macaque
and human, this illumination scheme does not penetrate deep enough to activate even the first
laminae. While increasing input power is an option, more elaborate fiber optic placement
will become a critical factor in planning the optogenetic experiments in larger animals, and the
observations provided herein will be useful for this.

3.2 Myelinated Axons May Act as Naturally Occurring Optical Waveguides

Perhaps the most interesting theory for the observed anisotropy was proposed by Kumar et al.,
who put forth the idea of myelin sheaths acting as natural optical waveguides.35 While their
hypothesis was only investigated theoretically, we believe this to be a plausible answer.
As an initial test, we imaged a 500-μm and 1-mm-thick longitudinal spinal cord section in a

Fig. 2 Monte Carlo simulation of fluence rate in different mammalian spinal cords using modified
mcxyz. (a) Light deposition in mouse spinal cord. Also included here is the color-coded tissue type
for each of the simulations and the legend for the optogenetic activation volume. (b) Light dep-
osition in macaque spinal cord. (c) Light deposition in human spinal cord. (I) Tissue-type defined
volume with photon trajectory in longitudinal plane. (II) Tissue-type defined volume with photon
trajectory in radial plane. (III) Results of simulation in longitudinal plane with activation circles for
optogenetic planning. (IV) Results of simulation in radial plane with activation circles for optoge-
netic planning. Input power is 10 mW in all simulations. Scale bars in (III) are 1 mm.
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transmission arrangement to see if the myelin sheaths were indeed visible and more bright than
the axon core. At this thickness, without any waveguiding effects the sheaths should not be
visible due to multiple scattering events. However, we did indeed observe myelin rings appearing
brighter than the axon cores in the transmission orientation (see Appendix 1 for more informa-
tion). These results, while not conclusive, suggest a clear need for further investigation of the
waveguide hypothesis. Similarly, if a waveguiding effect is confirmed, it would indicate that the
scattering coefficients we measured are not true reduced scattering coefficients since guiding
effects are not assumed to be present for their derivations.

3.3 Tissue Fixation Caused Negligible Effects in Data Analysis

In our work, we used perfused, paraformaldehyde (PFA)-fixed tissue to explicitly remove any
hemoglobin absorption that could be present in the measurements. This allowed us to directly
compare the attenuation and scattering power of the tissue in the different directions without
compounding factors. While tissue fixation has been reported to change the optical properties
of the sample, at 633 nm, the effects of formalin fixation have been shown to be minimal both in
terms of birefringence profiles and measured scattering power.36,37 We strengthen this claim by
comparing our fresh and fixed human tissue measurements using the integrating sphere setup
(see Table 1 for results), showing that fixation does not significantly alter the absolute values or
directional ratio of the measured reduced scattering coefficients at this wavelength.

3.4 Spinal Cord Measurements Along with DTI Tractography of the Brain
Could Make Present Myelin Information Translatable

Due to the symmetry of the myelin sheath and the spinal cord organization, we use the termi-
nology radial and longitudinal rather than Cartesian units for μ 0

s in x, y, z. We believe that this
representation is more translational for expanding the technique to the brain along with diffuse
tensor imaging (DTI) of white matter tractography.38

Some work has been done in measuring the optical properties of brain tissue in all 3-D in rat
using discrete raster-scanned slices with a similar integrating sphere arrangement used here.39

This could offer an interesting opportunity to compare a full 3-D Monte Carlo simulation using
these measured values for μ 0

s in x, y, z with a two-dimensional (2-D) symmetry-inspired μ 0
s

simulation in just the radial and longitudinal directions using noninvasive DTI, in the future goal
of patient-specific simulations. This ability could improve both optogenetic experiments and
clinical technologies, such as tissue oximeters.

4 Conclusion

We present here experimental evidence of a directional dependence of light propagation in the
white matter of the spinal cord. We also show that this effect is not species dependent and that
the reduced scattering coefficient is ∼50% smaller along the myelin fibers compared with
perpendicular to these fibers. This results in a light distribution that extends 20% further along
the fibers, when the input beam is perpendicular to them. Using the information we present, we
believe that improved Monte Carlo simulations for both stimulating and sensing endeavors can
be achieved. This will be especially important for optogenetic planning wherein the experiment
requires a specific laminae to be reached, or where the light must remain local to a specific spinal
region (i.e., cervical region). While the work we present here is in the spinal cord, due to the
symmetry of myelin, the information can also be used to improve optical simulations in the
brain, using information from routine DTI tractography.

5 Methods

5.1 Scattering and Absorption Coefficient Calculation

The scattering and absorption coefficients were acquired using double-integrating-sphere setups,
which measure the total diffuse reflection and transmission of a laser beam traveling through the
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tissue sample located between the two spheres. These measurements were performed on fixed
macaque and human spinal cord tissue as well as fresh human tissue. This technique is routine
and is explained in detail elsewhere.40 All tissue samples were cut in 1-mm intervals in both the
longitudinal direction (along length of the spinal cord) and in the radial direction (along width of
spinal cord) and measured along the two directions using the integrating sphere arrangement.
With the measures of the integrating spheres, the inverse adding doubling (IAD) algorithm was
performed to estimate the optical properties of the tissue under investigation. Also a routine
technique, the procedure and theory of the calculation can be read elsewhere.41 Attention was
given to assure the tissue sections were indeed homogeneous in the areas of measurements, as is
a requirement for IAD. The laser wavelength used for these measurements was 633 nm and the
beam spot was about 1 mm. The laser wavelength was specifically chosen to diminish absorption
effects caused by hemoglobin as to target the directional dependence of scattering.

5.2 Attenuation Coefficient Estimation

Light transmission measurements were conducted with mouse and macaque spinal cord slices
using a fiber punch-through method.23 594-nm (MBL-FN, Changchun New Industries
Optoelectronics Technology, China) laser light was delivered to a 105-μm-diameter optical
fiber (FG105UCA, Thorlabs). The fiber tip was then lowered into the tissue in 5 μm steps,
and the light intensity was collected on the underside of the slice by a low numerical aperture
(N.A.) objective (10×, 0.25NA) and recorded by a CMOS camera (DMK23UP031, Imaging
Source), seen in Fig. 3(a). Optical transmittance, the amount of light transmitted through a
slice, decays exponentially with the tissue thickness and thereby its evolution can be parame-
terized by fitting the observed intensity profiles with a single exponential function, as seen in
Fig. 3(b).

5.2.1 Data analysis

Optical transmittance, the amount of light transmitted through a slice, was calculated as a ratio of
the total integrated intensity (summed over all pixels in the image) at a given depth over the
optical fiber intensity with no tissue present. Transmission of light through the tissue was then
plotted as a function of the tissue thickness and parameterized by fitting the observed intensity
profiles with a single exponential function. In the diffusion regime, the light can be modeled by
the modified Beer–Lambert law23

EQ-TARGET;temp:intralink-;e001;116;326

IðzÞ
I0

¼ TðzÞ ¼ expð−μeffzÞ; (1)
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Fig. 3 Punch-through method. (a) Spinal cord slices were illuminated by 594-nm laser beam
coupled to a multimode optical fiber. The fiber was lowered into the tissue and the light transmitted
through a slide was collected on the underside by a low numerical aperture objective and detected
using a CMOS camera. (b) Optical transmittance as a function of tissue thickness. Experimental
measurements (black) and exponential fit (red line).
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with IðzÞ being the total intensity detected by camera, z being the tissue thickness, and I0 being
the intensity at the fiber tip. TðzÞ is the optical transmittance, which follows an exponential decay
against the tissue thickness. In our experiment, we do not reach the diffusion regime in the
case of the mouse tissue because the spinal cord sections are simply too small (therefore,
μeff ≠

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μa½μa þ μsð1 − gÞ�p

). Nevertheless, the exponential coefficient is obtained as a relative
value of μeff as it is related to the attenuation.

5.3 3-D Monte Carlo Simulations with Multidirectional Scattering Coefficients

We achieve the simulations using an altered 3-D Monte Carlo program (mcxyz) provided open-
source by Jacques, used previously in the brain.24,39 This program is a verified variation of the
2-D Monte Carlo program created for multilayered tissue (MCML), used routinely for biological
applications.42 Using a simple segmentation program, we converted our spinal cord models from
an image stack to a tissue-type-defined 3-D volume for the simulation.

An immense advantage of the mcxyz program is the inclusion of Jacques’s method for creat-
ing generic tissues, allowing a highly malleable simulation based on few input parameters.25 First
and foremost, it allows the ability to use a measured scattering coefficient acquired at any visible
or NIR wavelength (in our case 633 nm) and to then perform a simulation at another wavelength
by calculating a scattering coefficient relative to that point (i.e., 473 nm). Similarly, while the
measurements are also made at a lower absorbing wavelength and often in bloodless tissue,
mcxyz allows us to simply add an estimated blood concentration to each tissue type separately,
for the inclusion of hemoglobin absorption at the simulation wavelength. This has previously
been used for simulations in the brain.43 Ultimately, this allows us to simulate the light propa-
gation in living tissue at traditional optogenetic activation wavelengths. Lastly, the program
allows to input the light source properties such as: angle of incidence, incident laser wavelength,
beam divergence, and beam starting position. We display herein the case of a 105-μmmultimode
optical fiber with a N.A. of 0.22 situated against and perpendicular to the white matter tracts in
the center of the dorsal spinal cord (Fig. 2). The laser wavelength used in this simulation was
473 nm (to make the simulation relevant to those using channel rhodopsin) and a blood volume
of 2.8% with an oxygen saturation: 62% was deployed, as was described for brain tissue in other
work.25,43

To accommodate our findings of a directional scattering dependence, we included a small
alteration in the Monte Carlo action of the mcxyz program where rather than having a sole
scattering coefficient for each pixel in the volume, there exists one for each 3-D direction.
During the process of the photon step, where the scattering coefficient is considered, the three
pixel-corresponding scattering coefficients are linearly combined using the unit vector of the
photon’s current propagating direction, and from there the program resumes normally. The
modified version has been validated to give identical results to the original mcxyz code when
all 3-D scattering coefficients are equal.

5.4 Sample Preparation

All animal tissues were obtained according to protocols that had been approved by the
Institutional Animal Care and Use Committee (Comité de Protection des Animaux de
l’Université Laval), and all procedures involving animals and their care were made in accordance
with the Canadian Council on Animal Care’s Guide to the Care and Use of Experimental
Animals. Human postmortem brain tissues were obtained from the human brain bank of the
Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec (CERVO), which
required informed consent before donation of tissues. CERVO’s Ethics Committee approved
the brain collection, storage, and handling procedures, which were described in detail
elsewhere.44

5.4.1 Mice and monkeys

Three mice and three macaque specimens were anesthetized with urethane (2 g∕kg) and
perfused intracardially with 4% PFA in 0.1 M phosphate buffer; spinal cords were postfixed
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overnight in the same solution at 4°C. The tissue was then stored in a 0.1 M phosphate buffer
solution. The slices were embedded in agarose and cut in parasagittal and transversal planes at
varying thicknesses. Before measurements, the tissue was always thoroughly rinsed in a water
bath for 2 h.

5.4.2 Human

Two cervical sections of the same human spinal cord were extracted upon the arrival of newly
postmortem tissue at the brain bank. The first section was fixed in a 4% PFA bath, whereas the
other was immediately used for optical analysis. To slice the sections, they were embedded in
agarose and cut in parasagittal and transversal planes at 1 mm thicknesses.

6 Appendix 1

6.1 Myelin May Act as an Optical Waveguide

Recently, it has been theorized that myelin sheaths may act as natural optical waveguides.35

To experimentally investigate this we imaged thick sections of longitudinal spinal cord where
the myelin sheaths are highly organized at high magnification, in a transmission arrangement.
While we have not exhausted the possibilities of other optical effects, it looks as though the
myelin is indeed transmitting more light in the sheath, as opposed to the axon, which matches
the theoretical investigation (see Fig. 4). We tried two different thicknesses and two different
sources, and the pattern of brighter myelin sheaths remained in all cases.

(a) (b)

(c) (d)

Fig. 4 Possible transmission of light through myelin sheaths in thick longitudinal slices of spinal
cord. (a) Optical arrangement for the imaging experiment. Light was collected on the underside
of the slice by a 40× objective and recorded by a CMOS cameras (DMK 23UP031, imaging
source). (b) Magnified and contrasted image of bright myelin sheath and dark axon center
from (c). (c) 500-μm longitudinal slice illuminated using a 594-nm fiber laser source (MBL-FN,
Changchun New Industries Optoelectronics Technology, China). Inset square shows location
of zoomed image in (b). (d) 1-mm longitudinal slice illuminated with a fibered white lamp source
(SLS201L, Thorlabs, New Jersey).
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